Derived categories with a view towards Grothendieck duality

Jan Šťovíček

Charles University in Prague

October 21, 2011
Outline

1. Functors from module categories
2. Derived categories
3. Sheaf cohomology
4. A view towards Grothendieck duality
Let \((R, +, -, 0, \cdot, 1)\) be a commutative ring and let \(\text{Mod}R\) be the category of right \(R\)-modules.

Examples to keep in mind in this talk: \(M\) a manifold/alg. variety over a field \(k\), \(R\) the ring of all smooth/holomorphic/polynomial functions.

\(R\)-modules can encode among others vector bundles over \(M\). More details will follow.
Let \((R, +, -, 0, \cdot, 1)\) be a commutative ring and let \(\text{Mod}R\) be the category of right \(R\)-modules.

Examples to keep in mind in this talk: \(M\) a manifold/alg. variety over a field \(k\), \(R\) the ring of all smooth/holomorphic/polynomial functions

\[M : \quad f \quad \rightarrow \quad k \]

\(R\)-modules can encode among others vector bundles over \(M\). More details will follow.
Rings and modules

- Let \((R, +, -, 0, \cdot, 1)\) be a commutative ring and let \(\text{Mod}R\) be the category of right \(R\)-modules.

- Examples to keep in mind in this talk: \(M\) a manifold/alg. variety over a field \(k\), \(R\) the ring of all smooth/holomorphic/polynomial functions

\[M: \quad \xrightarrow{f} \quad k \]

- \(R\)-modules can encode among others vector bundles over \(M\). More details will follow.
Let \((R, +, −, 0, ·, 1)\) be a commutative ring and let Mod\(R\) be the category of right \(R\)-modules.

Examples to keep in mind in this talk: \(M\) a manifold/alg. variety over a field \(k\), \(R\) the ring of all smooth/holomorphic/polynomial functions on \(M\). More details will follow.

\(R\)-modules can encode among others vector bundles over \(M\). More details will follow.
Rings and modules

- Let $(R, +, −, 0, ·, 1)$ be a commutative ring and let $\text{Mod}R$ be the category of right R-modules.

- Examples to keep in mind in this talk: M a manifold/alg. variety over a field k, R the ring of all smooth/holomorphic/polynomial functions

- R-modules can encode among others vector bundles over M. More details will follow.

\[M: \quad \xrightarrow{f} \quad k \]
Non-exactness of Hom functors

Given any module X, the assignment

$$Y \in \text{Mod}_R \quad \mapsto \quad \text{Hom}_R(X, Y)$$

gives a functor

$$\text{Hom}_R(X, -): \text{Mod}_R \rightarrow \text{Ab}$$

This functor is left-exact, i.e. given a short exact sequence

$$0 \rightarrow K \rightarrow Y \rightarrow C \rightarrow 0$$

of modules, we obtain an exact sequence of groups

$$0 \rightarrow \text{Hom}_R(X, K) \rightarrow \text{Hom}_R(X, Y) \rightarrow \text{Hom}_R(X, C) \rightarrow \ast$$

What should be there instead of \ast?
Non-exactness of Hom functors

- Given any module X, the assignment

 $$Y \in \text{Mod } R \quad \mapsto \quad \text{Hom}_R(X, Y)$$

 gives a functor

 $$\text{Hom}_R(X, -) : \text{Mod } R \to \text{Ab}$$

- This functor is left-exact, i.e. given a short exact sequence

 $$0 \to K \to Y \to C \to 0$$

 of modules, we obtain an exact sequence of groups

 $$0 \to \text{Hom}_R(X, K) \to \text{Hom}_R(X, Y) \to \text{Hom}_R(X, C) \to \ast$$

- What should be there instead of \ast?
Non-exactness of Hom functors

- Given any module X, the assignment

 $Y \in \text{Mod}_R \mapsto \text{Hom}_R(X, Y)$

 gives a functor

 $\text{Hom}_R(X, -): \text{Mod}_R \to \text{Ab}$

- This functor is left-exact, i.e. given a short exact sequence

 $0 \to K \to Y \to C \to 0$

 of modules, we obtain an exact sequence of groups

 $0 \to \text{Hom}_R(X, K) \to \text{Hom}_R(X, Y) \to \text{Hom}_R(X, C) \to \ast$

- What should be there instead of \ast?
Derived functors

- **Classical answer:** derived functors.
- Given a left exact functor
 \[F : \text{Mod}_R \to \text{Ab}, \]
 (e.g. \(F = \text{Hom}_R(X, -) \)), there is a canonical way to produce a series of functors
 \[R^1F, R^2F, R^3F, \ldots : \text{Mod}_R \to \text{Ab} \]
 (the right derived functors of \(F \)) such that starting with a short exact sequence of \(R \)-modules
 \[0 \to K \to Y \to C \to 0, \]
 we obtain a natural long exact sequence
 \[0 \to F(K) \to F(Y) \to F(C) \to R^1F(K) \to R^1F(Y) \to \]
 \[\to R^1F(C) \to R^2F(K) \to R^2F(Y) \to R^2F(C) \to \cdots \]
Derived functors

- Classical answer: derived functors.
- Given a left exact functor

\[F : \text{Mod}_R \to \text{Ab}, \]

(e.g. \(F = \text{Hom}_R(X, -) \)), there is a canonical way to produce a series of functors

\[R^1F, R^2F, R^3F, \ldots : \text{Mod}_R \to \text{Ab} \]

(the right derived functors of \(F \)) such that starting with a short exact sequence of \(R \)-modules

\[0 \to K \to Y \to C \to 0, \]

we obtain a natural long exact sequence

\[0 \to F(K) \to F(Y) \to F(C) \to R^1F(K) \to R^1F(Y) \to \]

\[\to R^1F(C) \to R^2F(K) \to R^2F(Y) \to R^2F(C) \to \cdots \]
Functors from module categories

Derived functors

- Classical answer: derived functors.
- Given a left exact functor
 \[F : \text{Mod}R \rightarrow \text{Ab}, \]
 (e.g. \(F = \text{Hom}_R(X, -) \)), there is a canonical way to produce a series of functors
 \[R^1F, R^2F, R^3F, \ldots : \text{Mod}R \rightarrow \text{Ab} \]
 (the right derived functors of \(F \)) such that starting with a short exact sequence of \(R \)-modules
 \[0 \rightarrow K \rightarrow Y \rightarrow C \rightarrow 0, \]
 we obtain a natural long exact sequence
 \[0 \rightarrow F(K) \rightarrow F(Y) \rightarrow F(C) \rightarrow R^1F(K) \rightarrow R^1F(Y) \rightarrow R^1F(C) \rightarrow \cdots \]
Derived functors

- Classical answer: derived functors.
- Given a left exact functor

\[F : \text{Mod}_R \rightarrow \text{Ab}, \]

(e.g. \(F = \text{Hom}_R(X, -) \)), there is a canonical way to produce a series of functors

\[R^1F, R^2F, R^3F, \ldots : \text{Mod}_R \rightarrow \text{Ab} \]

(the right derived functors of \(F \)) such that starting with a short exact sequence of \(R \)-modules

\[0 \rightarrow K \rightarrow Y \rightarrow C \rightarrow 0, \]

we obtain a natural long exact sequence

\[0 \rightarrow F(K) \rightarrow F(Y) \rightarrow F(C) \rightarrow R^1F(K) \rightarrow R^1F(Y) \rightarrow \]

\[\rightarrow R^1F(C) \rightarrow R^2F(K) \rightarrow R^2F(Y) \rightarrow R^2F(C) \rightarrow \cdots \]
Derived functors

- Classical answer: derived functors.
- Given a left exact functor
 \[F : \text{Mod}_R \to \text{Ab}, \]
 (e.g. \(F = \text{Hom}_R(X, -) \)), there is a canonical way to produce a series of functors
 \[R^1F, R^2F, R^3F, \ldots : \text{Mod}_R \to \text{Ab} \]
 (the right derived functors of \(F \)) such that starting with a short exact sequence of \(R \)-modules
 \[0 \to K \to Y \to C \to 0, \]
 we obtain a natural long exact sequence
 \[
 0 \to F(K) \to F(Y) \to F(C) \to R^1F(K) \to R^1F(Y) \to R^1F(C) \to R^2F(K) \to R^2F(Y) \to R^2F(C) \to \cdots
 \]
Outline

1. Functors from module categories
2. Derived categories
3. Sheaf cohomology
4. A view towards Grothendieck duality
Motivation

- The derived category $\mathcal{D}(R)$ of the module category $\text{Mod}R$ provides a flexible language for homological algebra and the right framework for working with derived functors.
- It is a complicated object, though. It contains infinitely many copies of $\text{Mod}R$ as full subcategories:
Motivation

- The derived category $\mathbf{D}(R)$ of the module category Mod_R provides a flexible language for homological algebra and the right framework for working with derived functors.
- It is a complicated object, though. It contains infinitely many copies of Mod_R as full subcategories:
Construction of the derived category

- We start the category $\mathbb{C}(R)$ of cochain complexes over $\text{Mod} R$. An object X of $\mathbb{C}(R)$ is a diagram of modules

$$
\ldots \rightarrow X^{-1} \xrightarrow{\partial^{-1}} X^0 \xrightarrow{\partial^0} X^1 \xrightarrow{\partial^1} X^2 \rightarrow \ldots
$$

such that $\partial \circ \partial = 0$.

- Morphisms $f : X \rightarrow Y$ in $\mathbb{C}(R)$ are defined in the obvious way as a commutative diagrams

$$
\ldots \rightarrow X^{-1} \xrightarrow{\partial} X^0 \xrightarrow{\partial} X^1 \xrightarrow{\partial} X^2 \rightarrow \ldots
\quad \begin{array}{c}
\downarrow f^{-1} \\
\downarrow f^0 \\
\downarrow f^1 \\
\downarrow f^2 \\
\ldots \rightarrow Y^{-1} \xrightarrow{\partial} Y^0 \xrightarrow{\partial} Y^1 \xrightarrow{\partial} Y^2 \rightarrow \ldots
\end{array}
$$

- Cohomology modules: $H^n(X) = \ker \partial^n / \text{Im} \partial^{n-1}$ for an integer n. This is in fact again a functor, $H^n : \mathbb{C}(R) \rightarrow \text{Mod} R$.

Construction of the derived category

- We start the category $\mathcal{C}(R)$ of cochain complexes over $\text{Mod}R$. An object X of $\mathcal{C}(R)$ is a diagram of modules

$$\cdots \longrightarrow X^{-1} \xrightarrow{\partial^{-1}} X^0 \xrightarrow{\partial^0} X^1 \xrightarrow{\partial^1} X^2 \longrightarrow \cdots$$

such that $\partial \circ \partial = 0$.

- Morphisms $f : X \rightarrow Y$ in $\mathcal{C}(R)$ are defined in the obvious way as a commutative diagrams

$$\cdots \longrightarrow X^{-1} \xrightarrow{\partial} X^0 \xrightarrow{\partial} X^1 \xrightarrow{\partial} X^2 \longrightarrow \cdots$$

$$\downarrow \quad \downarrow \quad \downarrow \quad \downarrow$$

$$\cdots \longrightarrow Y^{-1} \xrightarrow{\partial} Y^0 \xrightarrow{\partial} Y^1 \xrightarrow{\partial} Y^2 \longrightarrow \cdots$$

- Cohomology modules: $H^n(X) = \text{Ker} \partial^n / \text{Im} \partial^{n-1}$ for an integer n. This is in fact again a functor, $H^n : \mathcal{C}(R) \rightarrow \text{Mod}R$.
Construction of the derived category

- We start the category $\mathcal{C}(R)$ of cochain complexes over $\text{Mod}R$. An object X of $\mathcal{C}(R)$ is a diagram of modules

$$\cdots \longrightarrow X^{-1} \xrightarrow{\partial^{-1}} X^0 \xrightarrow{\partial^0} X^1 \xrightarrow{\partial^1} X^2 \longrightarrow \cdots$$

such that $\partial \circ \partial = 0$.

- Morphisms $f : X \rightarrow Y$ in $\mathcal{C}(R)$ are defined in the obvious way as a commutative diagrams

$$\cdots \longrightarrow X^{-1} \xrightarrow{\partial} X^0 \xrightarrow{\partial} X^1 \xrightarrow{\partial} X^2 \longrightarrow \cdots$$

$$\downarrow f^{-1} \quad \downarrow f^0 \quad \downarrow f^1 \quad \downarrow f^2$$

$$\cdots \longrightarrow Y^{-1} \xrightarrow{\partial} Y^0 \xrightarrow{\partial} Y^1 \xrightarrow{\partial} Y^2 \longrightarrow \cdots$$

- Cohomology modules: $H^n(X) = \text{Ker} \partial^n / \text{Im} \partial^{n-1}$ for an integer n.
This is in fact again a functor, $H^n : \mathcal{C}(R) \rightarrow \text{Mod}R$.
Construction of the derived category

- We start the category $\mathcal{C}(R)$ of cochain complexes over $\text{Mod}R$. An object X of $\mathcal{C}(R)$ is a diagram of modules

\[\cdots \longrightarrow X^{-1} \xrightarrow{\partial^{-1}} X^0 \xrightarrow{\partial^0} X^1 \xrightarrow{\partial^1} X^2 \longrightarrow \cdots \]

such that $\partial \circ \partial = 0$.

- Morphisms $f : X \rightarrow Y$ in $\mathcal{C}(R)$ are defined in the obvious way as a commutative diagrams

\[\cdots \longrightarrow X^{-1} \xrightarrow{\partial} X^0 \xrightarrow{\partial} X^1 \xrightarrow{\partial} X^2 \longrightarrow \cdots \]

\[\begin{array}{cccc}
X^{-1} & \xrightarrow{\partial^{-1}} & X^0 & \xrightarrow{\partial^0} X^1 \\
\downarrow f^{-1} & & \downarrow f^0 & \\
Y^{-1} & \xrightarrow{\partial} & Y^0 & \xrightarrow{\partial} Y^1 \\
\downarrow f^{-1} & & \downarrow f^1 & \\
\cdots & \cdots & \cdots & \cdots \\
\end{array} \]

- Cohomology modules: $H^n(X) = \text{Ker} \partial^n / \text{Im} \partial^{n-1}$ for an integer n.

This is in fact again a functor, $H^n : \mathcal{C}(R) \rightarrow \text{Mod}R$.
Construction of the derived category

- We start the category $\mathcal{C}(R)$ of cochain complexes over $\text{Mod}R$. An object X of $\mathcal{C}(R)$ is a diagram of modules

 \[\cdots \longrightarrow X^{-1} \xrightarrow{\partial^{-1}} X^0 \xrightarrow{\partial^0} X^1 \xrightarrow{\partial^1} X^2 \longrightarrow \cdots \]

 such that $\partial \circ \partial = 0$.

- Morphisms $f : X \rightarrow Y$ in $\mathcal{C}(R)$ are defined in the obvious way as a commutative diagrams

 \[\cdots \longrightarrow X^{-1} \xrightarrow{\partial} X^0 \xrightarrow{\partial} X^1 \xrightarrow{\partial} X^2 \longrightarrow \cdots \]

 \[\downarrow f^{-1} \quad \downarrow f^0 \quad \downarrow f^1 \quad \downarrow f^2 \]

 \[\cdots \longrightarrow Y^{-1} \xrightarrow{\partial} Y^0 \xrightarrow{\partial} Y^1 \xrightarrow{\partial} Y^2 \longrightarrow \cdots \]

- Cohomology modules: $H^n(X) = \ker \partial^n / \text{Im} \partial^{n-1}$ for an integer n. This is in fact again a functor, $H^n : \mathcal{C}(R) \rightarrow \text{Mod}R$.

Jan Šťovíček (Charles University)
The point: We are interested in the cohomology of complexes rather then in the complexes themselves.

That is, if $f : X \to Y$ is a homomorphism of complexes such that

$$H^n(f) : H^n(X) \to H^n(Y)$$

is an isomorphism for all $n \in \mathbb{Z}$, then f morally should be an isomorphism. Such morphisms are called quasi-isomorphisms.

Such f’s are ubiquitous, we have for example for $R = \mathbb{Z}$:

$$\cdots \longrightarrow 0 \longrightarrow \mathbb{Z} \xrightarrow{m} \mathbb{Z} \longrightarrow 0 \longrightarrow \cdots$$

$$\downarrow \text{proj.}$$

$$\cdots \longrightarrow 0 \longrightarrow \mathbb{Z}/m\mathbb{Z} \longrightarrow 0 \longrightarrow \cdots$$
The point: We are interested in the cohomology of complexes rather then in the complexes themselves.

That is, if \(f : X \to Y \) is a homomorphism of complexes such that

\[
H^n(f) : H^n(X) \longrightarrow H^n(Y)
\]

is an isomorphism for all \(n \in \mathbb{Z} \), then \(f \) morally should be an isomorphism. Such morphisms are called quasi-isomorphisms.

Such \(f \)'s are ubiquitous, we have for example for \(R = \mathbb{Z} \):

\[
\cdots \longrightarrow 0 \longrightarrow \mathbb{Z} \overset{m \cdot -}{\longrightarrow} \mathbb{Z} \longrightarrow 0 \longrightarrow \cdots
\]

\[
\text{proj.}
\]

\[
\cdots \longrightarrow 0 \longrightarrow \mathbb{Z}/m\mathbb{Z} \longrightarrow 0 \longrightarrow \cdots
\]
The point: We are interested in the cohomology of complexes rather then in the complexes themselves.

That is, if \(f : X \to Y \) is a homomorphisms of complexes such that

\[
H^n(f) : H^n(X) \longrightarrow H^n(Y)
\]

is an isomorphism for all \(n \in \mathbb{Z} \), then \(f \) morally should be an isomorphism. Such morphisms are called quasi-isomorphisms.

Such \(f \)'s are ubiquitous, we have for example for \(R = \mathbb{Z} \):

\[
\begin{array}{ccc}
\cdots & \longrightarrow & 0 \\
& & \downarrow \text{proj.}
\end{array}
\begin{array}{ccc}
\longrightarrow & \mathbb{Z} & \longrightarrow \\
\text{m} & & \downarrow \text{proj.}
\end{array}
\begin{array}{ccc}
& & \mathbb{Z} \\
\longrightarrow & 0 & \longrightarrow \\
\longrightarrow & 0 & \longrightarrow \\
\longrightarrow & 0 & \longrightarrow \\
\longrightarrow & \cdots & \cdots
\end{array}
\begin{array}{ccc}
\longrightarrow & \mathbb{Z}/m\mathbb{Z} & \longrightarrow \\
\longrightarrow & 0 & \longrightarrow \\
\longrightarrow & 0 & \longrightarrow \\
\longrightarrow & \cdots & \cdots
\end{array}
\]
The point: We are interested in the cohomology of complexes rather then in the complexes themselves.

That is, if $f: X \to Y$ is a homomorphisms of complexes such that

$$H^n(f): H^n(X) \longrightarrow H^n(Y)$$

is an isomorphism for all $n \in \mathbb{Z}$, then f morally should be an isomorphism. Such morphisms are called quasi-isomorphisms.

Such f's are ubiquitous, we have for example for $R = \mathbb{Z}$:

$$\cdots \longrightarrow 0 \longrightarrow \mathbb{Z} \xrightarrow{m \cdot} \mathbb{Z} \longrightarrow 0 \longrightarrow \cdots$$

$$\text{proj.}$$

$$\cdots \longrightarrow 0 \longrightarrow \mathbb{Z}/m\mathbb{Z} \longrightarrow 0 \longrightarrow \cdots$$
Construction of the derived category—continued

To summarize so far: We have the category $\mathcal{C}(R)$ of cochain complexes of R-modules and the class Σ of all quasi-morphisms. We consider quasi-isomorphic complexes as “the same”.

The brutal step: We force the quasi-isomorphisms to become isomorphisms. That is, we formally add an inverse to every $\sigma \in \Sigma$.

Up to some inessential set-theoretical annoyances, one can always do this. The result is by definition the derived category $\mathcal{D}(R) = \mathcal{C}(R)[\Sigma^{-1}]$. It comes together with the canonical “localization” functor

$$Q : \mathcal{C}(R) \longrightarrow \mathcal{D}(R).$$

Q sends every $\sigma \in \Sigma$ to an isomorphism and it is a universal functor with this property.

The hard part is to understand the category we get.
To summarize so far: We have the category $\mathbf{C}(R)$ of cochain complexes of R-modules and the class Σ of all quasi-morphisms. We consider quasi-isomorphic complexes as “the same”.

The brutal step: We force the quasi-isomorphisms to become isomorphisms. That is, we formally add an inverse to every $\sigma \in \Sigma$.

Up to some inessential set-theoretical annoyances, one can always do this. The result is by definition the derived category $\mathbf{D}(R) = \mathbf{C}(R)[\Sigma^{-1}]$. It comes together with the canonical “localization” functor

$$Q : \mathbf{C}(R) \longrightarrow \mathbf{D}(R).$$

Q sends every $\sigma \in \Sigma$ to an isomorphism and it is a universal functor with this property.

The hard part is to understand the category we get.
To summarize so far: We have the category $\mathcal{C}(R)$ of cochain complexes of R-modules and the class Σ of all quasi-morphisms. We consider quasi-isomorphic complexes as “the same”.

The brutal step: We force the quasi-isomorphisms to become isomorphisms. That is, we formally add an inverse to every $\sigma \in \Sigma$.

Up to some inessential set-theoretical annoyances, one can always do this. The result is by definition the derived category $D(R) = \mathcal{C}(R)[\Sigma^{-1}]$. It comes together with the canonical “localization” functor $Q: \mathcal{C}(R) \rightarrow D(R)$.

Q sends every $\sigma \in \Sigma$ to an isomorphism and it is a universal functor with this property.

The hard part is to understand the category we get.
To summarize so far: We have the category $\mathbf{C}(R)$ of cochain complexes of R-modules and the class Σ of all quasi-morphisms. We consider quasi-isomorphic complexes as “the same”.

The brutal step: We force the quasi-isomorphisms to become isomorphisms. That is, we formally add an inverse to every $\sigma \in \Sigma$.

Up to some inessential set-theoretical annoyances, one can always do this. The result is by definition the derived category $\mathbf{D}(R) = \mathbf{C}(R)[\Sigma^{-1}]$. It comes together with the canonical “localization” functor

$$Q : \mathbf{C}(R) \longrightarrow \mathbf{D}(R).$$

Q sends every $\sigma \in \Sigma$ to an isomorphism and it is a universal functor with this property.

The hard part is to understand the category we get.
To summarize so far: We have the category $\mathcal{C}(R)$ of cochain complexes of R-modules and the class Σ of all quasi-morphisms. We consider quasi-isomorphic complexes as “the same”.

The brutal step: We force the quasi-isomorphisms to become isomorphisms. That is, we formally add an inverse to every $\sigma \in \Sigma$.

Up to some inessential set-theoretical annoyances, one can always do this. The result is by definition the derived category $\mathcal{D}(R) = \mathcal{C}(R)[\Sigma^{-1}]$. It comes together with the canonical “localization” functor

$$Q: \mathcal{C}(R) \rightarrow \mathcal{D}(R).$$

Q sends every $\sigma \in \Sigma$ to an isomorphism and it is a universal functor with this property.

The hard part is to understand the category we get.
Construction of the derived category—continued

- To summarize so far: We have the category $\mathcal{C}(R)$ of cochain complexes of R-modules and the class Σ of all quasi-morphisms. We consider quasi-isomorphic complexes as “the same”.

- The brutal step: We force the quasi-isomorphisms to become isomorphisms. That is, we formally add an inverse to every $\sigma \in \Sigma$.

- Up to some inessential set-theoretical annoyances, one can always do this. The result is by definition the derived category $D(R) = \mathcal{C}(R)[\Sigma^{-1}]$. It comes together with the canonical “localization” functor

$$Q : \mathcal{C}(R) \longrightarrow D(R).$$

Q sends every $\sigma \in \Sigma$ to an isomorphism and it is a universal functor with this property.

- The hard part is to understand the category we get.
Construction of the derived category—continued

- To summarize so far: We have the category $\mathcal{C}(R)$ of cochain complexes of R-modules and the class Σ of all quasi-morphisms. We consider quasi-isomorphic complexes as “the same”.

- The brutal step: We force the quasi-isomorphisms to become isomorphisms. That is, we formally add an inverse to every $\sigma \in \Sigma$.

- Up to some inessential set-theoretical annoyances, one can always do this. The result is by definition the derived category $\mathcal{D}(R) = \mathcal{C}(R)[\Sigma^{-1}]$. It comes together with the canonical “localization” functor

$$Q : \mathcal{C}(R) \longrightarrow \mathcal{D}(R).$$

Q sends every $\sigma \in \Sigma$ to an isomorphism and it is a universal functor with this property.

- The hard part is to understand the category we get.
To summarize so far: We have the category $\mathbf{C}(R)$ of cochain complexes of R-modules and the class Σ of all quasi-morphisms. We consider quasi-isomorphic complexes as “the same”.

The brutal step: We force the quasi-isomorphisms to become isomorphisms. That is, we formally add an inverse to every $\sigma \in \Sigma$.

Up to some inessential set-theoretical annoyances, one can always do this. The result is by definition the derived category $\mathbf{D}(R) = \mathbf{C}(R)[\Sigma^{-1}]$. It comes together with the canonical “localization” functor

$$Q : \mathbf{C}(R) \longrightarrow \mathbf{D}(R).$$

Q sends every $\sigma \in \Sigma$ to an isomorphism and it is a universal functor with this property.

The hard part is to understand the category we get.
Taking smaller steps

- We shall perform the passage from $\mathbf{C}(R)$ to $\mathbf{D}(R)$ in two smaller steps.

- Making a morphism invertible can cause another morphism to become zero (if $\sigma \circ \alpha = 0$, then α vanishes after making σ invertible).

- First we take the quotient category $\mathbf{K}(R) = \mathbf{C}(R)/\mathcal{I}$, where \mathcal{I} is a two-sided ideal of some (not all) morphisms which must vanish under $Q : \mathbf{C}(R) \to \mathbf{D}(R)$. \mathcal{I} is the class of the so-called null-homotopic morphisms of complexes.

- In the second step, the morphisms from Σ (or more precisely their images under $Q : \mathbf{C}(R) \to \mathbf{K}(R)$) are made invertible. That is, we construct $\mathbf{D}(R)$ as $\mathbf{K}(R)[\Sigma^{-1}]$.

- The latter is more tractable since Σ is a multiplicative system in $\mathbf{K}(R)$ (unlike in $\mathbf{C}(R)$). In other words, it allows the calculus of left and right fractions.
Taking smaller steps

- We shall perform the passage from $\mathbf{C}(R)$ to $\mathbf{D}(R)$ in two smaller steps.
- Making a morphism invertible can cause another morphism to become zero (if $\sigma \circ \alpha = 0$, then α vanishes after making σ invertible).
- First we take the quotient category $\mathbf{K}(R) = \mathbf{C}(R)/\mathcal{I}$, where \mathcal{I} is a two-sided ideal of some (not all) morphisms which must vanish under $Q: \mathbf{C}(R) \to \mathbf{D}(R)$. \mathcal{I} is the class of the so-called null-homotopic morphisms of complexes.
- In the second step, the morphisms from Σ (or more precisely their images under $Q': \mathbf{C}(R) \to \mathbf{K}(R)$) are made invertible. That is, we construct $\mathbf{D}(R)$ as $\mathbf{K}(R)[\Sigma^{-1}]$.
- The latter is more tractable since Σ is a multiplicativc system in $\mathbf{K}(R)$ (unlike in $\mathbf{C}(R)$). In other words, it allows the calculus of left and right fractions.
Taking smaller steps

- We shall perform the passage from $\mathcal{C}(R)$ to $\mathcal{D}(R)$ in two smaller steps.

- Making a morphism invertible can cause another morphism to become zero (if $\sigma \circ \alpha = 0$, then α vanishes after making σ invertible).

- First we take the quotient category $\mathcal{K}(R) = \mathcal{C}(R)/\mathcal{I}$, where \mathcal{I} is a two-sided ideal of some (not all) morphisms which must vanish under $Q: \mathcal{C}(R) \to \mathcal{D}(R)$. \mathcal{I} is the class of the so-called null-homotopic morphisms of complexes.

- In the second step, the morphisms from Σ (or more precisely their images under $Q': \mathcal{C}(R) \to \mathcal{K}(R)$) are made invertible. That is, we construct $\mathcal{D}(R)$ as $\mathcal{K}(R)[\Sigma^{-1}]$.

- The latter is more tractable since Σ is a multiplicative system in $\mathcal{K}(R)$ (unlike in $\mathcal{C}(R)$). In other words, it allows the calculus of left and right fractions.
Taking smaller steps

- We shall perform the passage from $\mathbf{C}(R)$ to $\mathbf{D}(R)$ in two smaller steps.
- Making a morphism invertible can cause another morphism to become zero (if $\sigma \circ \alpha = 0$, then α vanishes after making σ invertible).
- First we take the quotient category $\mathbf{K}(R) = \mathbf{C}(R)/\mathcal{I}$, where \mathcal{I} is a two-sided ideal of some (not all) morphisms which must vanish under $Q: \mathbf{C}(R) \to \mathbf{D}(R)$. \mathcal{I} is the class of the so-called null-homotopic morphisms of complexes.
- In the second step, the morphisms from Σ (or more precisely their images under $Q': \mathbf{C}(R) \to \mathbf{K}(R)$) are made invertible. That is, we construct $\mathbf{D}(R)$ as $\mathbf{K}(R)[\Sigma^{-1}]$.
- The latter is more tractable since Σ is a multiplicative system in $\mathbf{K}(R)$ (unlike in $\mathbf{C}(R)$). In other words, it allows the calculus of left and right fractions.
Taking smaller steps

- We shall perform the passage from $\mathbf{C}(R)$ to $\mathbf{D}(R)$ in two smaller steps.
- Making a morphism invertible can cause another morphism to become zero (if $\sigma \circ \alpha = 0$, then α vanishes after making σ invertible).
- First we take the quotient category $\mathbf{K}(R) = \mathbf{C}(R)/\mathcal{I}$, where \mathcal{I} is a two-sided ideal of some (not all) morphisms which must vanish under $Q: \mathbf{C}(R) \rightarrow \mathbf{D}(R)$. \mathcal{I} is the class of the so-called null-homotopic morphisms of complexes.
- In the second step, the morphisms from Σ (or more precisely their images under $Q': \mathbf{C}(R) \rightarrow \mathbf{K}(R)$) are made invertible. That is, we construct $\mathbf{D}(R)$ as $\mathbf{K}(R)[\Sigma^{-1}]$.
- The latter is more tractable since Σ is a multiplicative system in $\mathbf{K}(R)$ (unlike in $\mathbf{C}(R)$). In other words, it allows the calculus of left and right fractions.
Taking smaller steps

- We shall perform the passage from $\mathcal{C}(R)$ to $\mathcal{D}(R)$ in two smaller steps.
- Making a morphism invertible can cause another morphism to become zero (if $\sigma \circ \alpha = 0$, then α vanishes after making σ invertible).
- First we take the quotient category $\mathcal{K}(R) = \mathcal{C}(R)/\mathcal{I}$, where \mathcal{I} is a two-sided ideal of some (not all) morphisms which must vanish under $Q: \mathcal{C}(R) \to \mathcal{D}(R)$. \mathcal{I} is the class of the so-called null-homotopic morphisms of complexes.
- In the second step, the morphisms from Σ (or more precisely their images under $Q': \mathcal{C}(R) \to \mathcal{K}(R)$) are made invertible. That is, we construct $\mathcal{D}(R)$ as $\mathcal{K}(R)[\Sigma^{-1}]$.
- The latter is more tractable since Σ is a multiplicative system in $\mathcal{K}(R)$ (unlike in $\mathcal{C}(R)$). In other words, it allows the calculus of left and right fractions.
Taking smaller steps

- We shall perform the passage from \(\mathcal{C}(R) \) to \(\mathcal{D}(R) \) in two smaller steps.

- Making a morphism invertible can cause another morphism to become zero (if \(\sigma \circ \alpha = 0 \), then \(\alpha \) vanishes after making \(\sigma \) invertible).

- First we take the quotient category \(\mathcal{K}(R) = \mathcal{C}(R)/\mathcal{I} \), where \(\mathcal{I} \) is a two-sided ideal of some (not all) morphisms which must vanish under \(Q: \mathcal{C}(R) \to \mathcal{D}(R) \). \(\mathcal{I} \) is the class of the so-called null-homotopic morphisms of complexes.

- In the second step, the morphisms from \(\Sigma \) (or more precisely their images under \(Q': \mathcal{C}(R) \to \mathcal{K}(R) \)) are made invertible. That is, we construct \(\mathcal{D}(R) \) as \(\mathcal{K}(R)[\Sigma^{-1}] \).

- The latter is more tractable since \(\Sigma \) is a multiplicative system in \(\mathcal{K}(R) \) (unlike in \(\mathcal{C}(R) \)). In other words, it allows the calculus of left and right fractions.
Calculus of left fractions

LF1 If σ, τ are composable morphisms in Σ

$$X \xrightarrow{\sigma} Y \xrightarrow{\tau} Z$$

then so is $\tau \circ \sigma$. The identity morphisms $1_X : X \rightarrow X$ belong to Σ for every object X.

LF2 Given morphisms α, σ with $\sigma \in \Sigma$

$$X \xrightarrow{\alpha} Y$$

$$\downarrow \sigma \quad \quad \quad \quad \quad \quad \downarrow \tau$$

$$Z \xrightarrow{\beta} W$$

(i.e. a “right fraction” $\alpha \cdot \sigma^{-1}$), we can form a commutative square with $\tau \in \Sigma$ (i.e. a $\alpha \cdot \sigma^{-1} = \tau^{-1} \cdot \beta$).
Calculus of left fractions

LF1 If σ, τ are composable morphisms in Σ

\[
\begin{array}{c}
X \\ \sigma
\end{array} \longrightarrow \begin{array}{c}
Y \\ \tau
\end{array} \longrightarrow \begin{array}{c}
Z
\end{array}
\]

then so is $\tau \circ \sigma$. The identity morphisms $1_X : X \longrightarrow X$ belong to Σ for every object X.

LF2 Given morphisms α, σ with $\sigma \in \Sigma$

\[
\begin{array}{c}
X \\ \sigma
\end{array} \longrightarrow \begin{array}{c}
Y \\ \tau
\end{array} \longrightarrow \begin{array}{c}
W
\end{array}
\]

(i.e. a “right fraction” $\alpha \cdot \sigma^{-1}$), we can form a commutative square with $\tau \in \Sigma$ (i.e. a $\alpha \cdot \sigma^{-1} = \tau^{-1} \cdot \beta$).
Calculus of left fractions

LF1 If σ, τ are composable morphisms in Σ

\[
\begin{array}{c}
X \xrightarrow{\sigma} Y \xrightarrow{\tau} Z
\end{array}
\]

then so is $\tau \circ \sigma$. The identity morphisms $1_X : X \rightarrow X$ belong to Σ for every object X.

LF2 Given morphisms α, σ with $\sigma \in \Sigma$

\[
\begin{array}{c}
X \xrightarrow{\alpha} Y \\
\sigma \downarrow \quad \quad \downarrow \tau \\
Z \xrightarrow{\beta} W
\end{array}
\]

(i.e. a “right fraction” $\alpha \cdot \sigma^{-1}$), we can form a commutative square with $\tau \in \Sigma$ (i.e. $\alpha \cdot \sigma^{-1} = \tau^{-1} \cdot \beta$).
Calculus of left fractions

LF1 If \(\sigma, \tau \) are composable morphisms in \(\Sigma \)

\[
\begin{array}{c}
X & \xrightarrow{\sigma} & Y & \xrightarrow{\tau} & Z \\
\end{array}
\]

then so is \(\tau \circ \sigma \). The identity morphisms \(1_X : X \to X \) belong to \(\Sigma \) for every object \(X \).

LF2 Given morphisms \(\alpha, \sigma \) with \(\sigma \in \Sigma \)

\[
\begin{array}{c}
X & \xrightarrow{\alpha} & Y \\
\sigma & \downarrow & \tau \\
Z & \xrightarrow{\beta} & W \\
\end{array}
\]

(i.e. a “right fraction” \(\alpha \cdot \sigma^{-1} \)), we can form a commutative square with \(\tau \in \Sigma \) (i.e. a \(\alpha \cdot \sigma^{-1} = \tau^{-1} \cdot \beta \)).
Calculus of left fractions

LF1 If σ, τ are composable morphisms in Σ

\[
\begin{array}{ccc}
X & \xrightarrow{\sigma} & Y \\
& \downarrow{\sigma} & \downarrow{\tau} \\
Z & \xrightarrow{\tau} & Z
\end{array}
\]

then so is $\tau \circ \sigma$. The identity morphisms $1_X : X \rightarrow X$ belong to Σ for every object X.

LF2 Given morphisms α, σ with $\sigma \in \Sigma$

\[
\begin{array}{ccc}
X & \xrightarrow{\alpha} & Y \\
\downarrow{\sigma} & & \downarrow{\tau} \\
Z & \xrightarrow{\beta} & W
\end{array}
\]

(i.e. a “right fraction” $\alpha \cdot \sigma^{-1}$), we can form a commutative square with $\tau \in \Sigma$ (i.e. $\alpha \cdot \sigma^{-1} = \tau^{-1} \cdot \beta$).
Calculus of left fractions

LF1 If σ, τ are composable morphisms in Σ

$$
\xymatrix{ X \ar[r]^-{\sigma} & Y \ar[r]^-{\tau} & Z }
$$

then so is $\tau \circ \sigma$. The identity morphisms $1_X : X \to X$ belong to Σ for every object X.

LF2 Given morphisms α, σ with $\sigma \in \Sigma$

$$
\xymatrix{ X \ar[r]^-{\alpha} \ar[d]_-{\sigma} & Y \ar[d]^-{\tau} \\
Z \ar[r]_-{\beta} & W }
$$

(i.e. a “right fraction” $\alpha \cdot \sigma^{-1}$), we can form a commutative square with $\tau \in \Sigma$ (i.e. a $\alpha \cdot \sigma^{-1} = \tau^{-1} \cdot \beta$).
LF3 Let α be a morphism. If there is $\sigma \in \Sigma$ such that

$$\xymatrix{ X \ar[r]^\sigma & Y \ar[r]^\alpha & Z \ar@{=}[l] }$$

composes to zero (i.e. α must become zero in $K(R)[\Sigma^{-1}]$), then there is $\tau \in \Sigma$ such that

$$\xymatrix{ Y \ar[r]^\alpha & Z \ar[r]^\tau & W \ar@{=}[l] }$$

composes to zero.
Let α be a morphism. If there is $\sigma \in \Sigma$ such that

$$X \xrightarrow{\sigma} Y \xrightarrow{\alpha} Z$$

composes to zero (i.e. α must become zero in $K(R)[\Sigma^{-1}]$, then there is $\tau \in \Sigma$ such that

$$Y \xrightarrow{\alpha} Z \xrightarrow{\tau} W$$

composes to zero.
Equality of fractions

Suppose we have two left fractions $\sigma_1^{-1} \cdot \alpha_1$ and $\sigma_2^{-1} \cdot \alpha_2$ between objects Z and Y:

![Diagram]

We make $\sigma_1^{-1} \cdot \alpha_1$ and $\sigma_2^{-1} \cdot \alpha_2$ equal provided that we can complete the above diagram in such a way that $\tau \in \Sigma$.
Equality of fractions

Suppose we have two left fractions $\sigma_1^{-1} \cdot \alpha_1$ and $\sigma_2^{-1} \cdot \alpha_2$ between objects Z and Y:

We make $\sigma_1^{-1} \cdot \alpha_1$ and $\sigma_2^{-1} \cdot \alpha_2$ equal provided that we can complete the above diagram in such a way that $\tau \in \Sigma$.
Composing morphisms

Suppose we have two composable fractions $\sigma_1^{-1} \cdot \alpha_1$ and $\sigma_2^{-1} \cdot \alpha_2$:

The composition is defined (using LF1) to be the fraction

$$\beta \circ \alpha_1 \quad \text{and} \quad \tau \circ \sigma_2.$$
Composing morphisms

Suppose we have two composable fractions $\sigma_1^{-1} \cdot \alpha_1$ and $\sigma_2^{-1} \cdot \alpha_2$:

```
\begin{array}{ccc}
X & \alpha_1 & U \\
\uparrow & & \downarrow \\
Y & \sigma_1 & V \\
\downarrow & & \downarrow \\
Z & \alpha_2 & W \\
\end{array}
```

The composition is defined (using LF1) to be the fraction

```
\begin{array}{ccc}
X & \beta \circ \alpha_1 & W \\
\uparrow & & \downarrow \\
W & \tau \circ \sigma_2 & Z \\
\end{array}
```
Composing morphisms

Suppose we have two composable fractions $\sigma_1^{-1} \cdot \alpha_1$ and $\sigma_2^{-1} \cdot \alpha_2$:

\[
\begin{array}{ccc}
X & \xrightarrow{\alpha_1} & U \\
\uparrow & & \downarrow \beta \\
Y & \xleftarrow{\sigma_1} & W \\
\downarrow & & \downarrow \tau \\
Z & \xrightarrow{\alpha_2} & V \\
\downarrow & & \downarrow \sigma_2 \\
& \xleftarrow{\lf_{2}} & \\
& & \end{array}
\]

The composition is defined (using \lf_1) to be the fraction

\[
\begin{array}{ccc}
X & \xrightarrow{\beta \circ \alpha_1} & W \\
\downarrow & & \downarrow \tau \circ \sigma_2 \\
& & Z. \\
& & \end{array}
\]
Construction of the derived category—summary

- $\mathcal{D}(R) = \mathcal{C}(R)[\Sigma^{-1}]$, where Σ is the class of quasi-isomorphisms.
- To understand what $\mathcal{D}(R)$ looks like, it is better to take two smaller steps:

$$
\begin{array}{ccc}
\mathcal{C}(R) & \xrightarrow{Q} & \mathcal{D}(R) \\
\text{quotient} & & \text{Ore localization} \\
\downarrow & & \downarrow \\
\mathcal{K}(R) & & \\
\end{array}
$$

- The category carries an extra important structure: It is a so-called triangulated category. As far as this talk is concerned, this feature is ruthlessly ignored!
Construction of the derived category—summary

- $D(R) = C(R)[\Sigma^{-1}]$, where Σ is the class of quasi-isomorphisms.
- To understand what $D(R)$ looks like, it is better to take two smaller steps:

$$
\begin{array}{ccc}
C(R) & \xrightarrow{Q} & D(R) \\
\downarrow \text{quotient} & & \downarrow \text{Ore localization} \\
K(R) & &
\end{array}
$$

- The category carries an extra important structure: It is a so-called triangulated category. As far as this talk is concerned, this feature is ruthlessly ignored!
Construction of the derived category—summary

- \(D(R) = C(R)[\Sigma^{-1}] \), where \(\Sigma \) is the class of quasi-isomorphisms.
- To understand what \(D(R) \) looks like, it is better to take two smaller steps:

\[
\begin{align*}
& C(R) \xrightarrow{Q} D(R) \\
\text{quotient} & \downarrow \quad \text{Ore localization} \\
& K(R)
\end{align*}
\]

- The category carries an extra important structure: It is a so-called triangulated category. As far as this talk is concerned, this feature is ruthlessly ignored!
Construction of the derived category—summary

- $\mathcal{D}(R) = \mathcal{C}(R)[\Sigma^{-1}]$, where Σ is the class of quasi-isomorphisms.
- To understand what $\mathcal{D}(R)$ looks like, it is better to take two smaller steps:

$$
\begin{array}{ccc}
\mathcal{C}(R) & \xrightarrow{Q} & \mathcal{D}(R) \\
\downarrow \text{quotient} & & \downarrow \text{Ore localization} \\
\mathcal{K}(R) & &
\end{array}
$$

- The category carries an extra important structure: It is a so-called **triangulated category**. As far as this talk is concerned, this feature is ruthlessly ignored!
Suppose again that we have a left exact functor $F : \text{Mod} R \rightarrow \text{Ab}$. If we apply F to a complex of R-modules, the result is a complex of abelian groups. That is, we naturally get a functor

$$F : \mathbf{C}(R) \rightarrow \mathbf{C}(\text{Ab}).$$

It is essentially for free to push F further to

$$F : \mathbf{K}(R) \rightarrow \mathbf{K}(\text{Ab}).$$

We encounter troubles if we wish to go one step further and construct a functor

$$\mathbf{D}(R) \rightarrow \mathbf{D}(\text{Ab}).$$

Cause: If σ is a quasi-isomorphism, $F(\sigma)$ need not be (the non-exactness of F again!)
Derived functors

- Suppose again that we have a left exact functor $F : \text{Mod} R \to \text{Ab}$. If we apply F to a complex of R-modules, the result is a complex of abelian groups. That is, we naturally get a functor
 $$F : \mathbf{C}(R) \to \mathbf{C}(\text{Ab}).$$

- It is essentially for free to push F further to
 $$F : \mathbf{K}(R) \to \mathbf{K}(\text{Ab}).$$

- We encounter troubles if we wish to go one step further and construct a functor
 $$\mathbf{D}(R) \to \mathbf{D}(\text{Ab}).$$

- Cause: If σ is a quasi-isomorphism, $F(\sigma)$ need not be (the non-exactness of F again!)
Suppose again that we have a left exact functor $F : \text{Mod} R \to \text{Ab}$. If we apply F to a complex of R-modules, the result is a complex of abelian groups. That is, we naturally get a functor

$$F : \text{C}(R) \to \text{C}(\text{Ab}).$$

It is essentially for free to push F further to

$$F : \text{K}(R) \to \text{K}(\text{Ab}).$$

We encounter troubles if we wish to go one step further and construct a functor

$$\text{D}(R) \to \text{D}(\text{Ab}).$$

Cause: If σ is a quasi-isomorphism, $F(\sigma)$ need not be (the non-exactness of F again!)
Suppose again that we have a left exact functor $F : \text{Mod} R \to \text{Ab}$. If we apply F to a complex of R-modules, the result is a complex of abelian groups. That is, we naturally get a functor

$$F : C(R) \to C(\text{Ab}).$$

It is essentially for free to push F further to

$$F : K(R) \to K(\text{Ab}).$$

We encounter troubles if we wish to go one step further and construct a functor

$$D(R) \to D(\text{Ab}).$$

Cause: If σ is a quasi-isomorphism, $F(\sigma)$ need not be (the non-exactness of F again!)
Suppose again that we have a left exact functor \(F : \text{Mod}_R \to \text{Ab} \). If we apply \(F \) to a complex of \(R \)-modules, the result is a complex of abelian groups. That is, we naturally get a functor

\[
F : \mathbf{C}(R) \to \mathbf{C}(\text{Ab}).
\]

It is essentially for free to push \(F \) further to

\[
F : \mathbf{K}(R) \to \mathbf{K}(\text{Ab}).
\]

We encounter troubles if we wish to go one step further and construct a functor

\[
\mathbf{D}(R) \to \mathbf{D}(\text{Ab}).
\]

Cause: If \(\sigma \) is a quasi-isomorphism, \(F(\sigma) \) need not be (the non-exactness of \(F \) again!)
Derived functors—continued

- Since we cannot lift F to a functor $\mathbf{D}(R) \to \mathbf{D}(\text{Ab})$ directly, we take the “best” approximation—the total right derived functor

 $$RF: \mathbf{D}(R) \longrightarrow \mathbf{D}(\text{Ab}).$$

- Given a complex $X \in \mathbf{K}(R)$, we define $RF(X)$ indirectly via

 $$\text{Hom}_{\mathbf{D}(\text{Ab})}(-, RF(X)) = \lim_{\to} \text{Hom}_{\mathbf{D}(\text{Ab})}(-, F(C)),$$

 where the colimit is indexed by the comma-category of all quasi-isomorphisms $X \xrightarrow{\sigma} C$. The functor $RF(X)$ is well defined since the comma category has a terminal object $X \xrightarrow{T} i(X)$ (a so-called K-injective resolution of X). Then in fact $RF(X) = F(i(X))$.

- Fact: $H^n \circ RF \cong R^n F$ for each $n \geq 0$. That is, the total right derived functor RF contains all information about the classical right derived functors $R^n F$!
Since we cannot lift F to a functor $\mathbf{D}(R) \to \mathbf{D}(\text{Ab})$ directly, we take the “best” approximation—the total right derived functor

$$\mathbf{RF} : \mathbf{D}(R) \to \mathbf{D}(\text{Ab}).$$

Given a complex $X \in \mathbf{K}(R)$, we define $\mathbf{RF}(X)$ indirectly via

$$\text{Hom}_{\mathbf{D}(\text{Ab})}(-, \mathbf{RF}(X)) = \lim_{\to} \text{Hom}_{\mathbf{D}(\text{Ab})}(-, F(C)),$$

where the colimit is indexed by the comma-category of all quasi-isomorphisms $X \xrightarrow{\sigma} C$. The functor $\mathbf{RF}(X)$ is well defined since the comma category has a terminal object $X \xrightarrow{\iota} i(X)$ (a so-called K-injective resolution of X). Then in fact $\mathbf{RF}(X) = F(i(X))$.

Fact: $H^n \circ \mathbf{RF} \cong \mathbf{R}^n F$ for each $n \geq 0$. That is, the total right derived functor \mathbf{RF} contains all information about the classical right derived functors $\mathbf{R}^n F$!
Derived functors—continued

- Since we cannot lift F to a functor $\mathcal{D}(R) \to \mathcal{D}(\text{Ab})$ directly, we take the “best” approximation—the total right derived functor

$$RF: \mathcal{D}(R) \longrightarrow \mathcal{D}(\text{Ab}).$$

- Given a complex $X \in \mathcal{K}(R)$, we define $RF(X)$ indirectly via

$$\text{Hom}_{\mathcal{D}(\text{Ab})}(−, RF(X)) = \lim\limits_{\to} \text{Hom}_{\mathcal{D}(\text{Ab})}(−, F(C)),$$

where the colimit is indexed by the comma-category of all quasi-isomorphisms $X \xrightarrow{\sigma} C$. The functor $RF(X)$ is well defined since the comma category has a terminal object $X \xrightarrow{\tau} i(X)$ (a so-called K-injective resolution of X). Then in fact $RF(X) = F(i(X))$.

- Fact: $H^n \circ RF \cong R^n F$ for each $n \geq 0$. That is, the total right derived functor RF contains all information about the classical right derived functors $R^n F$!
Derived categories

Derived functors—continued

- Since we cannot lift F to a functor $\mathbf{D}(R) \to \mathbf{D}(\text{Ab})$ directly, we take the “best” approximation—the total right derived functor

$$RF: \mathbf{D}(R) \longrightarrow \mathbf{D}(\text{Ab}).$$

- Given a complex $X \in \mathbf{K}(R)$, we define $RF(X)$ indirectly via

$$\text{Hom}_{\mathbf{D}(\text{Ab})}(-, RF(X)) = \lim_{\rightarrow} \text{Hom}_{\mathbf{D}(\text{Ab})}(-, F(C)),$$

where the colimit is indexed by the comma-category of all quasi-isomorphisms $X \xrightarrow{\sigma} C$. The functor $RF(X)$ is well defined since the comma category has a terminal object $X \xrightarrow{\tau} i(X)$ (a so-called K-injective resolution of X). Then in fact $RF(X) = F(i(X))$.

- Fact: $H^n \circ RF \cong R^nF$ for each $n \geq 0$. That is, the total right derived functor RF contains all information about the classical right derived functors R^nF!
Since we cannot lift F to a functor $\mathbf{D}(R) \to \mathbf{D}(\text{Ab})$ directly, we take the “best” approximation—the total right derived functor

$$RF : \mathbf{D}(R) \to \mathbf{D}(\text{Ab}).$$

Given a complex $X \in \mathbf{K}(R)$, we define $RF(X)$ indirectly via

$$\text{Hom}_{\mathbf{D}(\text{Ab})}(-, RF(X)) = \lim_{\to} \text{Hom}_{\mathbf{D}(\text{Ab})}(-, F(C)),$$

where the colimit is indexed by the comma-category of all quasi-isomorphisms $X \xrightarrow{\sigma} C$. The functor $RF(X)$ is well defined since the comma category has a terminal object $X \xrightarrow{\tau} i(X)$ (a so-called \mathbf{K}-injective resolution of X). Then in fact $RF(X) = F(i(X))$.

Fact: $H^n \circ RF \cong R^n F$ for each $n \geq 0$. That is, the total right derived functor RF contains all information about the classical right derived functors $R^n F$!
Since we cannot lift F to a functor $\mathbf{D}(R) \to \mathbf{D}(\text{Ab})$ directly, we take the “best” approximation—the total right derived functor

$$RF: \mathbf{D}(R) \to \mathbf{D}(\text{Ab}).$$

Given a complex $X \in \mathbf{K}(R)$, we define $RF(X)$ indirectly via

$$\text{Hom}_{\mathbf{D}(\text{Ab})}(-, RF(X)) = \lim_{\to} \text{Hom}_{\mathbf{D}(\text{Ab})}(-, F(C)),$$

where the colimit is indexed by the comma-category of all quasi-isomorphisms $X \xrightarrow{\sigma} C$. The functor $RF(X)$ is well defined since the comma category has a terminal object $X \xrightarrow{\tau} i(X)$ (a so-called K-injective resolution of X). Then in fact $RF(X) = F(i(X))$.

Fact: $H^n \circ RF \cong R^n F$ for each $n \geq 0$. That is, the total right derived functor RF contains all information about the classical right derived functors $R^n F$!
Outline

1. Functors from module categories
2. Derived categories
3. Sheaf cohomology
4. A view towards Grothendieck duality
Suppose M is a smooth manifold and $U \subseteq M$ be an open subset. Denote by $\mathcal{O}_M(U)$ the ring of all smooth functions $U \to \mathbb{R}$.

Given open $V \subseteq U \subseteq M$, we have the restriction homomorphism of \mathbb{R}-algebras:

$$\text{res}_V^U : \mathcal{O}_M(U) \longrightarrow \mathcal{O}_M(V), \quad f \longmapsto f|_V.$$

Fact: The manifold structure on M is completely determined by

1. the topology on M and
2. the collection $\mathcal{O}_M = (\mathcal{O}_M(U), \text{res}_V^U)$ of the \mathbb{R}-algebras $\mathcal{O}_M(U)$ together with the restriction homomorphisms res_V^U. \mathcal{O}_M is called the structure sheaf of M.

This is an alternative description of a manifold compared to giving an atlas. Especially popular in algebraic geometry.
The structure sheaf

- Suppose M is a smooth manifold and $U \subseteq M$ be an open subset. Denote by $\mathcal{O}_M(U)$ the ring of all smooth functions $U \to \mathbb{R}$.
- Given open $V \subseteq U \subseteq M$, we have the restriction homomorphism of \mathbb{R}-algebras:
 \[
 \text{res}^U_V: \mathcal{O}_M(U) \to \mathcal{O}_M(V), \quad f \mapsto f|_V.
 \]
- Fact: The manifold structure on M is completely determined by
 1. the topology on M and
 2. the collection $\mathcal{O}_M = (\mathcal{O}_M(U), \text{res}^U_V)$ of the \mathbb{R}-algebras $\mathcal{O}_M(U)$ together with the restriction homomorphisms res^U_V. \mathcal{O}_M is called the structure sheaf of M.
- This is an alternative description of a manifold compared to giving an atlas. Especially popular in algebraic geometry.
The structure sheaf

Suppose M is a smooth manifold and $U \subseteq M$ be an open subset. Denote by $\mathcal{O}_M(U)$ the ring of all smooth functions $U \to \mathbb{R}$.

Given open $V \subseteq U \subseteq M$, we have the restriction homomorphism of \mathbb{R}-algebras:

$$\text{res}_{V}^{U} : \mathcal{O}_M(U) \longrightarrow \mathcal{O}_M(V), \quad f \longmapsto f|_V.$$

Fact: The manifold structure on M is completely determined by

1. the topology on M and
2. the collection $\mathcal{O}_M = (\mathcal{O}_M(U), \text{res}_{V}^{U})$ of the \mathbb{R}-algebras $\mathcal{O}_M(U)$ together with the restriction homomorphisms res_{V}^{U}. \mathcal{O}_M is called the structure sheaf of M.

This is an alternative description of a manifold compared to giving an atlas. Especially popular in algebraic geometry.
The structure sheaf

- Suppose M is a smooth manifold and $U \subseteq M$ be an open subset. Denote by $\mathcal{O}_M(U)$ the ring of all smooth functions $U \rightarrow \mathbb{R}$.

- Given open $V \subseteq U \subseteq M$, we have the restriction homomorphism of \mathbb{R}-algebras:

$$\text{res}_V^U : \mathcal{O}_M(U) \rightarrow \mathcal{O}_M(V), \quad f \mapsto f|_V.$$

- Fact: The manifold structure on M is completely determined by

 1. the topology on M and
 2. the collection $\mathcal{O}_M = (\mathcal{O}_M(U), \text{res}_V^U)$ of the \mathbb{R}-algebras $\mathcal{O}_M(U)$ together with the restriction homomorphisms res_V^U. \mathcal{O}_M is called the structure sheaf of M.

- This is an alternative description of a manifold compared to giving an atlas. Especially popular in algebraic geometry.
Suppose M is a smooth manifold and $U \subseteq M$ be an open subset. Denote by $\mathcal{O}_M(U)$ the ring of all smooth functions $U \to \mathbb{R}$.

Given open $V \subseteq U \subseteq M$, we have the restriction homomorphism of \mathbb{R}-algebras:

$$\text{res}^U_V: \mathcal{O}_M(U) \to \mathcal{O}_M(V), \quad f \mapsto f|_V.$$

Fact: The manifold structure on M is completely determined by

1. the topology on M and
2. the collection $\mathcal{O}_M = (\mathcal{O}_M(U), \text{res}^U_V)$ of the \mathbb{R}-algebras $\mathcal{O}_M(U)$ together with the restriction homomorphisms res^U_V. \mathcal{O}_M is called the structure sheaf of M.

This is an alternative description of a manifold compared to giving an atlas. Especially popular in algebraic geometry.
Suppose M is a smooth manifold and $U \subseteq M$ be an open subset. Denote by $\mathcal{O}_M(U)$ the ring of all smooth functions $U \to \mathbb{R}$.

Given open $V \subseteq U \subseteq M$, we have the restriction homomorphism of \mathbb{R}-algebras:

$$\text{res}^U_V : \mathcal{O}_M(U) \longrightarrow \mathcal{O}_M(V), \quad f \mapsto f|_V.$$

Fact: The manifold structure on M is completely determined by

1. the topology on M and
2. the collection $\mathcal{O}_M = (\mathcal{O}_M(U), \text{res}^U_V)$ of the \mathbb{R}-algebras $\mathcal{O}_M(U)$ together with the restriction homomorphisms res^U_V. \mathcal{O}_M is called the structure sheaf of M.

This is an alternative description of a manifold compared to giving an atlas. Especially popular in algebraic geometry.
Vector bundles

- A vector bundle over M is a surjective morphism of manifolds $\pi : E \to M$ for which there is $n \geq 0$ and an open cover $M = \bigcup_i U_i$ such that for every i:

$$
\begin{array}{ccc}
\pi^{-1}(U_i) & \sim & U_i \times \mathbb{R}^n \\
\pi|_{U_i} & \downarrow & \text{proj.} \\
U_i & \downarrow &
\end{array}
$$

- Given $U \subseteq M$ open, denote by

$$
\mathcal{E}(U) = \{ s : U \to \pi^{-1}(U) \mid \pi \circ s = 1_U \},
$$

the collection of sections over the set U. This is naturally an $\mathcal{O}_M(U)$-module, and it is free if $U = U_i$ for some i.

Jan Šťovíček (Charles University)
Vector bundles

- A vector bundle over M is a surjective morphism of manifolds $\pi : E \rightarrow M$ for which there is $n \geq 0$ and an open cover $M = \bigcup_i U_i$ such that for every i:

\[
\pi^{-1}(U_i) \sim U_i \times \mathbb{R}^n
\]

\[
\pi|_{U_i} \quad \text{proj.}
\]

- Given $U \subseteq M$ open, denote by

\[
\mathcal{E}(U) = \{ s : U \rightarrow \pi^{-1}(U) \mid \pi \circ s = 1_U \},
\]

the collection of sections over the set U. This is naturally an $\mathcal{O}_M(U)$-module, and it is free if $U = U_i$ for some i.

Vector bundles

- A vector bundle over M is a surjective morphism of manifolds $\pi: E \to M$ for which there is $n \geq 0$ and an open cover $M = \bigcup_i U_i$ such that for every i:

$$\pi^{-1}(U_i) \sim U_i \times \mathbb{R}^n$$

- Given $U \subseteq M$ open, denote by

$$\mathcal{E}(U) = \{s: U \to \pi^{-1}(U) \mid \pi \circ s = 1_U\},$$

the collection of sections over the set U. This is naturally an $\mathcal{O}_M(U)$-module, and it is free if $U = U_i$ for some i.

Jan Šťovíček (Charles University)

Derived categories

October 21, 2011 21 / 28
Starting with a vector bundle $\pi : E \to M$, we obtain the following:

1. For each open $U \subseteq M$ an $\mathcal{O}_M(U)$-module $\mathcal{E}(U)$ of sections over U;
2. For each open $V \subseteq U \subseteq M$ the restriction maps $\text{res}^U_V : \mathcal{E}(U) \to \mathcal{E}(V), \ s \mapsto s\big|_V$
 compatible with the module structure;
3. The so-called sheaf axiom holds: a section over an open set can be glued together from sections over smaller open sets;
4. Locally, $\mathcal{E}(U)$ is a free module of a fixed finite rank.

Fact: 1 and 2 determine the vector bundle structure of $\pi : E \to M$.

Collections $\mathcal{E} = (\mathcal{E}(U), \text{res}^U_V)$ satisfying 1–3 are called sheaves of \mathcal{O}_M-modules. In particular, vector bundles can be viewed as special sheaves of \mathcal{O}_M-modules.
Sheaf cohomology

Vector bundles–continued

Starting with a vector bundle $\pi: E \to M$, we obtain the following:

1. For each open $U \subseteq M$ an $\mathcal{O}_M(U)$-module $\mathcal{E}(U)$ of sections over U;
2. For each open $V \subseteq U \subseteq M$ the restriction maps
 \[\text{res}_V^U: \mathcal{E}(U) \to \mathcal{E}(V), \quad s \mapsto s|_V \]
 compatible with the module structure;
3. The so-called sheaf axiom holds: a section over an open set can be glued together from sections over smaller open sets;
4. Locally, $\mathcal{E}(U)$ is a free module of a fixed finite rank.

Fact: 1 and 2 determine the vector bundle structure of $\pi: E \to M$.

Collections $\mathcal{E} = (\mathcal{E}(U), \text{res}_V^U)$ satisfying 1–3 are called sheaves of \mathcal{O}_M-modules. In particular, vector bundles can be viewed as special sheaves of \mathcal{O}_M-modules.
Starting with a vector bundle $\pi : E \to M$, we obtain the following:

1. For each open $U \subseteq M$ an $O_M(U)$-module $\mathcal{E}(U)$ of sections over U;
2. For each open $V \subseteq U \subseteq M$ the restriction maps
 $$\text{res}_V^U : \mathcal{E}(U) \to \mathcal{E}(V), \quad s \mapsto s|_V$$
 compatible with the module structure;
3. The so-called sheaf axiom holds: a section over an open set can be glued together from sections over smaller open sets;
4. Locally, $\mathcal{E}(U)$ is a free module of a fixed finite rank.

Fact: 1 and 2 determine the vector bundle structure of $\pi : E \to M$.

Collections $\mathcal{E} = (\mathcal{E}(U), \text{res}_V^U)$ satisfying 1–3 are called sheaves of O_M-modules. In particular, vector bundles can be viewed as special sheaves of O_M-modules.
Sheaf cohomology

Vector bundles–continued

- Starting with a vector bundle $\pi: E \to M$, we obtain the following:
 1. for each open $U \subseteq M$ an $\mathcal{O}_M(U)$-module $\mathcal{E}(U)$ of sections over U;
 2. for each open $V \subseteq U \subseteq M$ the restriction maps $\text{res}^U_V: \mathcal{E}(U) \to \mathcal{E}(V)$, $s \mapsto s|_V$

compatible with the module structure;

- the so-called sheaf axiom holds: a section over an open set can be glued together from sections over smaller open sets;

- locally, $\mathcal{E}(U)$ is a free module of a fixed finite rank.

- Fact: 1 and 2 determine the vector bundle structure of $\pi: E \to M$.

- Collections $\mathcal{E} = (\mathcal{E}(U), \text{res}^U_V)$ satisfying 1–3 are called sheaves of \mathcal{O}_M-modules. In particular, vector bundles can be viewed as special sheaves of \mathcal{O}_M-modules.
Starting with a vector bundle $\pi : E \to M$, we obtain the following:

1. For each open $U \subseteq M$ an $\mathcal{O}_M(U)$-module $\mathcal{E}(U)$ of sections over U;
2. For each open $V \subseteq U \subseteq M$ the restriction maps
 $$\text{res}^U_V : \mathcal{E}(U) \to \mathcal{E}(V), \quad s \mapsto s|_V$$
 compatible with the module structure;
3. The so-called sheaf axiom holds: a section over an open set can be glued together from sections over smaller open sets;
4. Locally, $\mathcal{E}(U)$ is a free module of a fixed finite rank.

Fact: 1 and 2 determine the vector bundle structure of $\pi : E \to M$.

Collections $\mathcal{E} = (\mathcal{E}(U), \text{res}^U_V)$ satisfying 1–3 are called sheaves of \mathcal{O}_M-modules. In particular, vector bundles can be viewed as special sheaves of \mathcal{O}_M-modules.
Vector bundles–continued

Starting with a vector bundle \(\pi : E \to M \), we obtain the following:

1. for each open \(U \subseteq M \) an \(\mathcal{O}_M(U) \)-module \(\mathcal{E}(U) \) of sections over \(U \);
2. for each open \(V \subseteq U \subseteq M \) the restriction maps

\[
\text{res}_V^U : \mathcal{E}(U) \to \mathcal{E}(V), \quad s \mapsto s|_V
\]

compatible with the module structure;
3. the so-called sheaf axiom holds: a section over an open set can be glued together from sections over smaller open sets;
4. locally, \(\mathcal{E}(U) \) is a free module of a fixed finite rank.

Fact: 1 and 2 determine the vector bundle structure of \(\pi : E \to M \).

Collections \(\mathcal{E} = (\mathcal{E}(U), \text{res}_V^U) \) satisfying 1–3 are called sheaves of \(\mathcal{O}_M \)-modules. In particular, vector bundles can be viewed as special sheaves of \(\mathcal{O}_M \)-modules.
Starting with a vector bundle $\pi : E \to M$, we obtain the following:

1. for each open $U \subseteq M$ an $\mathcal{O}_M(U)$-module $\mathcal{E}(U)$ of sections over U;
2. for each open $V \subseteq U \subseteq M$ the restriction maps
 \[\text{res}^U_V : \mathcal{E}(U) \to \mathcal{E}(V), \quad s \mapsto s|_V \]
 compatible with the module structure;
3. the so-called sheaf axiom holds: a section over an open set can be glued together from sections over smaller open sets;
4. locally, $\mathcal{E}(U)$ is a free module of a fixed finite rank.

Fact: 1 and 2 determine the vector bundle structure of $\pi : E \to M$.

Collections $\mathcal{E} = (\mathcal{E}(U), \text{res}^U_V)$ satisfying 1–3 are called sheaves of \mathcal{O}_M-modules. In particular, vector bundles can be viewed as special sheaves of \mathcal{O}_M-modules.
Sheaves of \mathcal{O}_M-modules

- The category of all sheaves of \mathcal{O}_M-modules is denoted by $\text{Mod}\mathcal{O}_M$.
- It is an abelian category—i.e. the notion of a short exact sequence makes sense and it is well-behaved. In fact more is known: it is a so-called Grothendieck category.
- We can form the derived category $\mathbf{D}(\mathcal{O}_M)$ as for usual modules over rings, and we can construct total derived functors of functors $F : \text{Mod}\mathcal{O}_M \to \text{Ab}$.
- The same constructions can be done for complex analytic manifolds and algebraic varieties.
The category of all sheaves of \mathcal{O}_M-modules is denoted by $\text{Mod}\mathcal{O}_M$.

It is an abelian category—i.e. the notion of a short exact sequence makes sense and it is well-behaved. In fact more is known: it is a so-called Grothendieck category.

We can form the derived category $\mathbf{D}(\mathcal{O}_M)$ as for usual modules over rings, and we can construct total derived functors of functors $F : \text{Mod}\mathcal{O}_M \to \text{Ab}$.

The same constructions can be done for complex analytic manifolds and algebraic varieties.
Sheaves of \mathcal{O}_M-modules

- The category of all sheaves of \mathcal{O}_M-modules is denoted by $\text{Mod}\mathcal{O}_M$.
- It is an abelian category—i.e. the notion of a short exact sequence makes sense and it is well-behaved. In fact more is known: it is a so-called Grothendieck category.
- We can form the derived category $\mathcal{D}(\mathcal{O}_M)$ as for usual modules over rings, and we can construct total derived functors of functors $F : \text{Mod}\mathcal{O}_M \rightarrow \text{Ab}$.
- The same constructions can be done for complex analytic manifolds and algebraic varieties.
The category of all sheaves of \mathcal{O}_M-modules is denoted by $\text{Mod}\mathcal{O}_M$.

It is an abelian category—i.e. the notion of a short exact sequence makes sense and it is well-behaved. In fact more is known: it is a so-called Grothendieck category.

We can form the derived category $\mathbf{D}(\mathcal{O}_M)$ as for usual modules over rings, and we can construct total derived functors of functors $F : \text{Mod}\mathcal{O}_M \rightarrow \text{Ab}$.

The same constructions can be done for complex analytic manifolds and algebraic varieties.
Sheaf cohomology

- There is a special functor for which the derived functor is particularly interesting: the global section functor:

\[\Gamma_M : \text{Mod}\mathcal{O}_M \to \text{Ab}, \quad \mathcal{E} \mapsto \mathcal{E}(M). \]

- Observation \(\Gamma = \text{Hom}_{\mathcal{O}_M}(\mathcal{O}_M, -) \). In particular, \(\Gamma \) is left exact, but need not be exact.

- Sheaf cohomology functors \(H^n_M : \text{Mod}\mathcal{O}_M \to \text{Ab} \) are defined as the right derived functors \(R^n\Gamma_M \). They tell us something about the global geometry of \(M \).

- With our machinery, we are now able to construct the total derived functor

\[R\Gamma_M : \mathcal{D}(\mathcal{O}_M) \to \mathcal{D}(\text{Ab}). \]
Sheaf cohomology

There is a special functor for which the derived functor is particularly interesting: the global section functor:

\[\Gamma_M : \text{Mod}\mathcal{O}_M \to \text{Ab}, \quad \mathcal{E} \mapsto \mathcal{E}(M). \]

Observation \(\Gamma = \text{Hom}_{\mathcal{O}_M}(\mathcal{O}_M, -) \). In particular, \(\Gamma \) is left exact, but need not be exact.

Sheaf cohomology functors \(H^n_M : \text{Mod}\mathcal{O}_M \to \text{Ab} \) are defined as the right derived functors \(R^n\Gamma_M \). They tell us something about the global geometry of \(M \).

With our machinery, we are now able to construct the total derived functor

\[R\Gamma_M : \mathcal{D}(\mathcal{O}_M) \to \mathcal{D}(\text{Ab}). \]
Sheaf cohomology

- There is a special functor for which the derived functor is particularly interesting: the global section functor:

$$\Gamma_M : \text{Mod}\mathcal{O}_M \to \text{Ab}, \quad \mathcal{E} \mapsto \mathcal{E}(M).$$

- Observation $\Gamma = \text{Hom}_{\mathcal{O}_M}(\mathcal{O}_M, -)$. In particular, Γ is left exact, but need not be exact.

- Sheaf cohomology functors $H^n_M : \text{Mod}\mathcal{O}_M \to \text{Ab}$ are defined as the right derived functors $R^n\Gamma_M$. They tell us something about the global geometry of M.

- With our machinery, we are now able to construct the total derived functor

$$R\Gamma_M : \mathcal{D}(\mathcal{O}_M) \to \mathcal{D}(\text{Ab}).$$
Sheaf cohomology

- There is a special functor for which the derived functor is particularly interesting: the global section functor:

\[\Gamma_M : \text{Mod}\mathcal{O}_M \to \text{Ab}, \quad \mathcal{E} \mapsto \mathcal{E}(M). \]

- Observation $\Gamma = \text{Hom}_{\mathcal{O}_M}(\mathcal{O}_M, -)$. In particular, Γ is left exact, but need not be exact.

- Sheaf cohomology functors $H^n_M : \text{Mod}\mathcal{O}_M \to \text{Ab}$ are defined as the right derived functors $R^n\Gamma_M$. They tell us something about the global geometry of M.

- With our machinery, we are now able to construct the total derived functor

\[R\Gamma_M : \mathcal{D}(\mathcal{O}_M) \to \mathcal{D}(\text{Ab}). \]
Sheaf cohomology

There is a special functor for which the derived functor is particularly interesting: the global section functor:

$$\Gamma_M : \text{Mod} \mathcal{O}_M \rightarrow \text{Ab}, \quad \mathcal{E} \mapsto \mathcal{E}(M).$$

Observation $\Gamma = \text{Hom}_{\mathcal{O}_M}(\mathcal{O}_M, -)$. In particular, Γ is left exact, but need not be exact.

Sheaf cohomology functors $H^n_M : \text{Mod} \mathcal{O}_M \rightarrow \text{Ab}$ are defined as the right derived functors $R^n\Gamma_M$. They tell us something about the global geometry of M.

With our machinery, we are now able to construct the total derived functor

$$R\Gamma_M : D(\mathcal{O}_M) \rightarrow D(\text{Ab}).$$
Outline

1. Functors from module categories
2. Derived categories
3. Sheaf cohomology
4. A view towards Grothendieck duality
Theorem (Serre 1955)

Let \(M \) be a compact connected complex manifold of dimension \(d \geq 0 \). Let \(\Omega^d_M \) be the line bundle of holomorphic \(d \)-forms, and given a vector bundle \(\mathcal{E} \in \text{Mod}\mathcal{O}_M \), denote \(\mathcal{E}^* = \text{Hom}(\mathcal{E}, \Omega^d_M) \).

Then for every \(i \) in the range \(0 \leq i \leq d \), there is a natural isomorphism

\[
H^i_M(\mathcal{E})^* \cong H^{d-i}_M(\mathcal{E}^*).
\]
The Serre duality theorem

Theorem (Serre 1955)

Let M be a compact connected complex manifold of dimension $d \geq 0$. Let Ω^d_M be the line bundle of holomorphic d-forms, and given a vector bundle $\mathcal{E} \in \text{Mod} \mathcal{O}_M$, denote $\mathcal{E}^* = \mathcal{H}om(\mathcal{E}, \Omega^d_M)$. Then for every i in the range $0 \leq i \leq d$, there is a natural isomorphism

$$H^i_M(\mathcal{E})^* \cong H^{d-i}_M(\mathcal{E}^*).$$
Theorem (reformulation, Grothendieck)

Consider the global section functor as a functor

\[\Gamma_M : \text{Mod}\mathcal{O}_M \longrightarrow \text{Mod}\mathbb{C}. \]

Then a restriction of \(R\Gamma_M \) to a suitable subcategory of \(D(\mathcal{O}_M) \), which contains all vector bundles, has a right adjoint.

Remark

\(\Gamma_M \) is a left exact functor, not right exact. Therefore, \(\Gamma_M \) definitely cannot have a right adjoint, but \(R\Gamma_M \) has!
Grothendieck duality

Theorem (reformulation, Grothendieck)

Consider the global section functor as a functor

\[\Gamma_M : \text{Mod}\mathcal{O}_M \longrightarrow \text{Mod}\mathbb{C}. \]

Then a restriction of \(R\Gamma_M \) to a suitable subcategory of \(D(\mathcal{O}_M) \), which contains all vector bundles, has a right adjoint.

Remark

\(\Gamma_M \) is a left exact functor, not right exact. Therefore, \(\Gamma_M \) definitely cannot have a right adjoint, but \(R\Gamma_M \) has!
Grothendieck duality—continued

- Given a morphism of manifolds $f : M \to N$, there is standard pushforward functor
 $$f_* : \text{Mod}O_M \longrightarrow \text{Mod}O_N$$

- If $N = \{ \star \}$ is a single point, then f_* equals
 $$\Gamma_M : \text{Mod}O_M \longrightarrow \text{Mod}\mathbb{C} = \text{Mod}O_N$$
 from the previous slide.

- The Grothendieck duality theorem says that in algebraic geometry, some restriction of Rf_* has a right adjoint in much broader generality that for $N = \{ \star \}$.
Grothendieck duality—continued

- Given a morphism of manifolds $f: M \to N$, there is standard pushforward functor
 \[f_*: \text{Mod} \mathcal{O}_M \to \text{Mod} \mathcal{O}_N \]

- If $N = \{ \star \}$ is a single point, then f_* equals
 \[\Gamma_M: \text{Mod} \mathcal{O}_M \to \text{Mod} \mathcal{C} = \text{Mod} \mathcal{O}_N \]
 from the previous slide.

- The Grothendieck duality theorem says that in algebraic geometry, some restriction of Rf_* has a right adjoint in much broader generality that for $N = \{ \star \}$.

Given a morphism of manifolds $f: M \rightarrow N$, there is standard pushforward functor

$$f_*: \text{Mod} \mathcal{O}_M \longrightarrow \text{Mod} \mathcal{O}_N$$

If $N = \{\star\}$ is a single point, then f_* equals

$$\Gamma_M: \text{Mod} \mathcal{O}_M \longrightarrow \text{Mod} \mathbb{C} = \text{Mod} \mathcal{O}_N$$

from the previous slide.

The Grothendieck duality theorem says that in algebraic geometry, some restriction of $\mathbb{R}f_*$ has a right adjoint in much broader generality that for $N = \{\star\}$.

Grothendieck duality—continued

- Given a morphism of manifolds $f : M \to N$, there is standard pushforward functor

 $$f_* : \text{Mod}\mathcal{O}_M \to \text{Mod}\mathcal{O}_N$$

- If $N = \{\star\}$ is a single point, then f_* equals

 $$\Gamma_M : \text{Mod}\mathcal{O}_M \to \text{Mod}\mathcal{C} = \text{Mod}\mathcal{O}_N$$

 from the previous slide.

- The Grothendieck duality theorem says that in algebraic geometry, some restriction of Rf_* has a right adjoint in much broader generality that for $N = \{\star\}$.