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Affine varieties

Let C be the field of complex numbers and n ≥ 1.
A complex affine variety V ⊆ Cn is just the solution set of a
system of polynomial equations, i.e.

V = {P ∈ Cn | fi (P) = 0 for each i ∈ I},

where
fi ∈ C[x1, x2, . . . , xn] for each i ∈ I.

The real part of V ⊆ C2 may look like this

x

y

y2 − x(x − 1)(x + 1)

(smooth)

x

y

y2 − x2(x + 1)

(singular)
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Maps between varieties

A map f : V →W of affine varieties (V ⊆ Cn and W ⊆ C`) if
polynomial if there exist f1, f2, . . . , f` ∈ C[x1, x2, . . . , xn] such that

f (P) =
(
f1(P), f2(P), . . . , f`(P)

)
for each P ∈ V .

If V ⊆ Cn is an affine variety, the coordinate ring C[V ] of V is the
set of all polynomial maps f : V → C.
C[V ] is a C-algebra with pointwise operations and as such
C[V ] ∼= C[x1, x2, . . . , xn]/{f such that f |V ≡ 0} (C[V ] is a finitely
generated C-algebra).
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Maps control affine varieties

To each polynomial map f : V →W we may naturally assign a
homomorphism of C-algebras f ∗ : C[W ]→ C[V ] given by
f ∗(s) = s ◦ f :

V W
C

f s

Fact: This assignment induces a bijection between
1 polynomial maps V → W and
2 C-algebra homomorphisms C[W ]→ C[V ].

A reformulation: There is a full embedding of categories

VarietiesC −→ (AlgC)op.

Hilbert’s Nullstellensatz tells us what the image is: These are
precisely finitely generated C-algebras R which are reduced:
(∀ s ∈ R)(∀n ≥ 1)(sn = 0 =⇒ s = 0).
Analogy with Gelfand-Naimark, X ↔ C(X ) (X compact
Hausdorff topological space, C(X ) the C∗-algebra of continuous
maps X → C).
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The dictionary between algebra and geometry
Affine geometry Algebra
points of V maps of C-algebras C[V ]→ C
Cartesian product V ×W tensor product C[V ]⊗ C[W ]

affine algebraic groups (such as
SLn)

commutative Hopf algebras

(µ : G ×G→ G, 1G ∈ G) (C[G]
∆→ C[G]⊗ C[G], C[G]

ε→ C)

Theorem (Serre, 1955)

For a complex affine variety V , there is a bijective correspondence
between

1 algebraic vector bundles p : E → V and
2 certain finitely generated projective C[V ]-modules (i.e. direct

summands of free C[V ]-modules C[V ]n, n ≥ 1).
The bijection assigns to a vector bundle p its C[V ]-module of sections

P = {s : V → E polynomial map | p ◦ s = 1V}.
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(Quasi-)coherent sheaves
Problem: Vector bundles do not form an abelian category. More
concretely, the image of a map of vector bundles

E1
f //

p1   

E2

p2~~
V

may not be a vector bundle (the ranks of f may differ between
fibers).
Morally, the category of coherent sheaves cohV is the smallest
abelian category containing Vect V . Dictionary:

Affine geometry Algebra
vector bundles over V fin. gen. proj. C[V ]-modules
coherent sheaves on V all fin. gen. C[V ]-modules
quasi-coherent sheaves on V all C[V ]-modules

Algebraic principle: If we want to understand properties of a ring
R, it is a good idea to study the category of R-modules.
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Projective varieties

We can define similarly projective algebraic varieties. Projective
space:

Pn
C = {(a0 : a1 : · · · : an) | (∃i)(ai 6= 0)}.

A complex projective variety V ⊆ Pn
C is the solution set of a

system of homogeneous polynomial equations,

V = {(a0 : a1 : · · · : an) ∈ Pn
C | fi (a0,a1, . . . ,an) = 0 for each i ∈ I}.

Here: A polynomial f ∈ C[x0, x1, . . . , xn] is homogeneous if all
non-zero terms have the same total degree.
Similarly, we can take the ideal

I(V ) = (f homogeneous|fV ≡ 0) ⊆ C[x0, x1, . . . , xn]

and the homogeneous coordinate ring
S(V ) := C[x0, x1, . . . , xn]/I(V ).
Warning: The elements f ∈ S(V ) typically do not define functions
S(V )→ C. Conceptual problem: No holomorphic non-constant
maps P1

C → C by Liouville’s theorem!
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Regular functions

Observation: If V is a projective variety and
f ,g ∈ C[x0, x1, . . . , xn] homogeneous of the same degree, then

(a0 : a1 : · · · : an) 7−→ f (a0,a1, . . . ,an)

g(a0,a1, . . . ,an)
(∗)

defines a partial function V 99K C.
Zariski topology on V : the closed sets are the algebraic subsets
of V .
A function f : U → C, U ⊆ V Zariski open, is regular if it is Zariski
locally of the form (∗).
What structure should a projective variety actually carry?
A ringed space is a pair (V ,OV ) such that V is a topological
space and OV is a sheaf of rings:

1 for each U ⊆ V we have a ring OV (U),
2 for each U ′ ⊆ U ⊆ V we have a homomorphism

resU
U′ : OV (U)→ OV (U ′),

3 subject to certain axioms.
(For complex varieties, we have a sheaf of C-algebras!)
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Homomorphisms of projective varieties

A homomorphism of projective varieties is if a map f : V →W
which is Zariski locally computed by ratios of homogeneous
polynomials.
Formally: f is a homomorphisms of varieties if

1 f is Zariski continuous, and
2 For each s ∈ OW (U), we have s ◦ f ∈ OV (f−1(U)).

V W

C
f s

Related example

If M is a smooth real manifold, M has a structure of ringed space with

OM(U) = {s : M → R | s smooth}.

A map f : M → N of smooth manifolds is smooth if and only if it
satisfies (1) and (2) above.
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Vector bundles and Serre’s theorem

If V is a projective variety and p : E → V is an algebraic vector
bundle, E might have no non-zero global sections.
We should consider sections over open subsets U ⊆ V :

V (U) = {s : U → E | f ◦ s = 1U}.

Each V (U) is an OV (U)-module, and restrictions
resU

U′ : V (U)→ V (U ′) are compatible with the module structure.
Serre, 1955: There is a bijection between

1 algebraic vector bundles p : E → V and
2 certain sheaves of OV -modules such that Zariski locally, V (U) is a

finitely generated projective OV (U)-module.

The category of vector bundles can be extended to an abelian
category:

Vect V ⊆ cohV ⊆ QcohV .
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Example: Grassmannians

The set Grn,r of r -dimensional vector subspaces of Cn naturally
forms a subset of a projective space via the embedding

ι : Grn,r −→ P(n
r)−1

C ,

V = 〈v1, v2, . . . , vr 〉 7−→ 〈v1 ∧ v2 ∧ · · · ∧ vr 〉.

(We fix a basis of ΛrCn and assign to V its Plücker coordinates.)
The image of ι is well-known to be a the zero set of quadratic
homogeneous polynomials, e.g.

Gr4,2 = {(a12 : a13 : a14 : a23 : a24 : a34) ∈ P5
C | a12a34−a13a24+a14a23}.
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Grassmannians as flag varieties

Representation-theoretic point of view: ΛrCn is naturally a
representation of sln; it is the rth fundamental representation
V ($r ).

The image of ι : Grn,r → P(n
r)−1

C is identified with the orbit SLn · v
of a highest weight vector v ∈ V ($r ) and the homogeneous
coordinate ring is explicitly given as

S(Grn,r ) ∼=
∞⊕

k=0

V (k$r )∗.

This generalizes to all flag manifolds F : They are complex
projective varieties given by quadratic homogeneous polynomials
with the coordinate ring of the form

S(F ) ∼=
∞⊕

k=0

V (kλ)∗.

where λ is the sum of the fundamental weights for F .
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