Jan Šťovíček

Noncommutative algebraic geometry based on quantum flag manifolds

Part I.
(joint with Réamonn Ó Buachalla and Adam-Christiaan van Rooijen)

39th Winter School Geometry and Physics, Srní, January 14th, 2019
Table of Contents

1. Affine algebraic geometry
2. Projective algebraic geometry
3. Flag manifolds
Table of Contents

1. Affine algebraic geometry
2. Projective algebraic geometry
3. Flag manifolds
Let \mathbb{C} be the field of complex numbers and $n \geq 1$. A complex affine variety $V \subseteq \mathbb{C}^n$ is just the solution set of a system of polynomial equations, i.e.

$$V = \{ P \in \mathbb{C}^n \mid f_i(P) = 0 \text{ for each } i \in I \},$$

where

$$f_i \in \mathbb{C}[x_1, x_2, \ldots, x_n] \text{ for each } i \in I.$$

The real part of $V \subseteq \mathbb{C}^2$ may look like this

\[
\begin{align*}
&y^2 - x(x-1)(x+1) \quad \text{(smooth)} \\
&y^2 - x^2(x+1) \quad \text{(singular)}
\end{align*}
\]
A map $f: V \to W$ of affine varieties ($V \subseteq \mathbb{C}^n$ and $W \subseteq \mathbb{C}^\ell$) if polynomial if there exist $f_1, f_2, \ldots, f_\ell \in \mathbb{C}[x_1, x_2, \ldots, x_n]$ such that

$$f(P) = (f_1(P), f_2(P), \ldots, f_\ell(P)) \text{ for each } P \in V.$$

If $V \subseteq \mathbb{C}^n$ is an affine variety, the coordinate ring $\mathbb{C}[V]$ of V is the set of all polynomial maps $f: V \to \mathbb{C}$.

$\mathbb{C}[V]$ is a \mathbb{C}-algebra with pointwise operations and as such $\mathbb{C}[V] \cong \mathbb{C}[x_1, x_2, \ldots, x_n]/\{f \text{ such that } f|_V \equiv 0\}$ ($\mathbb{C}[V]$ is a finitely generated \mathbb{C}-algebra).
Maps control affine varieties

- To each polynomial map $f : V \to W$ we may naturally assign a homomorphism of \mathbb{C}-algebras $f^* : \mathbb{C}[W] \to \mathbb{C}[V]$ given by $f^*(s) = s \circ f$:

- Fact: This assignment induces a bijection between
 1. polynomial maps $V \to W$ and
 2. \mathbb{C}-algebra homomorphisms $\mathbb{C}[W] \to \mathbb{C}[V]$.

- A reformulation: There is a full embedding of categories

\[\text{Varieties}_\mathbb{C} \longrightarrow (\text{Alg}_\mathbb{C})^{\text{op}}. \]

- Hilbert’s Nullstellensatz tells us what the image is: These are precisely finitely generated \mathbb{C}-algebras R which are reduced:

\[(\forall s \in R)(\forall n \geq 1)(s^n = 0 \implies s = 0). \]

- Analogy with Gelfand-Naimark, $X \leftrightarrow C(X)$ (X compact Hausdorff topological space, $C(X)$ the C^*-algebra of continuous maps $X \to \mathbb{C}$).
<table>
<thead>
<tr>
<th>Affine geometry</th>
<th>Algebra</th>
</tr>
</thead>
<tbody>
<tr>
<td>points of V</td>
<td>maps of \mathbb{C}-algebras $\mathbb{C}[V] \rightarrow \mathbb{C}$</td>
</tr>
<tr>
<td>Cartesian product $V \times W$</td>
<td>tensor product $\mathbb{C}[V] \otimes \mathbb{C}[W]$</td>
</tr>
<tr>
<td>affine algebraic groups (such as SL_n)</td>
<td>commutative Hopf algebras</td>
</tr>
<tr>
<td>$(\mu: G \times G \rightarrow G, 1_G \in G)$</td>
<td>$(\mathbb{C}[G] \xrightarrow{\Delta} \mathbb{C}[G] \otimes \mathbb{C}[G], \mathbb{C}[G] \xrightarrow{\varepsilon} \mathbb{C})$</td>
</tr>
</tbody>
</table>

Theorem (Serre, 1955)

For a complex affine variety V, there is a bijective correspondence between

1. algebraic vector bundles $p: E \rightarrow V$ and
2. certain finitely generated projective $\mathbb{C}[V]$-modules (i.e. direct summands of free $\mathbb{C}[V]$-modules $\mathbb{C}[V]^n$, $n \geq 1$).

The bijection assigns to a vector bundle p its $\mathbb{C}[V]$-module of sections

$$P = \{ s: V \rightarrow E \text{ polynomial map} \mid p \circ s = 1_V \}.$$
(Quasi-)coherent sheaves

- **Problem:** Vector bundles do not form an abelian category. More concretely, the image of a map of vector bundles

\[E_1 \xrightarrow{f} E_2 \]

\[\begin{array}{c}
p_1 \\
\downarrow \\
V \\
\downarrow \\
p_2
\end{array} \]

may not be a vector bundle (the ranks of \(f \) may differ between fibers).

- Morally, the category of coherent sheaves \(\text{coh} V \) is the smallest abelian category containing \(\text{Vect} V \). Dictionary:

<table>
<thead>
<tr>
<th>Affine geometry</th>
<th>Algebra</th>
</tr>
</thead>
<tbody>
<tr>
<td>vector bundles over (V)</td>
<td>fin. gen. proj. (\mathbb{C}[V])-modules</td>
</tr>
<tr>
<td>coherent sheaves on (V)</td>
<td>all fin. gen. (\mathbb{C}[V])-modules</td>
</tr>
<tr>
<td>quasi-coherent sheaves on (V)</td>
<td>all (\mathbb{C}[V])-modules</td>
</tr>
</tbody>
</table>

- **Algebraic principle:** If we want to understand properties of a ring \(R \), it is a good idea to study the category of \(R \)-modules.
Table of Contents

1 Affine algebraic geometry
2 Projective algebraic geometry
3 Flag manifolds

Jan Šťovíček
Noncommutative flags, part I.
We can define similarly projective algebraic varieties. Projective space:

\[\mathbb{P}^n_{\mathbb{C}} = \{ (a_0 : a_1 : \cdots : a_n) | (\exists i)(a_i \neq 0) \} \].

A complex projective variety \(V \subseteq \mathbb{P}^n_{\mathbb{C}} \) is the solution set of a system of homogeneous polynomial equations,

\[V = \{ (a_0 : a_1 : \cdots : a_n) \in \mathbb{P}^n_{\mathbb{C}} | f_i(a_0, a_1, \ldots, a_n) = 0 \text{ for each } i \in I \} \].

Here: A polynomial \(f \in \mathbb{C}[x_0, x_1, \ldots, x_n] \) is homogeneous if all non-zero terms have the same total degree.

Similarly, we can take the ideal

\[I(V) = (f \text{ homogeneous} | f_V \equiv 0) \subseteq \mathbb{C}[x_0, x_1, \ldots, x_n] \]

and the homogeneous coordinate ring

\[S(V) := \mathbb{C}[x_0, x_1, \ldots, x_n]/I(V) \].

Warning: The elements \(f \in S(V) \) typically do not define functions \(S(V) \rightarrow \mathbb{C} \). Conceptual problem: No holomorphic non-constant maps \(\mathbb{P}^1_{\mathbb{C}} \rightarrow \mathbb{C} \) by Liouville's theorem!
Observation: If V is a projective variety and $f, g \in \mathbb{C}[x_0, x_1, \ldots, x_n]$ homogeneous of the same degree, then

$$(a_0 : a_1 : \cdots : a_n) \mapsto -\frac{f(a_0, a_1, \ldots, a_n)}{g(a_0, a_1, \ldots, a_n)}$$

defines a partial function $V \rightarrow \mathbb{C}$.

Zariski topology on V: the closed sets are the algebraic subsets of V.

A function $f: U \rightarrow \mathbb{C}$, $U \subseteq V$ Zariski open, is regular if it is Zariski locally of the form $(*)$.

What structure should a projective variety actually carry?

A ringed space is a pair (V, \mathcal{O}_V) such that V is a topological space and \mathcal{O}_V is a sheaf of rings:

1. for each $U \subseteq V$ we have a ring $\mathcal{O}_V(U)$,
2. for each $U' \subseteq U \subseteq V$ we have a homomorphism $\text{res}_{U'}^U: \mathcal{O}_V(U) \rightarrow \mathcal{O}_V(U')$,
3. subject to certain axioms.

(For complex varieties, we have a sheaf of \mathbb{C}-algebras!)
Homomorphisms of projective varieties

A homomorphism of projective varieties is a map \(f: V \rightarrow W \) which is Zariski locally computed by ratios of homogeneous polynomials.

Formally: \(f \) is a homomorphism of varieties if

1. \(f \) is Zariski continuous, and
2. For each \(s \in \mathbb{O}_W(U) \), we have \(s \circ f \in \mathbb{O}_V(f^{-1}(U)) \).

Related example

If \(M \) is a smooth real manifold, \(M \) has a structure of a ringed space with

\[
\mathbb{O}_M(U) = \{ s: M \rightarrow \mathbb{R} \mid s \text{ smooth} \}.
\]

A map \(f: M \rightarrow N \) of smooth manifolds is smooth if and only if it satisfies (1) and (2) above.
If \(V \) is a projective variety and \(p: E \to V \) is an algebraic vector bundle, \(E \) might have no non-zero global sections.

We should consider sections over open subsets \(U \subseteq V \):

\[
\mathcal{V}(U) = \{ s: U \to E \mid f \circ s = 1_U \}.
\]

Each \(\mathcal{V}(U) \) is an \(\mathcal{O}_V(U) \)-module, and restrictions \(\text{res}^U_{U'}: \mathcal{V}(U) \to \mathcal{V}(U') \) are compatible with the module structure.

Serre, 1955: There is a bijection between

1. algebraic vector bundles \(p: E \to V \) and
2. certain sheaves of \(\mathcal{O}_V \)-modules such that Zariski locally, \(\mathcal{V}(U) \) is a finitely generated projective \(\mathcal{O}_V(U) \)-module.

The category of vector bundles can be extended to an abelian category:

\[
\text{Vect} \, V \subseteq \text{coh} \, V \subseteq \text{Qcoh} \, V.
\]
1. Affine algebraic geometry
2. Projective algebraic geometry
3. Flag manifolds
The set $\text{Gr}_{n,r}$ of r-dimensional vector subspaces of \mathbb{C}^n naturally forms a subset of a projective space via the embedding

$$\iota : \text{Gr}_{n,r} \longrightarrow \mathbb{P}_{\mathbb{C}}^{\binom{n}{r}-1},$$

$$V = \langle v_1, v_2, \ldots, v_r \rangle \longmapsto \langle v_1 \wedge v_2 \wedge \cdots \wedge v_r \rangle.$$

(We fix a basis of $\Lambda^r \mathbb{C}^n$ and assign to V its Plücker coordinates.)

The image of ι is well-known to be a the zero set of quadratic homogeneous polynomials, e.g.

$$\text{Gr}_{4,2} = \{(a_{12} : a_{13} : a_{14} : a_{23} : a_{24} : a_{34}) \in \mathbb{P}_{\mathbb{C}}^5 \mid a_{12}a_{34} - a_{13}a_{24} + a_{14}a_{23}\}.$$
Grassmannians as flag varieties

- Representation-theoretic point of view: $\Lambda^r \mathbb{C}^n$ is naturally a representation of \mathfrak{sl}_n; it is the rth fundamental representation $V(\varpi_r)$.

- The image of $\iota : \text{Gr}_{n,r} \to \mathbb{P}_{\mathbb{C}}^{n-1}$ is identified with the orbit $\text{SL}_n \cdot v$ of a highest weight vector $v \in V(\varpi_r)$ and the homogeneous coordinate ring is explicitly given as

$$S(\text{Gr}_{n,r}) \cong \bigoplus_{k=0}^{\infty} V(k\varpi_r)^*.$$

- This generalizes to all flag manifolds F: They are complex projective varieties given by quadratic homogeneous polynomials with the coordinate ring of the form

$$S(F) \cong \bigoplus_{k=0}^{\infty} V(k\lambda)^*.$$

where λ is the sum of the fundamental weights for F.
Jan Šťovíček

Noncommutative algebraic geometry based on quantum flag manifolds

Part II.
(joint with Réamonn Ó Buachalla and Adam-Christiaan van Roosmalen)

39th Winter School Geometry and Physics, Srní, January 16th, 2019
1	Coherent sheaves on projective varieties
2	Quantized homogeneous rings of flags
3	Relation to the Heckenberger-Kolb calculus
1 Coherent sheaves on projective varieties

2 Quantized homogeneous rings of flags

3 Relation to the Heckенberger-Kolb calculus
Let $V \subseteq \mathbb{P}_\mathbb{C}^n$ and

$$S(V) = \mathbb{C}[x_0, x_1, \ldots, x_n]/(f \text{ homogeneous, } f|_V \equiv 0)$$

be its homogeneous coordinate ring. Then

$$S(V) = \bigoplus_{n=0}^{\infty} S(V)_n$$

is naturally \mathbb{Z}-graded.

Question: We know that the elements of $S(V)$ are not functions on V. What are they?

The homogeneous parts $S(V)_n, n \geq 0$ are global sections of certain line bundles \mathcal{L}_n.

So every projective variety is the set of zeros of sections in line bundles.
The tautological bundle

There is an important line bundle over $\mathbb{P}_\mathbb{C}^n$, the tautological bundle $\mathcal{O}_{\mathbb{P}_\mathbb{C}^n}(1)$.

It is dual to $\mathcal{O}_{\mathbb{P}_\mathbb{C}^n}(-1) \subseteq \mathcal{O}_{\mathbb{P}_\mathbb{C}^n}^{n+1}$, whose the fiber over $(a_0 : a_1 : \cdots : a_n)$ is the line $\langle a_0, a_1, \ldots, a_n \rangle \subseteq \mathbb{C}^{n+1}$.

If $\iota : V \subseteq \mathbb{P}_\mathbb{C}^n$, consider the restricted line bundle $\mathcal{L} := \iota^* \mathcal{O}_{\mathbb{P}_\mathbb{C}^n}(1)$. This is an example of what is called ample (algebraic geometry) or positive (in the context of Kähler manifolds) line bundle.

Fact: $S(V) \cong \bigoplus_{n=0}^{\infty} \Gamma(V, \mathcal{L}^\otimes n)$. The homogeneous coordinate ring is the direct sum of global sections of tensor powers of \mathcal{L}.
The twist functor: If $\mathcal{F} \in \text{Qcoh} \, V$ and $n \in \mathbb{Z}$, put

$$\mathcal{F}(n) := \mathcal{F} \otimes_{\mathcal{O}_V} L^\otimes n$$

(that is, $\mathcal{F}(n)(U) := \mathcal{F}(U) \otimes_{\mathcal{O}_V(U)} L(U)^\otimes n$ on U in an open basis of V).

The graded module associated to a sheaf: If $\mathcal{F} \in \text{Qcoh} \, V$, we put

$$\Gamma_{\ast}(\mathcal{F}) := \bigoplus_{n \in \mathbb{Z}} \Gamma(\mathcal{F}(n)) = \bigoplus_{n \in \mathbb{Z}} \text{Hom}((L^\ast)^\otimes n, \mathcal{F}).$$

Example: $\Gamma_{\ast}(\mathcal{O}_V) \cong S(V)$.

Theorem (Serre, 1955)

1. The functor $\Gamma_{\ast}: \text{Qcoh} \, V \to \text{Mod}_{\mathbb{Z}} S(V)$ is fully faithful.
2. Γ_{\ast} has an exact left adjoint $Q: \text{Mod}_{\mathbb{Z}} S(V) \to \text{Qcoh} \, V$ which satisfies a universal property:
 $$\text{Qcoh} \, V = \text{Mod}_{\mathbb{Z}} S(V) / \text{Mod}_{0} S(V) \text{ (Serre quotient)}.$$
3. Similarly, $\text{coh} \, V = \text{mod}_{\mathbb{Z}} S(V) / \text{mod}_{0} S(V)$.
Homogeneous coordinate rings of Grassmannians

- We have $SL_n/P \cong Gr_{n,r}$, where

$$P = \begin{pmatrix} P_r & Q \\ 0 & P_{n-r} \end{pmatrix},$$

where $P_r \in M_r(\mathbb{C})$ and $P_{n-r} \in M_{n-r}(\mathbb{C})$. The bijection sends the coset UP, $U = (u_{ij})_{i,j=1}^n \in SL_n$ to the linear hull of the first r columns of U.

- If we view $Gr_{n,r} \subseteq \mathbb{P}_{\mathbb{C}}^{\binom{n}{r}-1}$ via the Plücker embedding, the quotient map $SL_n \to Gr_{n,r}$ sends $U = (u_{ij})_{i,j=1}^n$ to a point with homogeneous coordinates $\sum_\sigma (-1)^{\text{sgn}(\sigma)} u_{\sigma(i_1),1} u_{\sigma(i_2),2} \cdots u_{\sigma(i_r),r}$, one for each sequence $i_1 < i_2 < \cdots < i_r$.

- In terms of coordinate rings, this shows that $S(Gr_{n,r})$ coincides with the subring

$$\mathbb{C} \left[\sum_\sigma (-1)^{\text{sgn}(\sigma)} u_{\sigma(i_1),1} u_{\sigma(i_2),2} \cdots u_{\sigma(i_r),r} \mid i_1 < i_2 < \cdots < i_r \right] \subseteq \mathbb{C}[SL_n].$$
In terms of coordinate rings, this shows that \(S(\text{Gr}_n,r) \) coincides with the subring

\[
\mathbb{C} \left[\sum_{\sigma} (-1)^{\text{sgn}(\sigma)} u_{\sigma(i_1),1} u_{\sigma(i_2),2} \cdots u_{\sigma(i_r),r} \mid i_1 < i_2 < \cdots < i_r \right] \subseteq \mathbb{C}[\text{SL}_n].
\]

We have \(\mathbb{C}[\text{SL}_n] = U(\mathfrak{sl}_n)^\circ \) \((\cdot)^\circ \) is the Hopf dual).

Quantum deformation: We can deform \(\mathbb{C}[\text{SL}_n] \) to \(U_q(\mathfrak{sl}_n)^\circ \) and define \(S_q[\text{Gr}_n,r] \) as the subring

\[
\mathbb{C} \left[\sum_{\sigma} (-q)^{\ell(\sigma)} u_{\sigma(i_1),1} u_{\sigma(i_2),2} \cdots u_{\sigma(i_r),r} \mid i_1 < i_2 < \cdots < i_r \right] \subseteq U_q(\mathfrak{sl}_n)^\circ.
\]

Representation-theoretic perspective: Again \(S_q[\text{Gr}_n,r] \cong \bigoplus_{k=0}^{\infty} V(k\varpi_r)^* \), where \(V(k\varpi_r) \) is the corresponding representation of \(U_q(\mathfrak{sl}_n) \).
One can do the same for all flags (Soibelman 1992, Taft and Towber 1991, Lakshmibai and Reshetikin 1992, Braveman 1994, ...).

Let \mathfrak{g} be a complex semisimple Lie algebra, G the corresponding complex simply connected algebraic group and P a parabolic subgroup. Then the flag $F = G/P$ is a projective variety and

$$\bigoplus_{k=0}^{\infty} V(k\lambda)^* \cong S_q(F) \subseteq U_q(\mathfrak{g})^\circ,$$

where λ is the sum of fundamental weights for F and $V(k\lambda)$ are the corresponding finite dimensional representations of $U_q(\mathfrak{g})$.

One can define a quantization for the category of coherent sheaves: $\text{coh}_q F := \text{mod}^{\mathbb{Z}} S_q(F)/\text{mod}_0^{\mathbb{Z}} S_q(F)$.

This is an abelian category and we can, for instance, define and study the analogue of the sheaf cohomology as well as other algebraic properties.
Table of Contents

1. Coherent sheaves on projective varieties
2. Quantized homogeneous rings of flags
3. Relation to the Heckenberger-Kolb calculus
Aim: Relate the quantized algebraic and differential geometry.

We have $SU_n \subseteq SL_n$, where

1. SL_n is a complex affine algebraic group,
2. SU_n is a real compact Lie group but it is also a real algebraic group!

Rings of functions in place:

1. For SL_n we have the complex coordinate ring $\mathbb{C}[SL_n]$,
2. For SU_n we have the hierarchy

$$C(SU_n) \supseteq C^\infty(SU_n) \supseteq \mathcal{O}(SU_n)$$

where $\mathcal{O}(SU_n)$ is the ring of polynomial functions $s: SU_n \to \mathbb{C}$ of real algebraic varieties.

3. The magic here: $\mathbb{C}[SL_n] \cong \mathcal{O}(SU_n)$
 (via the restriction of $s: SL_n \to \mathbb{C}$ to SU_n).
A “cultural” problem:

1. In differential geometry, a compact complex manifold is a real manifold with an extra structure (flat connection $\bar{\partial}: \mathcal{C}^{\infty}(V) \to \Omega^{(0,1)}$).

2. In algebraic geometry, one usually encounters only polynomial or rational (so holomorphic) functions.

To relate the two, we need a meeting point of (1) and (2).

We have $\text{Gr}_{n,r} \cong SL_n/P \cong SU_n/L$, where

$$P = \begin{pmatrix} P_r & Q \\ 0 & P_{n-r} \end{pmatrix} \quad \text{and} \quad L = P \cap SU_n = \begin{pmatrix} L_r & 0 \\ 0 & L_{n-r} \end{pmatrix}.$$

Now:

1. The expression $\text{Gr}_{n,r} \cong SL_n/P$ allows to view the Grassmannian as a projective complex algebraic variety.

2. The expression $\text{Gr}_{n,r} \cong SU_n/L$ allows to view the Grassmannian as an affine real algebraic variety.

The meeting point: Try to view a complex algebraic variety V as a real algebraic variety with a “complex structure” (a flat connection $\bar{\partial}: \mathcal{O}(V) \to \Omega^{(0,1)}$).
Dolbeault dg algebra

- If V is a complex manifold, we have the Dolbeault complex:

$$
0 \longrightarrow C^\infty(V) \xrightarrow{\overline{\partial}} \Omega^{(0,1)} \xrightarrow{\overline{\partial}} \Omega^{(0,2)} \xrightarrow{\overline{\partial}} \ldots
$$

- We can wedge forms ($\wedge : \Omega^{(0,i)} \otimes \Omega^{(0,j)} \longrightarrow \Omega^{(0,i+j)}$). Then $\Omega^{(0,\bullet)} = \bigoplus \Omega^{(0,i)}$ is a \mathbb{Z}-graded associative algebra over \mathbb{C}.

- Moreover, we have the graded Leibniz rule:

$$
\overline{\partial}(\omega_i \wedge \omega_j) = \overline{\partial}(\omega_i) \wedge \omega_j + (-1)^i \omega_i \wedge \overline{\partial}(\omega_j)
$$

for each $\omega_i \in \Omega^{(0,i)}$ and $\omega_j \in \Omega^{(0,j)}$. In other words, $(\Omega^{(0,\bullet)}(V), \wedge, \overline{\partial})$ is a differential graded (dg) algebra.

- If $V = \text{Gr}_{n,r} = SU_n/L$, then

$$
\mathcal{O}(\text{Gr}_{n,r}) \subseteq C^\infty(\text{Gr}_{n,r}) \subseteq C(\text{Gr}_{n,r})
$$

and $\mathcal{O}(\text{Gr}_{n,r})$ is dense with respect to $\| - \|_\infty$.

- Now, the Dolbeault dg algebra for $\text{Gr}_{n,r}$ does restrict to real algebraic sections:

$$
0 \longrightarrow \mathcal{O}(\text{Gr}_{n,r}) \xrightarrow{\overline{\partial}} \Omega^{(0,1)}_{\text{alg}} \xrightarrow{\overline{\partial}} \Omega^{(0,2)}_{\text{alg}} \xrightarrow{\overline{\partial}} \ldots
$$
The Dolbeault dg algebra for $\text{Gr}_{n,r}$ does restrict to real algebraic sections:

$$
\begin{align*}
0 & \longrightarrow \mathcal{O}(\text{Gr}_{n,r}) \overset{\overline{\partial}}{\longrightarrow} \Omega_{\text{alg}}^{(0,1)} \overset{\overline{\partial}}{\longrightarrow} \Omega_{\text{alg}}^{(0,2)} \overset{\overline{\partial}}{\longrightarrow} \ldots \\
\end{align*}
$$

and can be quantized:

$$
\begin{align*}
0 & \longrightarrow \mathcal{O}_q(\text{Gr}_{n,r}) \overset{\overline{\partial}}{\longrightarrow} \Omega^{(0,1)}_q \overset{\overline{\partial}}{\longrightarrow} \Omega^{(0,2)}_q \overset{\overline{\partial}}{\longrightarrow} \ldots \\
\end{align*}
$$

$$
((\Omega^{(0,\cdot)}_q(\text{Gr}_{n,r}), \wedge, \overline{\partial}) \text{ is a dg algebra again}).
$$

If we impose some more natural conditions on $\Omega^{(0,\cdot)}_q(\text{Gr}_{n,r})$, it is unique (Heckenberger and Kolb, 2006)!

In fact, Heckenberger and Kolb quantized the Dolbeault dg algebra for all compact Hermitian symmetric flags.
The Koszul-Malgrange theorem

Theorem (Koszul and Malgrange, 1958)

Let V be a compact complex manifold. Then there is a bijective correspondence between

1. holomorphic vector bundles $p: E \to V$ and
2. smooth complex vector bundles equipped with a flat connection $\nabla_E: \Gamma^\infty(E) \to \Gamma^\infty(E) \otimes_{\mathcal{C}^\infty(V)} \Omega^{(0,1)}$, where

\[
\Gamma^\infty(E) = \{ s: V \to E \text{ smooth map} \mid p \circ s = 1_V \}.
\]

The holomorphic sections of E are precisely ∇_E.

- By a version of the Serre-Swan theorem, $\Gamma^\infty(E)$ is a finitely generated projective $\mathcal{C}^\infty(V)$-module.
- Define quantized algebraic vector bundles over $\text{Gr}_{n,r}$ as flat connections $\nabla: P \to P \otimes_{\mathcal{O}_q(\text{Gr}_{n,r})} \Omega^{(0,1)}_q$, where P is a finitely generated projective $\mathcal{O}_q(\text{Gr}_{n,r})$-module.
Recall: On $\text{Gr}_{n,r} = SU_{n+1}/L$, we have only one reasonable quantized Dolbeault dg algebra $(\Omega_q^{(0,\bullet)}, \wedge, \overline{\partial})$.

Since $\text{Gr}_{n,r}$ is homogeneous, one can use representation theory of \mathfrak{l} to construct quantum deformations $L_{n,q}$ of tensor powers $L^\otimes n$ of the tautological bundle L.

That is, there are finitely generated projective $L_{n,q}$ are finitely generated projective $\mathcal{O}_q(\text{Gr}_{n,r})$-modules and certain flat connections, unique by Ó Buachalla and Mrozinski,

$$\nabla \mathcal{L}_{n,q} : L_{n,q} \rightarrow L_{n,q} \otimes \mathcal{O}_q(\text{Gr}_{n,r}) \Omega_q^{(0,1)}.$$

Theorem (Ó Buachalla and Mrozinski, 2017)

For each $n \geq 0$, We have $S_q(\text{Gr}_{n,r})_n \cong \ker \nabla \mathcal{L}_{n,q}$.

So the holomorphic sections of line bundles based on the Heckenberger-Kolb calculus and the Koszul-Malgrange theorem agree with the older “naive” construction of the quantized coordinate ring.
Noncommutative algebraic geometry based on quantum flag manifolds
Part III.
(joint with Réamonn Ó Buachalla and Adam-Christiaan van Roosmalen)

39th Winter School Geometry and Physics, Srní, January 18th, 2019
<table>
<thead>
<tr>
<th></th>
<th>Coherent sheaves from the differential point of view</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Cohomology of differential line bundles</td>
</tr>
<tr>
<td>3</td>
<td>Comparison of the algebraic/differential approaches</td>
</tr>
</tbody>
</table>
1. Coherent sheaves from the differential point of view

2. Cohomology of differential line bundles

3. Comparison of the algebraic/differential approaches
Recall: If V is a compact complex manifold, then a holomorphic vector bundle $p: E \to V$ can be equivalently given via a flat connection

$$\nabla_E: \Gamma^\infty(E) \to \Gamma^\infty(E) \otimes_{C^\infty(V)} \Omega^{(0,1)}.$$

(Koszul and Malgrange, 1958).

There is a generalization for coherent sheaves over V:

Theorem (Pali, 2006)

Given a compact complex manifold V and the sheaf \mathcal{O}_V^∞ of smooth complex-valued functions, there is a bijective correspondence between

1. analytic coherent sheaves on V and
2. flat connections $\nabla_G: \mathcal{G} \to \mathcal{G} \otimes \mathcal{O}_V^\infty \Omega^{(0,1)}$, where the sheaf \mathcal{O}_V^∞-modules locally admits a resolution

$$0 \to (\mathcal{O}_V^\infty|_U)^{n_k} \to \cdots \to (\mathcal{O}_V^\infty|_U)^{n_1} \to (\mathcal{O}_V^\infty|_U)^{n_0} \to \mathcal{G}|_U \to 0.$$
Theorem (Pali, 2006)

Given a compact complex manifold V and the sheaf \mathcal{O}_V^∞ of smooth complex-valued functions, there is a bijective correspondence between

1. analytic coherent sheaves on V and
2. flat connections $\nabla_{\mathcal{G}} : \mathcal{G} \to \mathcal{G} \otimes \mathcal{O}_V^\infty \Omega^{(0,1)}$, where the sheaf \mathcal{O}_V^∞-modules locally admits a resolution

$$0 \to (\mathcal{O}_V^\infty|_U)^{n_k} \to \cdots \to (\mathcal{O}_V^\infty|_U)^{n_1} \to (\mathcal{O}_V^\infty|_U)^{n_0} \to \mathcal{G}|_U \to 0.$$

- If V embeds into a projective space, then V is a smooth complex projective algebraic variety (Chow, 1949).
- In that case, the categories of analytic and algebraic coherent sheaves are equivalent (Serre’s GAGA Theorem, 1956).
- Pali actually proves that $\text{coh} V$ is equivalent to the category of the flat connections as above.
This motivated Beggs and Smith (2012) to define an abelian category $\text{Hol}(A)$ for a non-commutative complex structure $(\Omega^\bullet(A), d = \partial + \overline{\partial})$ (e.g. $A = \mathcal{O}_q(\text{Gr}_{n,r})$ as before):

The objects are flat connections $\nabla_M : M \to M \otimes_A \Omega^{(0,1)}$ and the morphisms are given by $f : M \to N$ such that

\[
\begin{array}{ccc}
M & \xrightarrow{\nabla_M} & M \otimes_A \Omega^{(0,1)} \\
\downarrow f & & \downarrow f \otimes \Omega^{(0,1)} \\
N & \xrightarrow{\nabla_N} & N \otimes_A \Omega^{(0,1)}
\end{array}
\]

First approximation to the differential description of the category of coherent sheaves: require that M have a finite projective resolution over A

\[
0 \to P_k \to \cdots \to P_1 \to P_0 \to M \to 0.
\]

Denote this full subcategory of $\text{Hol}(A)$ by $\text{hol}(A)$.
Unlike in Pali’s case, the algebraic category $\text{hol}(\mathcal{O}(V))$ is too big to model $\text{coh}V$ even for projective spaces $V = \mathbb{P}^n_{\mathbb{C}}$.

For a connection $\nabla_M : M \rightarrow M \otimes_{\mathcal{O}(V)} \Omega^{0,1}$, $m \in M$ and $s \in \mathcal{O}(V)$, we have

$$\nabla_M(ms) = \nabla_M(m)s + m\overline{\partial}(s).$$

If $\nu : M \rightarrow M \otimes_{\mathcal{O}(V)} \Omega^{0,1}$ is a homomorphism of $\mathcal{O}(V)$-modules, then $\nabla'_M = \nabla_M + \nu$ is again a connection.

In this way, we can construct flat connections with infinite dimensional space of holomorphic global sections

$$\Gamma(M, \nabla'_M) := \ker \nabla'_M.$$

This never happens for a coherent sheaf over a projective variety!
Differential coherent sheaves

- Classically, if V is a projective variety, then each $\mathcal{F} \in \text{coh } V$ has a presentation of the form

\[
(L \otimes t_1)^{n_1} \rightarrow (L \otimes t_0)^{n_0} \rightarrow \mathcal{F} \rightarrow 0
\]

($L \in \text{coh } V$ an ample line bundle).

- For $\mathcal{O}_q(\text{Gr}_n,r)$, we have a unique quantization for line bundles

\[
\nabla_{L_n,q} : L_n,q \rightarrow L_n,q \otimes \mathcal{O}_q(\text{Gr}_n,r) \Omega_q^{0,1}
\]

(Ó Buachalla and Mrozinski, 2017).

- So we can define the category $\text{coh}_q\overline{\partial}\text{Gr}_n,r$ of differential coherent sheaves as the subcategory of $\text{Hol}(\mathcal{O}_q(\text{Gr}_n,r))$ consisting of the connections $\nabla_M : M \rightarrow M \otimes_A \Omega^{(0,1)}$ admitting a presentation

\[
\begin{array}{ccccccccc}
L_{t_1,q}^{n_1} & \rightarrow & L_{t_0}^{n_0} & \rightarrow & M & \rightarrow & 0 \\
\downarrow \nabla & & \downarrow \nabla & & \downarrow \nabla & & \\
L_{t_1,q}^{n_1} \otimes \mathcal{O}_q(\text{Gr}_n,r) & \rightarrow & L_{t_0,q}^{n_0} \otimes \mathcal{O}_q(\text{Gr}_n,r) & \rightarrow & M \otimes \mathcal{O}_q(\text{Gr}_n,r) & \rightarrow & 0
\end{array}
\]
For $\mathcal{O}_q(\operatorname{Gr}_{n,r})$, we have

1. **Algebraic coherent sheaves**

 \[\text{coh}_q \operatorname{Gr}_{n,r} = \text{mod}^\mathbb{Z} S_q(\operatorname{Gr}_{n,r})/\text{mod}^\mathbb{Z}_0 S_q(\operatorname{Gr}_{n,r}), \]

2. **Differential coherent sheaves**

 \[\text{coh}_q^{\partial} \operatorname{Gr}_{n,r} = \{ \nabla_M : M \to M \otimes_A \Omega^{(0,1)} \}. \]

The aim is to show that the categories are equivalent.

For this we need that certain cohomologies vanish in $\text{coh}_q^{\partial} \operatorname{Gr}_{n,r}$. More precisely, we focus on cohomologies of the dg $\Omega^{(0,\bullet)}$-module

\[0 \to M \to M \otimes_A \Omega^{(0,1)} \to M \otimes_A \Omega^{(0,2)} \to \ldots \]

which we obtain by Leibniz rule because ∇_M is flat (Dolbeault cohomology).
1. Coherent sheaves from the differential point of view

2. Cohomology of differential line bundles

3. Comparison of the algebraic/differential approaches
The complex structure on (quantized or not) $\mathbb{P}^2_{\mathbb{C}}$:
Complex structure and ‘holomorphic’ connections

If \(\nabla_M : M \rightarrow M \otimes_A \Omega^{(0,1)} \) \(\in \text{Hol}(A) \), we tensor over the dg \(\Omega^{(0,\bullet)} \)-module with the diamond. Example for \(A = \mathcal{O}_q(\mathbb{P}^2_C) \):

Kodaira vanishing (under extra assumptions!)

\[
\begin{align*}
M \otimes_{\mathcal{O}_q(\mathbb{P}^2_C)} \Omega^4 & \quad \rightarrow \quad M \otimes \Omega^{(2,2)} \\
M \otimes_{\mathcal{O}_q(\mathbb{P}^2_C)} \Omega^3 & \quad \rightarrow \quad M \otimes \Omega^{(2,1)} \\
M \otimes_{\mathcal{O}_q(\mathbb{P}^2_C)} \Omega^2 & \quad \rightarrow \quad M \otimes \Omega^{(1,2)} \\
M \otimes_{\mathcal{O}_q(\mathbb{P}^2_C)} \Omega^1 & \quad \rightarrow \quad M \otimes \Omega^{(0,2)} \\
M & \quad \rightarrow \quad M \otimes \Omega^{(0,1)}
\end{align*}
\]
Theorem (Ó Buachalla, Š., van Roosmalen)

Suppose we have a (non-commutative) Kähler differential calculus (such as the one for \(\mathcal{O}_q(\text{Gr}_{n,r}) \)) and let \((M, \nabla_M)\) be a positive Hermitian vector bundle. Then \(H^{(a,b)}(M) = 0\) for all \(a + b > d\), where \(d\) is the dimension of the calculus.

- The non-commutative Kähler structure is defined via a closed real central form \(\kappa \in \Omega^{(1,1)}\) such that \(L = \kappa \wedge -\) induces isomorphisms \(L^{n-k} : \Omega^k \to \Omega^{2n-k}\) for each \(k\).

Theorem (Krutov, Ó Buachalla, Strung)

The line bundles \(\nabla \mathcal{L}_{t,q} : L_{t,q} \to L_{t,q} \otimes \mathcal{O}_q(\text{Gr}_{n,r}) \Omega^{(0,1)}\) over \(\mathcal{O}_q(\text{Gr}_{n,r})\) are positive (= ample) for \(t > 0\).
For quantum Grassmannians, we have the following version of the Bott-Borel-Weil theorem:

Theorem (Ó Buachalla, Š., van Roosmalen)

For $t \geq 0$ and the line bundle $\nabla L_{t,q} : L_{t,q} \to L_{t,q} \otimes O_q(Gr_{n,r}) \Omega^{(0,1)}$, we have

$$H^0(L_{t,q}) = V(t \varpi_r) \quad \text{and} \quad H^i(L_{t,q}) = 0 \text{ for all } i > 0.$$
1. Coherent sheaves from the differential point of view
2. Cohomology of differential line bundles
3. Comparison of the algebraic/differential approaches
Abstract ample sequences

Theorem (Artin and Zhang 1994, Polishchuk 2005)

Suppose that \(\mathcal{A} \) is an abelian category. Suppose further that we have fixed object \(\mathcal{O}_\mathcal{A} \) (an abstract structure sheaf) and an autoequivalence (1): \(\mathcal{A} \to \mathcal{A} \) (an abstract twist functor), such that:

1. \(\mathcal{O}_\mathcal{A} \) is noetherian and \(\text{Hom}_\mathcal{A}(\mathcal{O}_\mathcal{A}) \) is a noetherian \(\text{End}_\mathcal{A}(\mathcal{O}_\mathcal{A}) \)-module for each \(M \in \mathcal{A} \).
2. For each \(M \in \mathcal{A} \), there are integers \(t_1, t_2, \ldots, t_m \) and an epimorphism \(\bigoplus_{i=1}^m \mathcal{O}_\mathcal{A}(-t_i) \to M \).
3. For each epimorphism \(M \twoheadrightarrow N \) in \(\mathcal{A} \), there is an integer \(n_0 \) such that for every \(n \geq n_0 \), the map

\[
\text{Hom}_\mathcal{A}(\mathcal{O}_\mathcal{A}, M(n)) \to \text{Hom}_\mathcal{A}(\mathcal{O}_\mathcal{A}, N(n))
\]

is surjective.

Then \(\mathcal{A} \cong \text{mod} \mathbb{Z} S(\mathcal{A})/\text{mod}_0 \mathbb{Z} S(\mathcal{A}) \) for \(S(\mathcal{A}) = \bigoplus_{n=0}^{\infty} \text{Hom}(\mathcal{O}_\mathcal{A}, \mathcal{O}_\mathcal{A}(n)) \) (an abstract homogeneous coordinate ring).
Now we just put everything together.

For $\mathcal{A} = \text{coh}_q \text{Gr}_{n,r}$, the abstract structure sheaf will be
$$\mathcal{O}_\mathcal{A} = (\bar{\partial} : \mathcal{O}_q(\text{Gr}_{n,r}) \to \Omega^{(0,1)})$$
and we construct a twist functor such that $\mathcal{O}_\mathcal{A}(1) = (\nabla \mathcal{L}_1 : \mathcal{L}_1 \to \mathcal{L}_1 \otimes \mathcal{O}_q(\text{Gr}_{n,r}) \Omega^{(0,1)})$.

Now we apply to Bott-Borel-Weil theorem for quantized Grassmannians to obtain

Theorem (Ó Buachalla, Š., van Roosmalen)

The categories $\text{coh}_q \text{Gr}_{n,r} = \text{mod}^\mathbb{Z} S_q(\text{Gr}_{n,r})/\text{mod}^\mathbb{Z} S_q(\text{Gr}_{n,r})$ and $\text{coh}_{\bar{\partial}} \text{Gr}_{n,r} = \{ \nabla_M : M \to M \otimes_A \Omega^{(0,1)} \}$ are equivalent via

$$\text{coh}_{\bar{\partial}} \text{Gr}_{n,r} \xrightarrow{\Gamma_*} \text{coh}_q \text{Gr}_{n,r},$$

$$(\nabla_M : M \to M \otimes \mathcal{O}_q(\text{Gr}_{n,r}) \Omega^{(0,1)}) \leftrightarrow \bigoplus_{n \in \mathbb{Z}} \text{Hom}_{\text{coh}_q}(\mathcal{O}_q(\text{Gr}_{n,r}), M(n)).$$
The Bott-Borel-Weil theorem implies more.

For each $\nabla_M : M \to M \otimes \mathcal{O}_q(\text{Gr}_{n,r}) \Omega^{(0,1)}$, we can apply two cohomology theories:

1. The Dolbeault cohomology—as before, from the complex

$$0 \to M \to M \otimes_A \Omega^{(0,1)} \to M \otimes_A \Omega^{(0,2)} \to \cdots$$

2. The intrinsic cohomology in the abelian category $\text{coh}^{\overline{q}} \text{Gr}_{n,r}$:

$$\text{Ext}^n_{\text{coh}^{\overline{q}} \text{Gr}_{n,r}} (\mathcal{O}_q(\text{Gr}_{n,r}), M)$$

(abstract sheaf cohomology).
Theorem (Ó Buachalla, Š., van Roosmalen)

For each coherent sheaf $\nabla_M: M \rightarrow M \otimes \mathcal{O}_{q(Gr_{n,r})} \Omega^{(0,1)}$ over a quantum Grassmannian and for each $n \geq 0$, the two cohomologies are isomorphic:

1. $H^n(0 \rightarrow M \rightarrow M \otimes_A \Omega^{(0,1)} \rightarrow M \otimes_A \Omega^{(0,2)} \rightarrow \cdots)$
2. $\operatorname{Ext}^n_{\operatorname{coh}_{qGr_{n,r}}} (\mathcal{O}_{q(Gr_{n,r})}, M)$.

Corollary

The Dolbeault cohomology of a coherent sheaf is finite dimensional over \mathbb{C}.

Thank you for your attention!