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Affine varieties

@ Let C be the field of complex numbers and n > 1.
@ A complex affine variety V C C" is just the solution set of a
system of polynomial equations, i.e.

V={PeC"|f(P)=0foreachic [},
where

fi € C[x1, Xz, ..., Xq] foreach i e I.

@ The real part of V C C? may look like this

y y
X X
y2 —x(x —1)(x+1) y2 —x3(x + 1)
(smooth) (singular)
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Maps between varieties

@ Amap f: V — W of affine varieties (V C C" and W C C¥) if
polynomial if there exist fi, &, ..., f, € C[xq, Xz, .. ., Xp] such that

f(P) = (f(P), &(P), .., f(P)) for each P € V.

@ If V C C"is an affine variety, the coordinate ring C[V] of V is the
set of all polynomial maps f: V — C.

@ C[V] is a C-algebra with pointwise operations and as such
C[V] = C[x1, X2, ..., Xn)/{f such that f|, = 0} (C[V] is a finitely
generated C-algebra).
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Maps control affine varieties

@ To each polynomial map f: V — W we may naturally assign a
homomorphism of C-algebras f*: C[W] — C[V] given by
f*(s) =sof:

”_'ZOLC
4 w

@ Fact: This assignment induces a bijection between
@ polynomial maps V — W and
@ C-algebra homomorphisms C[W] — C[V].
@ A reformulation: There is a full embedding of categories

Varietiesc — (Alg¢).

@ Hilbert’s Nullstellensatz tells us what the image is: These are
precisely finitely generated C-algebras R which are reduced:
(VseR)(VYn>1)(s"=0 = s=0).

@ Analogy with Gelfand-Naimark, X < C(X) (X compact
Hausdorff topological space, C(X) the C*-algebra of continuous
maps X — C).
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The dictionary between algebra and geo

Affine geometry Algebra

points of V maps of C-algebras C[V] — C
Cartesian product V x W tensor product C[V] ® C[W]
affine algebraic groups (such as | commutative Hopf algebras

SLy)

(u: Gx G— G, 1g € G) (C[G] & C[G] ® C[G], C[G] = C)

Theorem (Serre, 1955)

For a complex affine variety V, there is a bijective correspondence
between

@ algebraic vector bundles p: E — V and

@ certain finitely generated projective C[V]-modules (i.e. direct
summands of free C[V]-modules C[V]", n > 1).

The bijection assigns to a vector bundle p its C[V]-module of sections

P ={s: V — E polynomial map | pos=1y}.

<
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(Quasi-)coherent sheaves

@ Problem: Vector bundles do not form an abelian category. More
concretely, the image of a map of vector bundles

EE— "  -F
may not be a vector bundle (the ranks of f may differ between
fibers).

@ Morally, the category of coherent sheaves cohV is the smallest
abelian category containing Vect V. Dictionary:

Affine geometry | Algebra
vector bundles over V fin. gen. proj. C[V]-modules
coherent sheaves on V all fin. gen. C[V]-modules

quasi-coherent sheaves on V | all C[V]-modules
@ Algebraic principle: If we want to understand properties of a ring
R, itis a good idea to study the category of R-modules.
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Projective varieties

@ We can define similarly projective algebraic varieties. Projective
space:

P ={(ao:ar:---:an)| (3i)(ai # 0)}.

@ A complex projective variety V C P{. is the solution set of a
system of homogeneous polynomial equations,

V={(a:a: - :ay) €P]|fiapai,...,an) =0foreachie I}

Here: A polynomial f € C[xo, X1, . .., Xp] is homogeneous if all
non-zero terms have the same total degree.
@ Similarly, we can take the ideal

I(V) = (f homogeneous|fy = 0) C C[xp, X1, - . ., Xp]
and the homogeneous coordinate ring
S( V) = C[XO,XM e 7Xn]//( V)
@ Warning: The elements f € S(V) typically do not define functions

S(V) — C. Conceptual problem: No holomorphic non-constant
maps PL. — C by Liouville’s theorem!
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Regular functions

@ Observation: If V is a projective variety and

f,g € C[xo, X1, . .., Xn] homogeneous of the same degree, then
f(ao, a1, - .., an)
d:a:---8p)r—> —F)——=% *
(0 a ") 9(ao, a1, ..., an) ()

defines a partial function V --» C.
@ Zariski topology on V: the closed sets are the algebraic subsets
of V.
@ Afunction f: U — C, U C V Zariski open, is regular if it is Zariski
locally of the form (x).
@ What structure should a projective variety actually carry?
@ Aringed space is a pair (V, Oy) such that V is a topological
space and Oy is a sheaf of rings:
@ for each U C V we have a ring Oy (U),
@ foreach U’ C U C V we have a homomorphism

resy : Oy(U) — Oy (U),
© subject to certain axioms.
(For complex varieties, we have a sheaf of C-algebras!)
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Homomorphisms of projective varieties

@ A homomorphism of projective varieties isifamap f: V — W
which is Zariski locally computed by ratios of homogeneous
polynomials.

@ Formally: f is a homomorphisms of varieties if

@ s Zariski continuous, and
@ Foreach s € Oy (U), we have so f € Oy (f~'(U)).

‘ —f)°__s__> (C
4 w

Related example
If M is a smooth real manifold, M has a structure of ringed space with

Ou(U) = {s: M — R | s smooth}.

A map f: M — N of smooth manifolds is smooth if and only if it
satisfies (1) and (2) above.
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Vector bundles and Serre’s theorem

@ If V is a projective variety and p: E — V is an algebraic vector
bundle, E might have no non-zero global sections.

@ We should consider sections over open subsets U C V:
YU)={s: U— E|fos=1y}.

@ Each 7(U) is an Oy (U)-module, and restrictions
resy,: 7 (U) — ¥ (U') are compatible with the module structure.
@ Serre, 1955: There is a bijection between
@ algebraic vector bundles p: E — V and
@ certain sheaves of Oy-modules such that Zariski locally, 7 (U) is a
finitely generated projective Oy(U)-module.
@ The category of vector bundles can be extended to an abelian
category:
Vect V C cohV C QcohV.
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Example: Grassmannians

@ The set Gr, , of r-dimensional vector subspaces of C" naturally
forms a subset of a projective space via the embedding

v: Grp, — IP((C’)_1,
V={(vi,vo,...,Vr) — (Vf AVa A--- A V).
(We fix a basis of A"C" and assign to V its Plicker coordinates.)

@ The image of ¢ is well-known to be a the zero set of quadratic
homogeneous polynomials, e.g.

Gryo = {(@12: @13 : @14 : 83 : 84 : A34) € P2 | 81283413824+ 812823}
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Grassmannians as flag varieties

@ Representation-theoretic point of view: A'C" is naturally a
representation of sl,; it is the r'" fundamental representation
V(w,‘).

@ The image of ¢: Gr,, — ]P’((Cﬁ)f1 is identified with the orbit SL,, - v
of a highest weight vector v € V(w,) and the homogeneous
coordinate ring is explicitly given as

S(Grn,r) = @ V(keor)*

@ This generalizes to all flag manifolds F: They are complex
projective varieties given by quadratic homogeneous polynomials
with the coordinate ring of the form

F) =~ é V(k))*
k=0

where X is the sum of the fundamental weights for F.
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Homogeneous coordinate rings

@ Let V CP¢ and
S(V) = C[xo, X1, . .., Xn]/(f homogeneous, f|, = 0)

be its homogeneous coordinate ring. Then
S(V) =@ S(V)n
n=0

is naturally Z-graded.

@ Question: We know that the elements of S(V) are not functions
on V. What are they?

@ The homogeneous parts S(V),, n > 0 are global sections of
certain line bundles .%.

@ So every projective variety is the set of zeros of sections in line
bundles.
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The tautological bundle

@ There is an important line bundle over P, the tautological bundle

Opn(1).
@ ltis dual to Opn(—1) C ogé”, whose the fiber over
(a:a :---:ap)istheline (ap, a,...,a,) C C"'.
i
O (1): ’\f_/ /»

.
,

~— —

@ If .- V C PZ, consider the restricted line bundle .Z := L*Opem ).
This is an example of what is called ample (algebraic geometry)
or positive (in the context of K&hler manifolds) line bundle.

@ Fact: S(V) = @, ,T(V,£%"). The homogeneous coordinate
ring is the direct sum of global sections of tensor powers of .Z.
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Homogeneous coordinate rings and line bun

@ The twist functor: If .# € QcohV and n € Z, put
ﬁ‘(n) =7 Koy pen
(thatis, .7 (n)(U) := .Z(U) ®o,(u) Z(U)®" on U in an open

basis of V).
@ The graded module associated to a sheaf: If % € QcohV, we put

:@F/ n) :@Hom .i”*)®”,ﬁ).

nez nez

Example: I',(Oy) = S(V).
Theorem (Serre, 1955)

@ The functor T, : QcohV — Mod”S(V) is fully faithful.

Q T. has an exact left adjoint Q: Mod”S(V) — QcohV which
satisfies a universal property:
QcohV = Mod”S(V)/Modj S(V) (Serre quotient).

@ Similarly, cohV = mod”S(V)/modj S(V).

4
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Homogeneous coordinate rings of Grassmanniz

@ We have SL,/P = Grp,, where

(342
0 | Pt

where P, € M,(C) and P,_, € M,_,(C). The bijection sends the
coset UP, U = (uy)}i_; € SLy to the linear hull of the first r
columns of U.

o If we view Gr,,, C IED(E:')_1 via the Pliicker embedding, the quotient
map SL, — Grp,r sends U = (uy)];_, to a point with
homogeneous coordinates 3°_(—1)59") U, ) 1Us(i).2* * * Uo(in)rs
one for each sequence iy < ib < -+ < .

@ In terms of coordinate rings, this shows that S(Gr, /) coincides
with the subring

C Z(_1)Sgn(g)ua(i1),1ua(ig),2"'UU(I})J’ lif<b<---<i]| C (C[SLn].

o
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Quantum Grassmannians

@ In terms of coordinate rings, this shows that S(Gr, ) coincides
with the subring

C [Z(_1)Sgn(g)ua(i1),1uo(iz),Z el | <k << i,] C C[SLy).

[ea

@ We have C[SL,] = U(sl,)° ((—)° is the Hopf dual).
@ Quantum deformation: We can deform C[SL,] to Uy(sl,)° and
define S4(Gry (] as the subring

C Z(_q)Z(U)UU(IH)J uU(iz),2 e UU(I}),I' | i1 < i2 <---< I’] < Uq(ﬁln)o-

o

@ Representation-theoretic perspective: Again
SqlGrnr] = Dy, V(kw,)*, where V(kw,) is the corresponding
representation of Uy(sl).

9/17 Jan Stovicek Noncommutative flags, part Il.



Quantized homogeneous coordinate rings

@ One can do the same for all flags (Soibelman 1992, Taft and
Towber 1991, Lakshmibai and Reshetikin 1992, Braveman 1994,
L)
@ Let g be a complex semisimple Lie algebra, G the corresponding
complex simply connected algebraic group and P a parabolic
subgroup. Then the flag F = G/P is a projective variety and

@ V(kA)* = S4(F) C Uqg(g)°,
k=0

where X is the sum of fundamental weights for F and V(k\) are
the corresponding finite dimensional representations of Uy (g).

@ One can define a quantization for the category of coherent
sheaves: cohyF := mod” S, (F)/mod) Sy(F).

@ This is an abelian category and we can, for instance, define and
study the analogue of the sheaf cohomology as well as other
algebraic properties.
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Compact Lie versus algebraic groups

@ Aim: Relate the quantized algebraic and differential geometry.
@ We have SU, C SL,, where

@ SL,is a complex affine algebraic group,

@ SU, is a real compact Lie group but it is also a real algebraic group!
@ Rings of functions in place:

@ For SL, we have the complex coordinate ring C[SL5],

@ For SU, we have the hierarchy

C(SU,) 2 C>(SU,) 2 O(SUn)

where O(SU,) is the ring of polynomial functions s: SU, — C of
real algebraic varieties.

@ The magic here: C[SL,] = O(SU,)
(via the restriction of s: SL, — C to SU,).
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A pocket dictionary: algebraic to differential g

@ A “cultural” problem:
@ In differential geometry, a compact complex manifold is a real
manifold with an extra structure (flat connection
9: C=(V) — QM)
@ In algebraic geometry, one usually encounters only polynomial or
rational (so holomorphic) functions.
@ To relate the two, we need a meeting point of (1) and (2).
@ We have Gr,, = SL,/P = SU,/L, where

P= | © and L=PnSU,= L] 0 )
O Pn_r 0 Ln—r

@ Now:
@ The expression Gry, , 2 SL,/P allows to view the Grassmannian as
a projective complex algebraic variety.
@ The expression Gry, , =2 SU,/L allows to view the Grassmannian as
a affine real algebraic variety.
@ The meeting point: Try to view a complex algebraic variety V as
a real algebraic variety with a “complex structure” (a flat
connection 9: O(V) — Q@)
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Dolbeault dg algebra

@ If V is a complex manifold, we have the Dolbeault complex:
0 — C=(V) -2 Q0N 2, qo2) 2,
@ We can wedge forms (A: Q) @ QO —; QO74)). Then
Q) = @, Q) is a Z-graded associative algebra over C.
o Moreover, we_have the graded Leibﬂiz rule: '
O(wi A wj) = O(w;) A wj + (—1)'w; A B(wy) for each w; € QO and
wj € QO In other words, (20*)(V), A, 9) is a differential graded
(dg) algebra.
o If V = Grn’r = SUn/L, then

O(Grp,r) C C(Grp,r) C C(Grp,r)

and O(Grj, /) is dense with respect to || — |-

@ Now, the Dolbeault dg algebra for Gr, , does restrict to real
algebraic sections:

0 — OGry,) -2 o N Q% 2,

14/17 Jan Stovicek Noncommutative flags, part Il.



The differential calculus of Heckenberger and Ko

@ The Dolbeault dg algebra for Gr,, , does restrict to real algebraic
sections:

0 — O(Gra,) 2 Q&) 2 02 2,

@ and can be quantized:
0 —+ 0g(Gra,) -2 Q0D 2, 0 2,

((QL*)(Grp,), A, 9) is a dg algebra again).
@ If we impose some more natural conditions on QE,O’)(Gr,,,,), it is
unique (Heckenberger and Kolb, 2006)!

@ In fact, Heckenberger and Kolb quantized the Dolbeault dg
algebra for all compact Hermitian symmetric flags.
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The Koszul-Malgrange theorem

Theorem (Koszul and Malgrange, 1958)

Let V be a compact complex manifold. Then there is a bijective
correspondence between

@ holomorphic vector bundles p: E — V and

@ smooth complex vector bundles equipped with a flat connection
VE: I"X’(E) — I'°°(E) Qe (V) 9(0’1), where

(E)={s: V— E smoothmap | pos=1y}.

The holomorphic sections of E are precisely V.

@ By a version of the Serre-Swan theorem, I*°(E) is a finitely
generated projective C>°(V)-module.

@ Define quantized algebraic vector bundles over Gr, , as flat

connections V: P — P ®o,(ar,.,) QE,O’”, where P is a finitely
generated projective O4(Grj ,)-module.
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The first match (quantized alg. vs. diff. ge

@ Recall: On Grj, , = SU,+1/L, we have only one reasonable
quantized Dolbeault dg algebra (QE,O"), A, 0).

@ Since Gr,, , is homogeneous, one can use representation theory
of [ to construct quantum deformations .Z, 4 of tensor powers
" of the tautological bundle .Z.

@ That is, there are finitely generated projective L, 4 are finitely
generated projective Oq(Gr, )-modules and certain flat
connections, unique by O Buachalla and Mrozinski,

an)q: Ln7q — Ln,q ®Oq(Grn,r) 92071).

Theorem (O Buachalla and Mrozinski, 2017)

For each n > 0, We have Sy(Grp ) = kerV g, ,.

So the holomorphic sections of line bundles based on the
Heckenberger-Kolb calculus and the Koszul-Malgrange theorem
agree with the older “naive” construction of the quantized coordinate
ring.
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Coherent sheaves after Pali

@ Recall: If V is a compact complex manifold, then a holomorphic
vector bundle p: E — V can be equivalently given via a flat
connection

VE: F°°(E) — F°°(E) Qe (V) Qo1
(Koszul and Malgrange, 1958).
@ There is a generalization for coherent sheaves over V:
Theorem (Pali, 2006)

Given a compact complex manifold V and the sheaf O of smooth
complex-valued functions, there is a bijective correspondence
between

@ analytic coherent sheaves on V and

Q flat connections Ve : 4 — 4 @0z QO where the sheaf
Oy -modules locally admits a resolution

0= (OF|u)™ = --- = (OFu)™ = (OF|u)™ — Z|y — 0.
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Theorem (Pali, 2006)

Given a compact complex manifold V and the sheaf Of® of smooth
complex-valued functions, there is a bijective correspondence
between

@ analytic coherent sheaves on V and

Q flat connections Vy : 4 — 4 ®o= Q1) where the sheaf
Ofy -modules locally admits a resolution

0= (OVIu)™ = - = (OV[v)" = (OF|u)™® = F|u = 0.

4

@ If V embeds into a projective space, then V is a smooth complex
projective algebraic variety (Chow, 1949).

@ In that case, the categories of analytic and algebraic coherent
sheaves are equivalent (Serre’'s GAGA Theorem, 1956).

@ Pali actually proves that cohV is equivalent to the category of the
flat connections as above.
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The category of Beggs and Smith

@ This motivated Beggs and Smith (2012) to define an abelian
category category Hol(A) for a non-commutative complex
structure (Q°(A),d = 9 + 9) (e.g. A= Oqy(Grp) as before):

@ The objects are flat connections Vy;: M — M @4 Q0" and the
morphisms are given by f: M — N such that

M4 M @, Q0O

fi lf@Q‘O*”

- = (0,1)
N n N®aQ .

@ First approximation to the differential description of the category
of coherent sheaves: require that M have a finite projective
resolution over A

0—>Pc— - —>P—Ph—M-—0.
@ Denote this full subcategory of Hol(A) by hol(A).
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@ Unlike in Pali’s case, the algebraic category hol(O(V)) is too big
to model cohV even for projective spaces V = P{.

@ For a connection Vy: M — M ®0(v) Q©", m e M and
s € O(V), we have

Vu(ms) = Vy(m)s + mo(s).

fv: M — M®o, Q0" is a homomorphism of O(V)-modules,
then V), = Vu + v is again a connection.

@ In this way, we can construct flat connections with infinite
dimensional space of holomorphic global sections

F(M, V) := ker V},.

@ This never happens for a coherent sheaf over a projective variety!
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Differential coherent sheaves

@ Classically, if V is a projective variety, then each .# € cohV has a
presentation of the form
(LEMM — (LYo 5 F 0
(& € cohV an ample line bundle).
@ For Oy4(Grp,), we have a unique quantization for line bundles

Vgn’q o Ln7q — Ln,q ®Oq(Grn,r) ng,‘l).

(O Buachalla and Mrozinski, 2017).

@ So we can define the category coh‘gGr,L, of differential coherent
sheaves as the subcategory of Hol(O4(Gry /) consisting of the
connections Vy: M — M @4 Q") admitting a presentation

oo i M 0

L

Ly 1®04(Grm,) — L 4®04(Gr.) — M@0, ar,,) — 0
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Comparison: algebraic and differential sheaves

@ For O4(Grp,r), we have
@ Algebraic coherent sheaves
cohqGrp,, = mod”S,(Grp,r)/mods Sq(Grn,r), and
@ Differential coherent sheaves cohGr,,, = {Vy: M — M®, Q.

@ The aim is to show that the categories are equivalent.

@ For this we need that certain cohomologies vanish in cothrn,,.
More precisely, we focus on cohomologies of the dg
Q(%-*)-module

0 M- M0 5 Me, 002 ...

which we obtain by Leibniz rule because Vy is flat
(Dolbeault cohomology).
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Complex structures

@ The complex structure on (quantized or not) P2:

Q4 Q2

/X
\/

QS
g / \

Q2 Q.1 Q©2)
d \ /

/\
\/

Q° Q(0,0)
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Complex structure and ‘holomorphic’ connections

@ If (Vy: M — M, Q0") c Hol(A), we tensor over the dg
Q(0-*)-module with the diamond. Example for A = Og(PP2):

4 2,2
M®oqp2) 2 M@ Q2
e
d
3 2,1 1,2
M & oy e2) @ M@ oY M al?
/ /
d
2 2,0 11 0,2
M@ o2y 2 M Q@0 Me ot Mg Q2
9 /
d
1 1,0 0,1
M@ oy e2) @ M@ a0 M@ Q0"
/
d
M M

@ Kodaira vanishing (under extra assumptions!)
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Kodaira vanishing

Theorem (O Buachalla, S., van Roosmalen)

Suppose we have a (non-commutative) Kahler differential calculus
(such as the one for O4(Gry.r)) and let (M, V ) be a positive
Hermitian vector bundle. Then H@5) (M) = 0 for all a+ b > d, where
d is the dimension of the calculus.

@ The non-commutative Kahler structure is defined via a closed
real central form x € Q') such that L = x A — induces
isomorphisms L"~k: QK — Q27— for each k.

Theorem (Krutov, O Buachalla, Strung)

The line bundles V ¢, ,: Liq — Liq ®0,(ar,,) 2O over Og(Gry,,) are
positive (= ample) fort > 0.
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Bott-Borel-Weil for quantum Grassmannians

@ For quantum Grassmannians, we have the following version of
the Bott-Borel-Weil theorem:

Theorem (O Buachalla, S., van Roosmalen)

Fort > 0 and the line bundle V ¢, ,: Li.q — Li.q ®o,@r,,) 2", we
have ,
HO(Leq) = V(tw,) and Hi(L.q) =0 foralli> 0.
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Abstract ample sequences

Theorem (Artin and Zhang 1994, Polishchuk 2005)

Suppose that A is an abelian category. Suppose further that we have
fixed object O 4 (an abstract structure sheaf) and an autoequivalence
(1): A— A (an abstract twist functor), such that:

@ O is noetherian and Hom 4(O_4) is a noetherian
End_4(O.4)-module for each M € A.

@ Foreach M € A, there are integers ty, to, . .., t, and an
epimorphism @, O 4(—t;) — M.

© For each epimorphism M — N in A, there is an integer ny such
that for every n > ng, the map

HomA(OA, M(n)) — HomA(OA, N(n))
is surjective.

Then A ~ mod”S(A)/modg S(A) for S(A) = @2, Hom(O 4, O 4(n))
(an abstract homogeneous coordinate ring).
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The second match (categories of sheaves)

@ Now we just put everything together.

@ For A= cothrn,,, the abstract structure sheaf will be
O4 = (0: Og(Grp,) — Q1) and we construct a twist functor
such that O 4(1) = (ng: L1’q — L1,q ®04(Grar) Q(0’1)).

@ Now we apply to Bott-Borel-Weil theorem for quantized
Grassmannians to obtain

Theorem (O Buachalla, S., van Roosmalen)

The categories cohqGr,,, = mod”Sy(Gry,/)/mody Sy(Grn,) and
cohGrn, = {V: M — M4 Q)} are equivalent via

_ .
cohyGrp,r — cohqGry,,

(Vi: M = M®oyar,,) 2%V) — P Homey,5(Og(Grn,r), M(n)).

nez
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Dolbeault vs. sheaf cohomology

@ The Bott-Borel-Weil theorem implies more.

e Foreach Vy: M — M ®o,ar,,) 2", we can apply two
cohomology theories:
@ The Dolbeault cohomology—as before, from the complex

0= M= Me,00) 5 Mg, -

@ The intrinsic conomology in the abelian category coh?Grn,,:

Ext” (Oq(Gra,r), M)

cohBGr

(abstract sheaf cohomology).
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Finiteness for cohomology

Theorem (O Buachalla, S., van Roosmalen)

For each coherent sheaf Vyy: M — M ®0,ar, ) 2" over a quantum
Grassmannian and for each n > 0, the two cohomologies are
isomorphic:

Q@ H'(0 M- M0 5 Me,Q02 — ...) and

Q Ext” (Og(Grp,r), M).

coh2Gry,

Corollary

| A

The Dolbeault cohomology of a coherent sheaf is finite dimensional
overC.

Thank you for your attention!
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