CHARLES UNIVERSITY PRAGUE

faculty of mathematics and physics

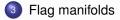
Jan Šťovíček

Noncommutative algebraic geometry based on quantum flag manifolds

Part I. (joint with Réamonn Ó Buachalla and Adam-Christiaan van Roosmalen)

39th Winter School Geometry and Physics, Srní, January 14th, 2019

Affine algebraic geometry



Affine algebraic geometry

Affine varieties

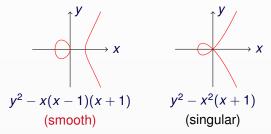
- Let \mathbb{C} be the field of complex numbers and $n \ge 1$.
- A complex affine variety V ⊆ Cⁿ is just the solution set of a system of polynomial equations, i.e.

$$V = \{ P \in \mathbb{C}^n \mid f_i(P) = 0 \text{ for each } i \in I \},\$$

where

$$f_i \in \mathbb{C}[x_1, x_2, \ldots, x_n]$$
 for each $i \in I$.

• The real part of $V \subseteq \mathbb{C}^2$ may look like this



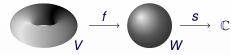
A map f: V → W of affine varieties (V ⊆ Cⁿ and W ⊆ C^ℓ) if polynomial if there exist f₁, f₂,..., f_ℓ ∈ C[x₁, x₂,..., x_n] such that

 $f(P) = (f_1(P), f_2(P), \dots, f_\ell(P))$ for each $P \in V$.

- If V ⊆ Cⁿ is an affine variety, the coordinate ring C[V] of V is the set of all polynomial maps f: V → C.
- $\mathbb{C}[V]$ is a \mathbb{C} -algebra with pointwise operations and as such $\mathbb{C}[V] \cong \mathbb{C}[x_1, x_2, \dots, x_n] / \{f \text{ such that } f|_V \equiv 0\}$ ($\mathbb{C}[V]$ is a finitely generated \mathbb{C} -algebra).

Maps control affine varieties

To each polynomial map *f*: *V* → *W* we may naturally assign a homomorphism of C-algebras *f*^{*}: C[*W*] → C[*V*] given by *f*^{*}(*s*) = *s* ∘ *f*:



- Fact: This assignment induces a bijection between
 - () polynomial maps $V \to W$ and
 - **2** \mathbb{C} -algebra homomorphisms $\mathbb{C}[W] \to \mathbb{C}[V]$.
- A reformulation: There is a full embedding of categories

 $Varieties_{\mathbb{C}} \longrightarrow (Alg_{\mathbb{C}})^{op}.$

- Hilbert's Nullstellensatz tells us what the image is: These are precisely finitely generated C-algebras R which are reduced: (∀ s ∈ R)(∀n ≥ 1)(sⁿ = 0 ⇒ s = 0).
- Analogy with Gelfand-Naimark, X ↔ C(X) (X compact Hausdorff topological space, C(X) the C*-algebra of continuous maps X → C).

The dictionary between algebra and geometry

Affine geometry	Algebra
points of V	maps of \mathbb{C} -algebras $\mathbb{C}[V] o \mathbb{C}$
Cartesian product $V \times W$	tensor product $\mathbb{C}[V] \otimes \mathbb{C}[W]$
affine algebraic groups (such as	commutative Hopf algebras
SL _n)	
($\mu\colon {m G} imes {m G} o {m G},{f 1}_{m G}\in {m G}$)	$(\mathbb{C}[G] \stackrel{\Delta}{\rightarrow} \mathbb{C}[G] \otimes \mathbb{C}[G], \mathbb{C}[G] \stackrel{\varepsilon}{\rightarrow} \mathbb{C})$

Theorem (Serre, 1955)

For a complex affine variety V, there is a bijective correspondence between

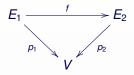
- **()** algebraic vector bundles $p: E \rightarrow V$ and
- Certain finitely generated projective C[V]-modules (i.e. direct summands of free C[V]-modules C[V]ⁿ, n ≥ 1).

The bijection assigns to a vector bundle p its $\mathbb{C}[V]$ -module of sections

 $P = \{s: V \rightarrow E \text{ polynomial map} \mid p \circ s = 1_V\}.$

(Quasi-)coherent sheaves

• Problem: Vector bundles do not form an abelian category. More concretely, the image of a map of vector bundles



may not be a vector bundle (the ranks of f may differ between fibers).

• Morally, the category of coherent sheaves coh V is the smallest abelian category containing Vect V. Dictionary:

Affine geometry	Algebra
vector bundles over V	fin. gen. proj. $\mathbb{C}[V]$ -modules
coherent sheaves on V	all fin. gen. $\mathbb{C}[V]$ -modules
quasi-coherent sheaves on V	all $\mathbb{C}[V]$ -modules
and the second	

• Algebraic principle: If we want to understand properties of a ring *R*, it is a good idea to study the category of *R*-modules.

Projective varieties

• We can define similarly projective algebraic varieties. Projective space:

 $\mathbb{P}^n_{\mathbb{C}} = \{(a_0: a_1: \cdots: a_n) \mid (\exists i)(a_i \neq 0)\}.$

A complex projective variety V ⊆ Pⁿ_C is the solution set of a system of homogeneous polynomial equations,

 $V = \{(a_0 : a_1 : \cdots : a_n) \in \mathbb{P}^n_{\mathbb{C}} \mid f_i(a_0, a_1, \ldots, a_n) = 0 \text{ for each } i \in I\}.$

Here: A polynomial $f \in \mathbb{C}[x_0, x_1, \dots, x_n]$ is homogeneous if all non-zero terms have the same total degree.

Similarly, we can take the ideal

 $I(V) = (f \text{ homogeneous} | f_V \equiv 0) \subseteq \mathbb{C}[x_0, x_1, \dots, x_n]$

and the homogeneous coordinate ring

 $\mathcal{S}(V) := \mathbb{C}[x_0, x_1, \ldots, x_n]/I(V).$

Warning: The elements *f* ∈ *S*(*V*) typically do not define functions *S*(*V*) → C. Conceptual problem: No holomorphic non-constant maps P¹_C → C by Liouville's theorem!

Regular functions

- Observation: If V is a projective variety and
 - $f, g \in \mathbb{C}[x_0, x_1, \dots, x_n]$ homogeneous of the same degree, then

$$(a_0:a_1:\cdots:a_n)\longmapsto \frac{f(a_0,a_1,\ldots,a_n)}{g(a_0,a_1,\ldots,a_n)} \qquad (*)$$

defines a partial function $V \dashrightarrow \mathbb{C}$.

- Zariski topology on V: the closed sets are the algebraic subsets of V.
- A function *f*: U → C, U ⊆ V Zariski open, is regular if it is Zariski locally of the form (*).
- What structure should a projective variety actually carry?
- A ringed space is a pair (*V*, *O_V*) such that *V* is a topological space and *O_V* is a sheaf of rings:

• for each $U \subseteq V$ we have a ring $\mathcal{O}_V(U)$,

(2) for each $U' \subseteq U \subseteq V$ we have a homomorphism

 $\mathsf{res}^U_{U'} \colon \mathcal{O}_V(U) \to \mathcal{O}_V(U'),$

subject to certain axioms.

(For complex varieties, we have a sheaf of $\mathbb{C}\text{-algebras!})$

Homomorphisms of projective varieties

- A homomorphism of projective varieties is if a map *f*: *V* → *W* which is Zariski locally computed by ratios of homogeneous polynomials.
- Formally: f is a homomorphisms of varieties if
 - f is Zariski continuous, and

So For each $s \in \mathcal{O}_W(U)$, we have $s \circ f \in \mathcal{O}_V(f^{-1}(U))$.

$\bigcup_{V} \xrightarrow{f} \bigcup_{W} \xrightarrow{s} \mathbb{C}$

Related example

If M is a smooth real manifold, M has a structure of ringed space with

 $\mathcal{O}_M(U) = \{ s \colon M \to \mathbb{R} \mid s \text{ smooth} \}.$

A map $f: M \to N$ of smooth manifolds is smooth if and only if it satisfies (1) and (2) above.

Vector bundles and Serre's theorem

- If V is a projective variety and p: E → V is an algebraic vector bundle, E might have no non-zero global sections.
- We should consider sections over open subsets U ⊆ V:

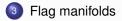
 $\mathscr{V}(U) = \{ s \colon U \to E \mid f \circ s = 1_U \}.$

- Each $\mathscr{V}(U)$ is an $\mathcal{O}_V(U)$ -module, and restrictions $\operatorname{res}_{U'}^U: \mathscr{V}(U) \to \mathscr{V}(U')$ are compatible with the module structure.
- Serre, 1955: There is a bijection between
 - **()** algebraic vector bundles $p: E \rightarrow V$ and
 - Certain sheaves of O_V-modules such that Zariski locally, V(U) is a finitely generated projective O_V(U)-module.
- The category of vector bundles can be extended to an abelian category:

Vect $V \subseteq \operatorname{coh} V \subseteq \operatorname{Qcoh} V$.

Table of Contents

Affine algebraic geometry



Example: Grassmannians

 The set Gr_{n,r} of *r*-dimensional vector subspaces of Cⁿ naturally forms a subset of a projective space via the embedding

$$\iota: \operatorname{Gr}_{n,r} \longrightarrow \mathbb{P}_{\mathbb{C}}^{\binom{n}{r}-1},$$
$$V = \langle v_1, v_2, \dots, v_r \rangle \longmapsto \langle v_1 \wedge v_2 \wedge \dots \wedge v_r \rangle.$$

(We fix a basis of $\Lambda^r \mathbb{C}^n$ and assign to V its Plücker coordinates.)

 The image of *i* is well-known to be a the zero set of quadratic homogeneous polynomials, e.g.

 $\mathsf{Gr}_{4,2} = \{ (a_{12}: a_{13}: a_{14}: a_{23}: a_{24}: a_{34}) \in \mathbb{P}^5_{\mathbb{C}} \mid a_{12}a_{34} - a_{13}a_{24} + a_{14}a_{23} \}.$

Grassmannians as flag varieties

- Representation-theoretic point of view: Λ^rCⁿ is naturally a representation of sl_n; it is the rth fundamental representation V(w_r).
- The image of ι : $\operatorname{Gr}_{n,r} \to \mathbb{P}_{\mathbb{C}}^{\binom{r}{r}-1}$ is identified with the orbit $SL_n \cdot v$ of a highest weight vector $v \in V(\varpi_r)$ and the homogeneous coordinate ring is explicitly given as

$$S(\operatorname{Gr}_{n,r})\cong \bigoplus_{k=0}^{\infty} V(k\varpi_r)^*.$$

• This generalizes to all flag manifolds *F*: They are complex projective varieties given by quadratic homogeneous polynomials with the coordinate ring of the form

$$S(F)\cong \bigoplus_{k=0}^{\infty}V(k\lambda)^*.$$

where λ is the sum of the fundamental weights for *F*.