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Affine varieties

@ Let C be the field of complex numbers and n > 1.
@ A complex affine variety V C C" is just the solution set of a
system of polynomial equations, i.e.

V={PeC"|f(P)=0foreachic [},
where

fi € C[x1, Xz, ..., Xq] foreach i e I.

@ The real part of V C C? may look like this

y y
X X
y2 —x(x —1)(x+1) y2 —x3(x + 1)
(smooth) (singular)
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Maps between varieties

@ Amap f: V — W of affine varieties (V C C" and W C C¥) if
polynomial if there exist fi, &, ..., f, € C[xq, Xz, .. ., Xp] such that

f(P) = (f(P), &(P), .., f(P)) for each P € V.

@ If V C C"is an affine variety, the coordinate ring C[V] of V is the
set of all polynomial maps f: V — C.

@ C[V] is a C-algebra with pointwise operations and as such
C[V] = C[x1, X2, ..., Xn)/{f such that f|, = 0} (C[V] is a finitely
generated C-algebra).
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Maps control affine varieties

@ To each polynomial map f: V — W we may naturally assign a
homomorphism of C-algebras f*: C[W] — C[V] given by
f*(s) =sof:

”_'ZOLC
4 w

@ Fact: This assignment induces a bijection between
@ polynomial maps V — W and
@ C-algebra homomorphisms C[W] — C[V].
@ A reformulation: There is a full embedding of categories

Varietiesc — (Alg¢).

@ Hilbert’s Nullstellensatz tells us what the image is: These are
precisely finitely generated C-algebras R which are reduced:
(VseR)(VYn>1)(s"=0 = s=0).

@ Analogy with Gelfand-Naimark, X < C(X) (X compact
Hausdorff topological space, C(X) the C*-algebra of continuous
maps X — C).

6/16 Jan Stovicek Noncommutative flags, part I.



The dictionary between algebra and geo

Affine geometry Algebra

points of V maps of C-algebras C[V] — C
Cartesian product V x W tensor product C[V] ® C[W]
affine algebraic groups (such as | commutative Hopf algebras

SLy)

(u: Gx G— G, 1g € G) (C[G] & C[G] ® C[G], C[G] = C)

Theorem (Serre, 1955)

For a complex affine variety V, there is a bijective correspondence
between

@ algebraic vector bundles p: E — V and

@ certain finitely generated projective C[V]-modules (i.e. direct
summands of free C[V]-modules C[V]", n > 1).

The bijection assigns to a vector bundle p its C[V]-module of sections

P ={s: V — E polynomial map | pos=1y}.

<
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(Quasi-)coherent sheaves

@ Problem: Vector bundles do not form an abelian category. More
concretely, the image of a map of vector bundles

EE— "  -F
may not be a vector bundle (the ranks of f may differ between
fibers).

@ Morally, the category of coherent sheaves cohV is the smallest
abelian category containing Vect V. Dictionary:

Affine geometry | Algebra
vector bundles over V fin. gen. proj. C[V]-modules
coherent sheaves on V all fin. gen. C[V]-modules

quasi-coherent sheaves on V | all C[V]-modules
@ Algebraic principle: If we want to understand properties of a ring
R, itis a good idea to study the category of R-modules.
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Projective varieties

@ We can define similarly projective algebraic varieties. Projective
space:

P ={(ao:ar:---:an)| (3i)(ai # 0)}.

@ A complex projective variety V C P{. is the solution set of a
system of homogeneous polynomial equations,

V={(a:a: - :ay) €P]|fiapai,...,an) =0foreachie I}

Here: A polynomial f € C[xo, X1, . .., Xp] is homogeneous if all
non-zero terms have the same total degree.
@ Similarly, we can take the ideal

I(V) = (f homogeneous|fy = 0) C C[xp, X1, - . ., Xp]
and the homogeneous coordinate ring
S( V) = C[XO,XM e 7Xn]//( V)
@ Warning: The elements f € S(V) typically do not define functions

S(V) — C. Conceptual problem: No holomorphic non-constant
maps PL. — C by Liouville’s theorem!
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Regular functions

@ Observation: If V is a projective variety and

f,g € C[xo, X1, . .., Xn] homogeneous of the same degree, then
f(ao, a1, - .., an)
d:a:---8p)r—> —F)——=% *
(0 a ") 9(ao, a1, ..., an) ()

defines a partial function V --» C.
@ Zariski topology on V: the closed sets are the algebraic subsets
of V.
@ Afunction f: U — C, U C V Zariski open, is regular if it is Zariski
locally of the form (x).
@ What structure should a projective variety actually carry?
@ Aringed space is a pair (V, Oy) such that V is a topological
space and Oy is a sheaf of rings:
@ for each U C V we have a ring Oy (U),
@ foreach U’ C U C V we have a homomorphism

resy : Oy(U) — Oy (U),
© subject to certain axioms.
(For complex varieties, we have a sheaf of C-algebras!)
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Homomorphisms of projective varieties

@ A homomorphism of projective varieties isifamap f: V — W
which is Zariski locally computed by ratios of homogeneous
polynomials.

@ Formally: f is a homomorphisms of varieties if

@ s Zariski continuous, and
@ Foreach s € Oy (U), we have so f € Oy (f~'(U)).

‘ —f)°__s__> (C
4 w

Related example
If M is a smooth real manifold, M has a structure of ringed space with

Ou(U) = {s: M — R | s smooth}.

A map f: M — N of smooth manifolds is smooth if and only if it
satisfies (1) and (2) above.
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Vector bundles and Serre’s theorem

@ If V is a projective variety and p: E — V is an algebraic vector
bundle, E might have no non-zero global sections.

@ We should consider sections over open subsets U C V:
YU)={s: U— E|fos=1y}.

@ Each 7(U) is an Oy (U)-module, and restrictions
resy,: 7 (U) — ¥ (U') are compatible with the module structure.
@ Serre, 1955: There is a bijection between
@ algebraic vector bundles p: E — V and
@ certain sheaves of Oy-modules such that Zariski locally, 7 (U) is a
finitely generated projective Oy(U)-module.
@ The category of vector bundles can be extended to an abelian
category:
Vect V C cohV C QcohV.
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Example: Grassmannians

@ The set Gr, , of r-dimensional vector subspaces of C" naturally
forms a subset of a projective space via the embedding

v: Grp, — IP((C’)_1,
V={(vi,vo,...,Vr) — (Vf AVa A--- A V).
(We fix a basis of A"C" and assign to V its Plicker coordinates.)

@ The image of ¢ is well-known to be a the zero set of quadratic
homogeneous polynomials, e.g.

Gryo = {(@12: @13 : @14 : 83 : 84 : A34) € P2 | 81283413824+ 812823}
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Grassmannians as flag varieties

@ Representation-theoretic point of view: A'C" is naturally a
representation of sl,; it is the r'" fundamental representation
V(w,‘).

@ The image of ¢: Gr,, — ]P’((Cﬁ)f1 is identified with the orbit SL,, - v
of a highest weight vector v € V(w,) and the homogeneous
coordinate ring is explicitly given as

S(Grn,r) = @ V(keor)*

@ This generalizes to all flag manifolds F: They are complex
projective varieties given by quadratic homogeneous polynomials
with the coordinate ring of the form

F) =~ é V(k))*
k=0

where X is the sum of the fundamental weights for F.
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