
Jan Št’ovı́ček
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Affine varieties

Let C be the field of complex numbers and n ≥ 1.
A complex affine variety V ⊆ Cn is just the solution set of a
system of polynomial equations, i.e.

V = {P ∈ Cn | fi (P) = 0 for each i ∈ I},

where
fi ∈ C[x1, x2, . . . , xn] for each i ∈ I.

The real part of V ⊆ C2 may look like this

x

y

y2 − x(x − 1)(x + 1)

(smooth)

x

y

y2 − x2(x + 1)

(singular)
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Maps between varieties

A map f : V →W of affine varieties (V ⊆ Cn and W ⊆ C`) if
polynomial if there exist f1, f2, . . . , f` ∈ C[x1, x2, . . . , xn] such that

f (P) =
(
f1(P), f2(P), . . . , f`(P)

)
for each P ∈ V .

If V ⊆ Cn is an affine variety, the coordinate ring C[V ] of V is the
set of all polynomial maps f : V → C.
C[V ] is a C-algebra with pointwise operations and as such
C[V ] ∼= C[x1, x2, . . . , xn]/{f such that f |V ≡ 0} (C[V ] is a finitely
generated C-algebra).
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Maps control affine varieties

To each polynomial map f : V →W we may naturally assign a
homomorphism of C-algebras f ∗ : C[W ]→ C[V ] given by
f ∗(s) = s ◦ f :

V W
C

f s

Fact: This assignment induces a bijection between
1 polynomial maps V → W and
2 C-algebra homomorphisms C[W ]→ C[V ].

A reformulation: There is a full embedding of categories

VarietiesC −→ (AlgC)op.

Hilbert’s Nullstellensatz tells us what the image is: These are
precisely finitely generated C-algebras R which are reduced:
(∀ s ∈ R)(∀n ≥ 1)(sn = 0 =⇒ s = 0).
Analogy with Gelfand-Naimark, X ↔ C(X ) (X compact
Hausdorff topological space, C(X ) the C∗-algebra of continuous
maps X → C).
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The dictionary between algebra and geometry
Affine geometry Algebra
points of V maps of C-algebras C[V ]→ C
Cartesian product V ×W tensor product C[V ]⊗ C[W ]

affine algebraic groups (such as
SLn)

commutative Hopf algebras

(µ : G ×G→ G, 1G ∈ G) (C[G]
∆→ C[G]⊗ C[G], C[G]

ε→ C)

Theorem (Serre, 1955)

For a complex affine variety V , there is a bijective correspondence
between

1 algebraic vector bundles p : E → V and
2 certain finitely generated projective C[V ]-modules (i.e. direct

summands of free C[V ]-modules C[V ]n, n ≥ 1).
The bijection assigns to a vector bundle p its C[V ]-module of sections

P = {s : V → E polynomial map | p ◦ s = 1V}.
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(Quasi-)coherent sheaves
Problem: Vector bundles do not form an abelian category. More
concretely, the image of a map of vector bundles

E1
f //

p1   

E2

p2~~
V

may not be a vector bundle (the ranks of f may differ between
fibers).
Morally, the category of coherent sheaves cohV is the smallest
abelian category containing Vect V . Dictionary:

Affine geometry Algebra
vector bundles over V fin. gen. proj. C[V ]-modules
coherent sheaves on V all fin. gen. C[V ]-modules
quasi-coherent sheaves on V all C[V ]-modules

Algebraic principle: If we want to understand properties of a ring
R, it is a good idea to study the category of R-modules.
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Projective varieties

We can define similarly projective algebraic varieties. Projective
space:

Pn
C = {(a0 : a1 : · · · : an) | (∃i)(ai 6= 0)}.

A complex projective variety V ⊆ Pn
C is the solution set of a

system of homogeneous polynomial equations,

V = {(a0 : a1 : · · · : an) ∈ Pn
C | fi (a0,a1, . . . ,an) = 0 for each i ∈ I}.

Here: A polynomial f ∈ C[x0, x1, . . . , xn] is homogeneous if all
non-zero terms have the same total degree.
Similarly, we can take the ideal

I(V ) = (f homogeneous|fV ≡ 0) ⊆ C[x0, x1, . . . , xn]

and the homogeneous coordinate ring
S(V ) := C[x0, x1, . . . , xn]/I(V ).
Warning: The elements f ∈ S(V ) typically do not define functions
S(V )→ C. Conceptual problem: No holomorphic non-constant
maps P1

C → C by Liouville’s theorem!
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Regular functions

Observation: If V is a projective variety and
f ,g ∈ C[x0, x1, . . . , xn] homogeneous of the same degree, then

(a0 : a1 : · · · : an) 7−→ f (a0,a1, . . . ,an)

g(a0,a1, . . . ,an)
(∗)

defines a partial function V 99K C.
Zariski topology on V : the closed sets are the algebraic subsets
of V .
A function f : U → C, U ⊆ V Zariski open, is regular if it is Zariski
locally of the form (∗).
What structure should a projective variety actually carry?
A ringed space is a pair (V ,OV ) such that V is a topological
space and OV is a sheaf of rings:

1 for each U ⊆ V we have a ring OV (U),
2 for each U ′ ⊆ U ⊆ V we have a homomorphism

resU
U′ : OV (U)→ OV (U ′),

3 subject to certain axioms.
(For complex varieties, we have a sheaf of C-algebras!)
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Homomorphisms of projective varieties

A homomorphism of projective varieties is if a map f : V →W
which is Zariski locally computed by ratios of homogeneous
polynomials.
Formally: f is a homomorphisms of varieties if

1 f is Zariski continuous, and
2 For each s ∈ OW (U), we have s ◦ f ∈ OV (f−1(U)).

V W

C
f s

Related example

If M is a smooth real manifold, M has a structure of ringed space with

OM(U) = {s : M → R | s smooth}.

A map f : M → N of smooth manifolds is smooth if and only if it
satisfies (1) and (2) above.
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Vector bundles and Serre’s theorem

If V is a projective variety and p : E → V is an algebraic vector
bundle, E might have no non-zero global sections.
We should consider sections over open subsets U ⊆ V :

V (U) = {s : U → E | f ◦ s = 1U}.

Each V (U) is an OV (U)-module, and restrictions
resU

U′ : V (U)→ V (U ′) are compatible with the module structure.
Serre, 1955: There is a bijection between

1 algebraic vector bundles p : E → V and
2 certain sheaves of OV -modules such that Zariski locally, V (U) is a

finitely generated projective OV (U)-module.

The category of vector bundles can be extended to an abelian
category:

Vect V ⊆ cohV ⊆ QcohV .
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Example: Grassmannians

The set Grn,r of r -dimensional vector subspaces of Cn naturally
forms a subset of a projective space via the embedding

ι : Grn,r −→ P(n
r)−1

C ,

V = 〈v1, v2, . . . , vr 〉 7−→ 〈v1 ∧ v2 ∧ · · · ∧ vr 〉.

(We fix a basis of ΛrCn and assign to V its Plücker coordinates.)
The image of ι is well-known to be a the zero set of quadratic
homogeneous polynomials, e.g.

Gr4,2 = {(a12 : a13 : a14 : a23 : a24 : a34) ∈ P5
C | a12a34−a13a24+a14a23}.
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Grassmannians as flag varieties

Representation-theoretic point of view: ΛrCn is naturally a
representation of sln; it is the rth fundamental representation
V ($r ).

The image of ι : Grn,r → P(n
r)−1

C is identified with the orbit SLn · v
of a highest weight vector v ∈ V ($r ) and the homogeneous
coordinate ring is explicitly given as

S(Grn,r ) ∼=
∞⊕

k=0

V (k$r )∗.

This generalizes to all flag manifolds F : They are complex
projective varieties given by quadratic homogeneous polynomials
with the coordinate ring of the form

S(F ) ∼=
∞⊕

k=0

V (kλ)∗.

where λ is the sum of the fundamental weights for F .
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Homogeneous coordinate rings

Let V ⊆ Pn
C and

S(V ) = C[x0, x1, . . . , xn]/(f homogeneous, f |V ≡ 0)

be its homogeneous coordinate ring. Then

S(V ) =
∞⊕

n=0

S(V )n

is naturally Z-graded.
Question: We know that the elements of S(V ) are not functions
on V . What are they?
The homogeneous parts S(V )n, n ≥ 0 are global sections of
certain line bundles Ln.
So every projective variety is the set of zeros of sections in line
bundles.
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The tautological bundle

There is an important line bundle over Pn
C, the tautological bundle

OPn
C
(1).

It is dual to OPn
C
(−1) ⊆ On+1

Pn
C

, whose the fiber over
(a0 : a1 : · · · : an) is the line 〈a0,a1, . . . ,an〉 ⊆ Cn+1.

OP1
R
(1) :

If ι : V ⊆ Pn
C, consider the restricted line bundle L := ι∗OPn

C
(1).

This is an example of what is called ample (algebraic geometry)
or positive (in the context of Kähler manifolds) line bundle.
Fact: S(V ) ∼=

⊕∞
n=0 Γ(V ,L ⊗n). The homogeneous coordinate

ring is the direct sum of global sections of tensor powers of L .
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Homogeneous coordinate rings and line bundles

The twist functor: If F ∈ QcohV and n ∈ Z, put

F (n) := F ⊗OV L ⊗n

(that is, F (n)(U) := F (U)⊗OV (U) L (U)⊗n on U in an open
basis of V ).
The graded module associated to a sheaf: If F ∈ QcohV , we put

Γ∗(F ) :=
⊕
n∈Z

Γ(F (n)) =
⊕
n∈Z

Hom
(
(L ∗)⊗n,F

)
.

Example: Γ∗(OV ) ∼= S(V ).

Theorem (Serre, 1955)

1 The functor Γ∗ : QcohV → ModZS(V ) is fully faithful.
2 Γ∗ has an exact left adjoint Q : ModZS(V )→ QcohV which

satisfies a universal property:
QcohV = ModZS(V )/ModZ

0 S(V ) (Serre quotient).
3 Similarly, cohV = modZS(V )/modZ

0 S(V ).
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Homogeneous coordinate rings of Grassmannians

We have SLn/P ∼= Grn,r , where

P =

(
Pr Q
0 Pn−r

)
,

where Pr ∈ Mr (C) and Pn−r ∈ Mn−r (C). The bijection sends the
coset UP, U = (uij )

n
i,j=1 ∈ SLn to the linear hull of the first r

columns of U.

If we view Grn,r ⊆ P(n
r)−1

C via the Plücker embedding, the quotient
map SLn � Grn,r sends U = (uij )

n
i,j=1 to a point with

homogeneous coordinates
∑
σ(−1)sgn(σ)uσ(i1),1uσ(i2),2 · · · uσ(ir ),r ,

one for each sequence i1 < i2 < · · · < ir .
In terms of coordinate rings, this shows that S(Grn,r ) coincides
with the subring

C

[∑
σ

(−1)sgn(σ)uσ(i1),1uσ(i2),2 · · · uσ(ir ),r | i1 < i2 < · · · < ir

]
⊆ C[SLn].
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Quantum Grassmannians

In terms of coordinate rings, this shows that S(Grn,r ) coincides
with the subring

C

[∑
σ

(−1)sgn(σ)uσ(i1),1uσ(i2),2 · · · uσ(ir ),r | i1 < i2 < · · · < ir

]
⊆ C[SLn].

We have C[SLn] = U(sln)◦ ((−)◦ is the Hopf dual).
Quantum deformation: We can deform C[SLn] to Uq(sln)◦ and
define Sq[Grn,r] as the subring

C

[∑
σ

(−q)`(σ)uσ(i1),1uσ(i2),2 · · · uσ(ir ),r | i1 < i2 < · · · < ir

]
⊆ Uq(sln)◦.

Representation-theoretic perspective: Again
Sq[Grn,r] ∼=

⊕∞
k=0 V (k$r )∗, where V (k$r ) is the corresponding

representation of Uq(sln).
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Quantized homogeneous coordinate rings of flags

One can do the same for all flags (Soibelman 1992, Taft and
Towber 1991, Lakshmibai and Reshetikin 1992, Braveman 1994,
. . . ).
Let g be a complex semisimple Lie algebra, G the corresponding
complex simply connected algebraic group and P a parabolic
subgroup. Then the flag F = G/P is a projective variety and

∞⊕
k=0

V (kλ)∗ ∼= Sq(F ) ⊆ Uq(g)◦,

where λ is the sum of fundamental weights for F and V (kλ) are
the corresponding finite dimensional representations of Uq(g).
One can define a quantization for the category of coherent
sheaves: cohqF := modZSq(F )/modZ

0 Sq(F ).
This is an abelian category and we can, for instance, define and
study the analogue of the sheaf cohomology as well as other
algebraic properties.
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Compact Lie versus algebraic groups

Aim: Relate the quantized algebraic and differential geometry.
We have SUn ⊆ SLn, where

1 SLn is a complex affine algebraic group,
2 SUn is a real compact Lie group but it is also a real algebraic group!

Rings of functions in place:
1 For SLn we have the complex coordinate ring C[SLn],
2 For SUn we have the hierarchy

C(SUn) ⊇ C∞(SUn) ⊇ O(SUn)

where O(SUn) is the ring of polynomial functions s : SUn → C of
real algebraic varieties.

3 The magic here: C[SLn] ∼= O(SUn)
(via the restriction of s : SLn → C to SUn).

12/17 Jan Št’ovı́ček Noncommutative flags, part II.



A pocket dictionary: algebraic to differential geometry
A “cultural” problem:

1 In differential geometry, a compact complex manifold is a real
manifold with an extra structure (flat connection
∂ : C∞(V )→ Ω(0,1)).

2 In algebraic geometry, one usually encounters only polynomial or
rational (so holomorphic) functions.

To relate the two, we need a meeting point of (1) and (2).
We have Grn,r ∼= SLn/P ∼= SUn/L, where

P =

(
Pr Q
0 Pn−r

)
and L = P ∩ SUn =

(
Lr 0
0 Ln−r

)
.

Now:
1 The expression Grn,r ∼= SLn/P allows to view the Grassmannian as

a projective complex algebraic variety.
2 The expression Grn,r ∼= SUn/L allows to view the Grassmannian as

a affine real algebraic variety.
The meeting point: Try to view a complex algebraic variety V as
a real algebraic variety with a “complex structure” (a flat
connection ∂ : O(V )→ Ω(0,1)).
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Dolbeault dg algebra

If V is a complex manifold, we have the Dolbeault complex:

0 −→ C∞(V )
∂−→ Ω(0,1) ∂−→ Ω(0,2) ∂−→ · · ·

We can wedge forms (∧ : Ω(0,i) ⊗ Ω(0,j) −→ Ω(0,i+j)). Then
Ω(0,•) =

⊕
i Ω(0,i) is a Z-graded associative algebra over C.

Moreover, we have the graded Leibniz rule:
∂(ωi ∧ ωj ) = ∂(ωi ) ∧ ωj + (−1)iωi ∧ ∂(ωj ) for each ωi ∈ Ω(0,i) and
ωj ∈ Ω(0,j). In other words, (Ω(0,•)(V ),∧, ∂) is a differential graded
(dg) algebra.
If V = Grn,r = SUn/L, then

O(Grn,r ) ⊆ C∞(Grn,r ) ⊆ C(Grn,r )

and O(Grn,r ) is dense with respect to || − ||∞.
Now, the Dolbeault dg algebra for Grn,r does restrict to real
algebraic sections:

0 −→ O(Grn,r )
∂−→ Ω

(0,1)
alg

∂−→ Ω
(0,2)
alg

∂−→ · · ·
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The differential calculus of Heckenberger and Kolb

The Dolbeault dg algebra for Grn,r does restrict to real algebraic
sections:

0 −→ O(Grn,r )
∂−→ Ω

(0,1)
alg

∂−→ Ω
(0,2)
alg

∂−→ · · ·

and can be quantized:

0 −→ Oq(Grn,r )
∂−→ Ω

(0,1)
q

∂−→ Ω
(0,2)
q

∂−→ · · ·

(
(
Ω

(0,•)
q (Grn,r ),∧, ∂

)
is a dg algebra again).

If we impose some more natural conditions on Ω
(0,•)
q (Grn,r ), it is

unique (Heckenberger and Kolb, 2006)!
In fact, Heckenberger and Kolb quantized the Dolbeault dg
algebra for all compact Hermitian symmetric flags.
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The Koszul-Malgrange theorem

Theorem (Koszul and Malgrange, 1958)

Let V be a compact complex manifold. Then there is a bijective
correspondence between

1 holomorphic vector bundles p : E → V and
2 smooth complex vector bundles equipped with a flat connection
∇E : Γ∞(E)→ Γ∞(E)⊗C∞(V ) Ω(0,1), where

Γ∞(E) = {s : V → E smooth map | p ◦ s = 1V}.

The holomorphic sections of E are precisely ∇E .

By a version of the Serre-Swan theorem, Γ∞(E) is a finitely
generated projective C∞(V )-module.
Define quantized algebraic vector bundles over Grn,r as flat
connections ∇ : P → P ⊗Oq(Grn,r ) Ω

(0,1)
q , where P is a finitely

generated projective Oq(Grn,r )-module.
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The first match (quantized alg. vs. diff. geometry)
Recall: On Grn,r = SUn+1/L, we have only one reasonable
quantized Dolbeault dg algebra (Ω

(0,•)
q ,∧, ∂).

Since Grn,r is homogeneous, one can use representation theory
of l to construct quantum deformations Ln,q of tensor powers
L ⊗n of the tautological bundle L .
That is, there are finitely generated projective Ln,q are finitely
generated projective Oq(Grn,r )-modules and certain flat
connections, unique by Ó Buachalla and Mrozinski,

∇Ln,q : Ln,q −→ Ln,q ⊗Oq(Grn,r ) Ω
(0,1)
q .

Theorem (Ó Buachalla and Mrozinski, 2017)

For each n ≥ 0, We have Sq(Grn,r )n ∼= ker∇Ln,q .
So the holomorphic sections of line bundles based on the
Heckenberger-Kolb calculus and the Koszul-Malgrange theorem
agree with the older “naive” construction of the quantized coordinate
ring.
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Jan Št’ovı́ček
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Coherent sheaves after Pali

Recall: If V is a compact complex manifold, then a holomorphic
vector bundle p : E → V can be equivalently given via a flat
connection

∇E : Γ∞(E)→ Γ∞(E)⊗C∞(V ) Ω(0,1).

(Koszul and Malgrange, 1958).
There is a generalization for coherent sheaves over V :

Theorem (Pali, 2006)

Given a compact complex manifold V and the sheaf O∞V of smooth
complex-valued functions, there is a bijective correspondence
between

1 analytic coherent sheaves on V and
2 flat connections ∇G : G → G ⊗O∞V Ω(0,1), where the sheaf
O∞V -modules locally admits a resolution

0→ (O∞V |U)nk → · · · → (O∞V |U)n1 → (O∞V |U)n0 → G |U → 0.
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Remarks

Theorem (Pali, 2006)

Given a compact complex manifold V and the sheaf O∞V of smooth
complex-valued functions, there is a bijective correspondence
between

1 analytic coherent sheaves on V and
2 flat connections ∇G : G → G ⊗O∞V Ω(0,1), where the sheaf
O∞V -modules locally admits a resolution

0→ (O∞V |U)nk → · · · → (O∞V |U)n1 → (O∞V |U)n0 → G |U → 0.

If V embeds into a projective space, then V is a smooth complex
projective algebraic variety (Chow, 1949).
In that case, the categories of analytic and algebraic coherent
sheaves are equivalent (Serre’s GAGA Theorem, 1956).
Pali actually proves that cohV is equivalent to the category of the
flat connections as above.
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The category of Beggs and Smith

This motivated Beggs and Smith (2012) to define an abelian
category category Hol(A) for a non-commutative complex
structure (Ω•(A),d = ∂ + ∂) (e.g. A = Oq(Grn,r ) as before):
The objects are flat connections ∇M : M → M ⊗A Ω(0,1) and the
morphisms are given by f : M → N such that

M
∇M //

f
��

M ⊗A Ω(0,1)

f⊗Ω(0,1)

��
N

∇N

// N ⊗A Ω(0,1).

First approximation to the differential description of the category
of coherent sheaves: require that M have a finite projective
resolution over A

0→ Pk → · · · → P1 → P0 → M → 0.

Denote this full subcategory of Hol(A) by hol(A).
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A catch

Unlike in Pali’s case, the algebraic category hol(O(V )) is too big
to model cohV even for projective spaces V = Pn

C.
For a connection ∇M : M → M ⊗O(V ) Ω(0,1), m ∈ M and
s ∈ O(V ), we have

∇M(ms) = ∇M(m)s + m∂(s).

If v : M → M ⊗O(V ) Ω(0,1) is a homomorphism of O(V )-modules,
then ∇′M = ∇M + v is again a connection.
In this way, we can construct flat connections with infinite
dimensional space of holomorphic global sections

Γ(M,∇′M) := ker∇′M .

This never happens for a coherent sheaf over a projective variety!
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Differential coherent sheaves
Classically, if V is a projective variety, then each F ∈ cohV has a
presentation of the form

(L ⊗t1 )n1 → (L ⊗t0 )n0 → F → 0

(L ∈ cohV an ample line bundle).
For Oq(Grn,r ), we have a unique quantization for line bundles

∇Ln,q : Ln,q −→ Ln,q ⊗Oq(Grn,r ) Ω
(0,1)
q .

(Ó Buachalla and Mrozinski, 2017).
So we can define the category coh∂

q Grn,r of differential coherent
sheaves as the subcategory of Hol(Oq(Grn,r )) consisting of the
connections ∇M : M → M ⊗A Ω(0,1) admitting a presentation

Ln1
t1,q

//

∇
��

Ln0
t0

//

∇
��

M //

∇
��

0

Ln1
t1,q⊗Oq(Grn,r )

// Ln0
t0,q⊗Oq(Grn,r )

// M⊗Oq(Grn,r )
// 0
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Comparison: algebraic and differential sheaves

For Oq(Grn,r ), we have
1 Algebraic coherent sheaves

cohqGrn,r = modZSq(Grn,r )/modZ
0 Sq(Grn,r ), and

2 Differential coherent sheaves coh∂
q Grn,r = {∇M : M → M ⊗A Ω(0,1)}.

The aim is to show that the categories are equivalent.

For this we need that certain cohomologies vanish in coh∂
q Grn,r .

More precisely, we focus on cohomologies of the dg
Ω(0,•)-module

0→ M → M ⊗A Ω(0,1) → M ⊗A Ω(0,2) → · · ·

which we obtain by Leibniz rule because ∇M is flat
(Dolbeault cohomology).
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Complex structures

The complex structure on (quantized or not) P2
C:

Ω4 Ω(2,2)

Ω3

d

OO

Ω(2,1)

∂

;;

Ω(1,2)

∂

cc

Ω2

d

OO

Ω(2,0)

∂

;;

Ω(1,1)

∂

;;
∂

cc

Ω(0,2)

∂

cc

Ω1

d

OO

Ω(1,0)

∂

;;
∂

cc

Ω(0,1)

∂

;;
∂

cc

Ω0

d

OO

Ω(0,0)

∂

;;
∂

cc
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Complex structure and ‘holomorphic’ connections
If (∇M : M → M ⊗A Ω(0,1)) ∈ Hol(A), we tensor over the dg
Ω(0,•)-module with the diamond. Example for A = Oq(P2

C):

M ⊗Oq (P2
C)

Ω4 M ⊗ Ω(2,2)

M ⊗Oq (P2
C)

Ω3

d

OO

M ⊗ Ω(2,1)

∂

==

M ⊗ Ω(1,2)

M ⊗Oq (P2
C)

Ω2

d

OO

M ⊗ Ω(2,0)

∂

==

M ⊗ Ω(1,1)

∂

==

M ⊗ Ω(0,2)

M ⊗Oq (P2
C)

Ω1

d

OO

M ⊗ Ω(1,0)

∂

==

M ⊗ Ω(0,1)

∂

==

M

d

OO

M

∂

<<

Kodaira vanishing (under extra assumptions!)
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Kodaira vanishing

Theorem (Ó Buachalla, Š., van Roosmalen)

Suppose we have a (non-commutative) Kähler differential calculus
(such as the one for Oq(Grn,r )) and let (M,∇M) be a positive
Hermitian vector bundle. Then H(a,b)(M) = 0 for all a + b > d, where
d is the dimension of the calculus.

The non-commutative Kähler structure is defined via a closed
real central form κ ∈ Ω(1,1) such that L = κ ∧ − induces
isomorphisms Ln−k : Ωk → Ω2n−k for each k .

Theorem (Krutov, Ó Buachalla, Strung)

The line bundles ∇Lt,q : Lt,q → Lt,q ⊗Oq(Grn,r ) Ω(0,1) over Oq(Grn,r ) are
positive (= ample) for t > 0.
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Bott-Borel-Weil for quantum Grassmannians

For quantum Grassmannians, we have the following version of
the Bott-Borel-Weil theorem:

Theorem (Ó Buachalla, Š., van Roosmalen)

For t ≥ 0 and the line bundle ∇Lt,q : Lt,q → Lt,q ⊗Oq(Grn,r ) Ω(0,1), we
have

H0(Lt,q) = V (t$r ) and H i (Lt,q) = 0 for all i > 0.
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Abstract ample sequences

Theorem (Artin and Zhang 1994, Polishchuk 2005)

Suppose that A is an abelian category. Suppose further that we have
fixed object OA (an abstract structure sheaf) and an autoequivalence
(1) : A → A (an abstract twist functor), such that:

1 OA is noetherian and HomA(OA) is a noetherian
EndA(OA)-module for each M ∈ A.

2 For each M ∈ A, there are integers t1, t2, . . . , tm and an
epimorphism

⊕m
i=1OA(−ti ) � M.

3 For each epimorphism M � N in A, there is an integer n0 such
that for every n ≥ n0, the map

HomA(OA,M(n))→ HomA(OA,N(n))

is surjective.
Then A ' modZS(A)/modZ

0 S(A) for S(A) =
⊕∞

n=0 Hom(OA,OA(n))
(an abstract homogeneous coordinate ring).
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The second match (categories of sheaves)

Now we just put everything together.

For A = coh∂
q Grn,r , the abstract structure sheaf will be

OA = (∂ : Oq(Grn,r )→ Ω(0,1)) and we construct a twist functor
such that OA(1) = (∇L1,q : L1,q → L1,q ⊗Oq(Grn,r ) Ω(0,1)).
Now we apply to Bott-Borel-Weil theorem for quantized
Grassmannians to obtain

Theorem (Ó Buachalla, Š., van Roosmalen)

The categories cohqGrn,r = modZSq(Grn,r )/modZ
0 Sq(Grn,r ) and

coh∂
q Grn,r = {∇M : M → M ⊗A Ω(0,1)} are equivalent via

coh∂
q Grn,r

Γ∗−→ cohqGrn,r ,

(∇M : M → M ⊗Oq(Grn,r ) Ω(0,1)) 7−→
⊕
n∈Z

Homcoh∂
q

(Oq(Grn,r ),M(n)).
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Dolbeault vs. sheaf cohomology

The Bott-Borel-Weil theorem implies more.
For each ∇M : M → M ⊗Oq(Grn,r ) Ω(0,1), we can apply two
cohomology theories:

1 The Dolbeault cohomology—as before, from the complex

0→ M → M ⊗A Ω(0,1) → M ⊗A Ω(0,2) → · · ·

2 The intrinsic cohomology in the abelian category coh∂
q Grn,r :

Extn
coh∂q Grn,r

(Oq(Grn,r ),M)

(abstract sheaf cohomology).
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Finiteness for cohomology

Theorem (Ó Buachalla, Š., van Roosmalen)

For each coherent sheaf ∇M : M → M ⊗Oq(Grn,r ) Ω(0,1) over a quantum
Grassmannian and for each n ≥ 0, the two cohomologies are
isomorphic:

1 Hn(0→ M → M ⊗A Ω(0,1) → M ⊗A Ω(0,2) → · · · ) and
2 Extn

coh∂
q Grn,r

(Oq(Grn,r ),M).

Corollary

The Dolbeault cohomology of a coherent sheaf is finite dimensional
over C.

Thank you for your attention!
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