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Outline

@ Functors from module categories
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Rings and modules

o Let (R,+,—,0,-,1) be a commutative ring and let ModR be the
category of right R-modules.
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Functors from module categories

Rings and modules

o Let (R,+,—,0,-,1) be a commutative ring and let ModR be the
category of right R-modules.

@ Examples to keep in mind in this talk: M a manifold/alg. variety over
a field k, R the ring of all smooth/holomorphic/polynomial functions

f'

@ R-modules can encode among others vector bundles over M.
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Rings and modules

o Let (R,+,—,0,-,1) be a commutative ring and let ModR be the
category of right R-modules.

@ Examples to keep in mind in this talk: M a manifold/alg. variety over
a field k, R the ring of all smooth/holomorphic/polynomial functions

f'

@ R-modules can encode among others vector bundles over M. More
details will follow
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Non-exactness of Hom functors

@ Given any module X, the assignment
Y € ModR +—— Homg(X,Y)

gives a functor
Homg(X,—): ModR — Ab
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Non-exactness of Hom functors

@ Given any module X, the assignment
Y € ModR +—— Homg(X,Y)

gives a functor
Homg(X,—): ModR — Ab

@ This functor is left-exact, i.e. given a short exact sequence
0—K—Y —C—0
of modules, we obtain an exact sequence of groups

0 — Homg(X, K) — Homg(X,Y) — Homg(X, C)
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Non-exactness of Hom functors

@ Given any module X, the assignment
Y € ModR +—— Homg(X,Y)

gives a functor
Homg(X,—): ModR — Ab

@ This functor is left-exact, i.e. given a short exact sequence
0—K—Y —C—0
of modules, we obtain an exact sequence of groups
0 — Homg(X, K) — Homg(X,Y) — Homg(X,C) — x
@ What should be there instead of * 7
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Derived functors

@ Classical answer: derived functors.
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Derived functors
@ Classical answer: derived functors.
@ Given a left exact functor
F: ModR — Ab,

(e.g. F = Homg(X,—)), there is a canonical way to produce a series
of functors
R'F,R*F,R3F,...: ModR — Ab

(the right derived functors of F)
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Derived functors

@ Classical answer: derived functors.
@ Given a left exact functor

F: ModR — Ab,

(e.g. F = Homg(X,—)), there is a canonical way to produce a series

of functors
R'F,R*F,R3F,...: ModR — Ab

(the right derived functors of F) such that starting with a short exact
sequence of R-modules

0—K—>Y—C—0,
we obtain a natural long exact sequence
0 — F(K) — F(Y) — F(C) — R'F(K) — R'F(Y) —
— R'F(C) — R?F(K) — R?F(Y) — R?F(C) — -
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Outline

© Derived categories
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Motivation

@ The derived category D(R) of the module category ModR provides a
flexible language for homological algebra and the right framework for
working with derived functors.
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Motivation

@ The derived category D(R) of the module category ModR provides a
flexible language for homological algebra and the right framework for
working with derived functors.

@ It is a complicated object, though. It contains infinitely many copies
of ModR as full subcategories:
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Construction of the derived category

@ We start the the category C(R) of cochain complexes over ModR.
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Construction of the derived category

@ We start the the category C(R) of cochain complexes over ModR.

An object X of C(R) is a diagram of modules

ot a° ot

L x-l X0 X1

such that 909 = 0.
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Derived categories

Construction of the derived category

@ We start the the category C(R) of cochain complexes over ModR.

An object X of C(R) is a diagram of modules
o1 o9

o X1 X0 X1 X2 —

such that 909 = 0.

@ Morphisms f: X — Y in C(R) are defined in the obvious way as a
commutative diagrams

7]

A ; Xfl XO Xl X2 s
oLl ]
SENEVES SNV AN VE DL Ve

Jan Stovitek (Charles University) Derived categories October 21, 2011 8 /28



Construction of the derived category

@ We start the the category C(R) of cochain complexes over ModR.
An object X of C(R) is a diagram of modules

ot a° ot

o X1 X0 X1 X2 —
such that 00 9 = 0.
@ Morphisms f: X — Y in C(R) are defined in the obvious way as a

commutative diagrams

7]

o X! X0 X1 ) G
oLl el el
RENEEVES S ANNG V(L AN VE L V2

e Cohomology modules: H"(X) = Kerd"/Im 9"~ for an integer n.
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Construction of the derived category

@ We start the the category C(R) of cochain complexes over ModR.
An object X of C(R) is a diagram of modules

o1 0 ot
C— X1 X0 X1 X2 — .

such that 909 = 0.

@ Morphisms f: X — Y in C(R) are defined in the obvious way as a
commutative diagrams

7]

o X! X0 X1 ) G
oLl el el
RENEEVES S ANNG V(L AN VE L V2

e Cohomology modules: H"(X) = Kerd"/Im 9"~ for an integer n.
This is in fact again a functor, H": C(R) — ModR.
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Construction of the derived category—continued

@ The point: We are interested in the cohomology of complexes rather
then in the complexes themselves.
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Construction of the derived category—continued

@ The point: We are interested in the cohomology of complexes rather
then in the complexes themselves.

@ Thatis, if f: X — Y is a homomorphisms of complexes such that
H"(f): H"(X) — H"(Y)

is an isomorphism for all n € Z, then f morally should be an
isomorphism.
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Construction of the derived category—continued

@ The point: We are interested in the cohomology of complexes rather
then in the complexes themselves.

@ Thatis, if f: X — Y is a homomorphisms of complexes such that
H"(f): H"(X) — H"(Y)

is an isomorphism for all n € Z, then f morally should be an
isomorphism. Such morphisms are called quasi-isomorphisms.
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Derived categories

Construction of the derived category—continued

@ The point: We are interested in the cohomology of complexes rather
then in the complexes themselves.

@ Thatis, if f: X — Y is a homomorphisms of complexes such that
H"(f): H"(X) — H"(Y)

is an isomorphism for all n € Z, then f morally should be an
isomorphism. Such morphisms are called quasi-isomorphisms.

@ Such f's are ubiquitous, we have for example for R = Z:

0 z T Z 0
proj.J{
> 0 7/ mZ. 0
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Construction of the derived category—continued

@ To summarize so far: We have the category C(R) of cochain
complexes of R-modules and the class ¥ of all quasi-morphisms. We
consider quasi-isomorphic complexes as “the same”.
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@ To summarize so far: We have the category C(R) of cochain
complexes of R-modules and the class ¥ of all quasi-morphisms. We
consider quasi-isomorphic complexes as “the same”.

@ The brutal step: We force the quasi-isomorphisms to become
isomorphisms.
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Construction of the derived category—continued

@ To summarize so far: We have the category C(R) of cochain
complexes of R-modules and the class ¥ of all quasi-morphisms. We
consider quasi-isomorphic complexes as “the same”.

@ The brutal step: We force the quasi-isomorphisms to become
isomorphisms. That is, we formally add an inverse to every o € ¥.

@ Up to some inessential set-theoretical annoyances, one can always do
this.
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Derived categories

Construction of the derived category—continued

@ To summarize so far: We have the category C(R) of cochain
complexes of R-modules and the class ¥ of all quasi-morphisms. We
consider quasi-isomorphic complexes as “the same”.

@ The brutal step: We force the quasi-isomorphisms to become
isomorphisms. That is, we formally add an inverse to every o € ¥.
@ Up to some inessential set-theoretical annoyances, one can always do

this. The result is by definition the derived category
D(R) = C(R)[Z'].
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Construction of the derived category—continued

@ To summarize so far: We have the category C(R) of cochain
complexes of R-modules and the class ¥ of all quasi-morphisms. We
consider quasi-isomorphic complexes as “the same”.

@ The brutal step: We force the quasi-isomorphisms to become
isomorphisms. That is, we formally add an inverse to every o € ¥.

@ Up to some inessential set-theoretical annoyances, one can always do
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Construction of the derived category—continued

@ To summarize so far: We have the category C(R) of cochain
complexes of R-modules and the class ¥ of all quasi-morphisms. We
consider quasi-isomorphic complexes as “the same”.

@ The brutal step: We force the quasi-isomorphisms to become
isomorphisms. That is, we formally add an inverse to every o € ¥.

@ Up to some inessential set-theoretical annoyances, one can always do
this. The result is by definition the derived category
D(R) = C(R)[Z!]. It comes together with the canonical
“localization” functor

Q: C(R) — D(R).
Q sends every o € ¥ to an isomorphism and it is a universal functor

with this property.
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Construction of the derived category—continued

@ To summarize so far: We have the category C(R) of cochain
complexes of R-modules and the class ¥ of all quasi-morphisms. We
consider quasi-isomorphic complexes as “the same”.

@ The brutal step: We force the quasi-isomorphisms to become
isomorphisms. That is, we formally add an inverse to every o € ¥.

@ Up to some inessential set-theoretical annoyances, one can always do
this. The result is by definition the derived category
D(R) = C(R)[Z!]. It comes together with the canonical
“localization” functor

Q: C(R) — D(R).

Q sends every o € ¥ to an isomorphism and it is a universal functor
with this property.
@ The hard part is to understand the category we get.
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Taking smaller steps

@ We shall perform the passage from C(R) to D(R) in two smaller
steps.
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Taking smaller steps

@ We shall perform the passage from C(R) to D(R) in two smaller
steps.

@ Making a morphism invertible can cause another morphism to become
zero (if coaw = 0, then « vanishes after making o invertible).
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Derived categories

Taking smaller steps

@ We shall perform the passage from C(R) to D(R) in two smaller
steps.

@ Making a morphism invertible can cause another morphism to become
zero (if coaw = 0, then « vanishes after making o invertible).

o First we take the quotient category K(R) = C(R)/Z, where Z is a

two-sided ideal of some (not all) morphisms which must vanish under
Q: C(R) — D(R).
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Taking smaller steps

@ We shall perform the passage from C(R) to D(R) in two smaller
steps.

@ Making a morphism invertible can cause another morphism to become
zero (if coaw = 0, then « vanishes after making o invertible).

o First we take the quotient category K(R) = C(R)/Z, where Z is a
two-sided ideal of some (not all) morphisms which must vanish under
Q: C(R) — D(R). Z is the class of the so-called null-homotopic
morphisms of complexes.

@ In the second step, the morphisms from X (or more precisely their

images under Q": C(R) — K(R)) are made invertible. That is, we
construct D(R) as K(R)[X1].

Jan Stovitek (Charles University) Derived categories October 21, 2011 11 /28



Taking smaller steps

@ We shall perform the passage from C(R) to D(R) in two smaller
steps.

@ Making a morphism invertible can cause another morphism to become
zero (if coaw = 0, then « vanishes after making o invertible).

o First we take the quotient category K(R) = C(R)/Z, where Z is a
two-sided ideal of some (not all) morphisms which must vanish under
Q: C(R) — D(R). Z is the class of the so-called null-homotopic
morphisms of complexes.

@ In the second step, the morphisms from X (or more precisely their
images under Q": C(R) — K(R)) are made invertible. That is, we
construct D(R) as K(R)[X1].

@ The latter is more tractable since X is a multiplicative system in

K(R) (unlike in C(R)). In other words, it allows the calculus of left
and right fractions.
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Calculus of left fractions

LF1 If o, 7 are composable morphisms in X

X—7r—y—"-7

then so is T o 0.
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Calculus of left fractions

LF1 If o, 7 are composable morphisms in X

X—7r—y—"-7

then so is 7 o 0. The identity morphisms 1x: X — X belong to -

for every object X.
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Calculus of left fractions

LF1 If o, 7 are composable morphisms in X
X——Y——Z

then so is 7 o 0. The identity morphisms 1x: X — X belong to -
for every object X.

LF2 Given morphisms «, ¢ with 0 € ¥
X——=Y

d

Z
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Calculus of left fractions

LF1 If o, 7 are composable morphisms in X

X—7r—y—"-7

then so is 7 o 0. The identity morphisms 1x: X — X belong to -
for every object X.

LF2 Given morphisms «, ¢ with 0 € ¥
X——=Y

d

Z

(i.e. a “right fraction” a - o~ 1),
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Derived categories

Calculus of left fractions

LF1 If o, 7 are composable morphisms in X
X——Y——Z

then so is 7 o 0. The identity morphisms 1x: X — X belong to -
for every object X.

LF2 Given morphisms «, ¢ with 0 € ¥
X——=Y
Zi}ﬁ w

(i.e. a “right fraction” o -o~1), we can form a commutative square
with 7 € X
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Derived categories

Calculus of left fractions

LF1 If o, 7 are composable morphisms in X
X——Y——Z

then so is 7 o 0. The identity morphisms 1x: X — X belong to -
for every object X.

LF2 Given morphisms «, ¢ with 0 € ¥
X——=Y
Z—W
(i.e. a “right fraction” o -o~1), we can form a commutative square

with 7€ % (ie. aa-ol=771.p).
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Calculus of left fractions—continued

LF3 Let o be a morphism. If there is o € ¥ such that

X—T1—-y—"2-7

composes to zero (i.e. a must become zero in K(R)[Z ],
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Calculus of left fractions—continued

LF3 Let o be a morphism. If there is o € ¥ such that

X—T1—-y—"2-7

composes to zero (i.e. & must become zero in K(R)[Z '], then there
is 7 € X such that

Yy —~—7-—"-W

composes to zero.
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Equality of fractions

1

Suppose we have two left fractions o171 - a1 and o271 - a» between

objects Z and Y:

X1
y4 Y
x %
X2
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Equality of fractions

1

Suppose we have two left fractions o171 - a1 and o271 - a» between

objects Z and Y:
AN

Z—W——-Y

N4

X2

1 1

We make 017" - a1 and 0o " - a» equal provided that we can complete the
above diagram in such a way that 7 € ¥.
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Composing morphisms

1 1

Suppose we have two composable fractions 017" - a3 and 027" - ap:

V) %
NG/
X Y Z
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Derived categories
Composing morphisms

1 1

Suppose we have two composable fractions 017" - a3 and 027" - ap:

/\
/\/\
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Derived categories
Composing morphisms

1 1

Suppose we have two composable fractions 017" - a3 and 027" - ap:

/\
/\/\

The composition is defined (using LF1) to be the fraction

w
ﬂOV &02
X Z.
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Construction of the derived category—summary

e D(R) = C(R)[Z '], where X is the class of quasi-isomorphisms.
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Construction of the derived category—summary

e D(R) = C(R)[Z '], where X is the class of quasi-isomorphisms.

@ To understand what D(R) looks like, it is better to take two smaller
steps:

— = . D(R)

quot|enx /)re localization
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Construction of the derived category—summary

e D(R) = C(R)[Z '], where X is the class of quasi-isomorphisms.

@ To understand what D(R) looks like, it is better to take two smaller

steps:
— = . D(R)
quot|enx /)re localization

@ The category carries an extra important structure: It is a so-called
triangulated category.
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Construction of the derived category—summary

e D(R) = C(R)[Z '], where X is the class of quasi-isomorphisms.

@ To understand what D(R) looks like, it is better to take two smaller

steps:
— = . D(R)
quot|enx /)re localization

@ The category carries an extra important structure: It is a so-called
triangulated category. As far as this talk is concerned, this feature is
ruthlessly ignored!
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Derived functors

@ Suppose again that we have a left exact functor F: ModR — Ab.
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Derived functors

@ Suppose again that we have a left exact functor F: ModR — Ab.

we apply F to a complex of R-modules, the result is a complex of
abelian groups. That is, we naturally get a functor

F: C(R) — C(Ab).
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Derived functors

@ Suppose again that we have a left exact functor F: ModR — Ab. If

we apply F to a complex of R-modules, the result is a complex of
abelian groups. That is, we naturally get a functor

F: C(R) — C(Ab).
@ It is essentially for free to push F further to

F: K(R) — K(Ab).
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Derived functors

@ Suppose again that we have a left exact functor F: ModR — Ab. If
we apply F to a complex of R-modules, the result is a complex of
abelian groups. That is, we naturally get a functor

F: C(R) — C(Ab).
@ It is essentially for free to push F further to
F: K(R) — K(Ab).

@ We encounter troubles if we wish to go one step further and construct
a functor
D(R) — D(ADb).
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Derived functors

@ Suppose again that we have a left exact functor F: ModR — Ab. If
we apply F to a complex of R-modules, the result is a complex of
abelian groups. That is, we naturally get a functor

F: C(R) — C(Ab).
@ It is essentially for free to push F further to
F: K(R) — K(Ab).

@ We encounter troubles if we wish to go one step further and construct
a functor
D(R) — D(ADb).

e Cause: If o is a quasi-isomorphism, F(o) need not be (the
non-exactness of F again!)
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Derived functors—continued

@ Since we cannot lift F to a functor D(R) — D(Ab) directly, we take
the “best” approximation—the total right derived functor

RF: D(R) — D(Ab).
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Derived functors—continued

@ Since we cannot lift F to a functor D(R) — D(Ab) directly, we take

the “best” approximation—the total right derived functor
RF: D(R) — D(Ab).
@ Given a complex X € K(R), we define RF(X) indirectly via
Homp ab)(—, RF(X)) = lim Hompap) (—, F(C)),

where the colimit is indexed by the comma-category of all
quasi-isomorphisms X ——C.

Jan Stovitek (Charles University) Derived categories October 21, 2011

18 / 28



Derived functors—continued

@ Since we cannot lift F to a functor D(R) — D(Ab) directly, we take
the “best” approximation—the total right derived functor

RF: D(R) — D(ADb).
@ Given a complex X € K(R), we define RF(X) indirectly via
Homp ab)(—, RF(X)) = lim Hompap) (—, F(C)),

where the colimit is indexed by the comma-category of all
quasi-isomorphisms X -2+ C. The functor RF(X) is well defined since
the comma category has a terminal object X —=i(X) (a so-called
K-injective resolution of X).
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Derived functors—continued

@ Since we cannot lift F to a functor D(R) — D(Ab) directly, we take
the “best” approximation—the total right derived functor

RF: D(R) — D(ADb).
@ Given a complex X € K(R), we define RF(X) indirectly via
Homp ab)(—, RF(X)) = lim Hompap) (—, F(C)),

where the colimit is indexed by the comma-category of all
quasi-isomorphisms X -2+ C. The functor RF(X) is well defined since
the comma category has a terminal object X —=i(X) (a so-called
K-injective resolution of X). Then in fact RF(X) = F(i(X)).

Jan Stovitek (Charles University) Derived categories October 21, 2011 18 / 28



Derived functors—continued

@ Since we cannot lift F to a functor D(R) — D(Ab) directly, we take
the “best” approximation—the total right derived functor

RF: D(R) — D(ADb).
@ Given a complex X € K(R), we define RF(X) indirectly via
Homp ab)(—, RF(X)) = lim Hompap) (—, F(C)),

where the colimit is indexed by the comma-category of all
quasi-isomorphisms X -2+ C. The functor RF(X) is well defined since
the comma category has a terminal object X —=i(X) (a so-called
K-injective resolution of X). Then in fact RF(X) = F(i(X)).

@ Fact: H" o RF = R"F for each n > 0.
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Derived functors—continued

@ Since we cannot lift F to a functor D(R) — D(Ab) directly, we take
the “best” approximation—the total right derived functor

RF: D(R) — D(Ab).
@ Given a complex X € K(R), we define RF(X) indirectly via

Homp ab)(—, RF(X)) = lim Hompap) (—, F(C)),

where the colimit is indexed by the comma-category of all
quasi-isomorphisms X -2+ C. The functor RF(X) is well defined since
the comma category has a terminal object X —=i(X) (a so-called
K-injective resolution of X). Then in fact RF(X) = F(i(X)).

@ Fact: H" o RF =2 R"F for each n > 0. That is, the total right derived
functor RF contains all information about the classical right derived
functors R"F!
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Outline

© Sheaf cohomology
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The structure sheaf

@ Suppose M is a smooth manifold and U C M be an open subset.

Jan Stovitek (Charles University) Derived categories October 21, 2011 20 / 28



The structure sheaf

@ Suppose M is a smooth manifold and U C M be an open subset.
Denote by Op(U) the ring of all smooth functions U — R.

Jan Stovitek (Charles University) Derived categories October 21, 2011 20 / 28



The structure sheaf

@ Suppose M is a smooth manifold and U C M be an open subset.
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@ Given open V C U C M, we have the restriction homomorphism of
R-algebras:

resy: Op(U) — Om(V), f— fly.
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Sheaf cohomology

The structure sheaf

@ Suppose M is a smooth manifold and U C M be an open subset.
Denote by Op(U) the ring of all smooth functions U — R.

@ Given open V C U C M, we have the restriction homomorphism of

R-algebras:

resy: Op(U) — Om(V), f— fly.

@ Fact: The manifold structure on M is completely determined by

@ the topology on M and

@ the collection Oy = (Om(U),res!)) of the R-algebras Op(U) together
with the restriction homomorphisms resY.
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The structure sheaf

@ Suppose M is a smooth manifold and U C M be an open subset.
Denote by Op(U) the ring of all smooth functions U — R.

@ Given open V C U C M, we have the restriction homomorphism of
R-algebras:

resy: Op(U) — Om(V), f— fly.

@ Fact: The manifold structure on M is completely determined by

@ the topology on M and

@ the collection Oy = (Om(U),res!)) of the R-algebras Op(U) together
with the restriction homomorphisms resY. Oy is called the structure
sheaf of M.

@ This is an alternative description of a manifold compared to giving an
atlas. Especially popular in algebraic geometry.
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Vector bundles

@ A vector bundle over M is a surjective morphism of manifolds
n: E — M for which there is n > 0 and an open cover M = |J; U;
such that for every i:

~

7T71(U,') U; x R"”
W|N %oj.
Ui

Jan Stovitek (Charles University) Derived categories October 21, 2011 21 /28



Vector bundles

@ A vector bundle over M is a surjective morphism of manifolds
n: E — M for which there is n > 0 and an open cover M = |J; U;
such that for every i:

U; x R"”
”'\ ﬁq

@ Given U C M open, denote by

EUV)={s: U—=nYU)|mos=1y},

the collection of sections over the set U.
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Vector bundles

@ A vector bundle over M is a surjective morphism of manifolds
n: E — M for which there is n > 0 and an open cover M = |J; U;
such that for every i:

U; x R"”
”'\ ﬁq

@ Given U C M open, denote by

EUV)={s: U—=nYU)|mos=1y},

the collection of sections over the set U. This is naturally an
Om(U)-module, and it is free if U = U; for some i.
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Vector bundles—continued

@ Starting with a vector bundle 7: E — M, we obtain the following:
@ for each open U C M an Opm(U)-module E(U) of sections over U;
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Vector bundles—continued

@ Starting with a vector bundle 7: E — M, we obtain the following:

@ for each open U C M an Opm(U)-module E(U) of sections over U;
@ for each open V C U C M the restriction maps

resy: E(U) — E(V), s+— s|y

compatible with the module structure;
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@ for each open U C M an Opm(U)-module E(U) of sections over U;
@ for each open V C U C M the restriction maps
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compatible with the module structure;
© the so-called sheaf axiom holds: a section over an open set can be
glued together from sections over smaller open sets;
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@ Starting with a vector bundle 7: E — M, we obtain the following:
@ for each open U C M an Opm(U)-module E(U) of sections over U;
@ for each open V C U C M the restriction maps

resy: E(U) — E(V), s+— s|y

compatible with the module structure;

© the so-called sheaf axiom holds: a section over an open set can be
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Vector bundles—continued

@ Starting with a vector bundle 7: E — M, we obtain the following:
@ for each open U C M an Opm(U)-module E(U) of sections over U;
@ for each open V C U C M the restriction maps

resy: E(U) — E(V), s+— s|y

compatible with the module structure;

© the so-called sheaf axiom holds: a section over an open set can be
glued together from sections over smaller open sets;

Q locally, £(U) is a free module of a fixed finite rank.

@ Fact: 1 and 2 determine the vector bundle structure of 7: E — M.

o Collections & = (£(U),resy) satisfying 1-3 are called sheaves of
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Vector bundles—continued

@ Starting with a vector bundle 7: E — M, we obtain the following:
@ for each open U C M an Opm(U)-module E(U) of sections over U;
@ for each open V C U C M the restriction maps

resy: E(U) — E(V), s+— s|y

compatible with the module structure;

© the so-called sheaf axiom holds: a section over an open set can be
glued together from sections over smaller open sets;

Q locally, £(U) is a free module of a fixed finite rank.

@ Fact: 1 and 2 determine the vector bundle structure of 7: E — M.

o Collections & = (£(U),resy) satisfying 1-3 are called sheaves of
Op-modules. In particular, vector bundles can be viewed as special
sheaves of Op-modules.
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Sheaves of Oy-modules

@ The category of all sheaves of Op-modules is denoted by ModQOyy.
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Sheaf cohomology

Sheaves of Oy-modules

@ The category of all sheaves of Op-modules is denoted by ModQOyy.

@ It is an abelian category—i.e. the notion of a short exact sequence
makes sense and it is well-behaved. In fact more is known: it is a
so-called Grothendieck category.
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@ The category of all sheaves of Op-modules is denoted by ModQOyy.

@ It is an abelian category—i.e. the notion of a short exact sequence
makes sense and it is well-behaved. In fact more is known: it is a
so-called Grothendieck category.

@ We can form the derived category D(Oy) as for usual modules over
rings, and we can construct total derived functors of functors
F: ModOp; — Ab.
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Sheaves of Oy-modules

@ The category of all sheaves of Op-modules is denoted by ModQOyy.

@ It is an abelian category—i.e. the notion of a short exact sequence
makes sense and it is well-behaved. In fact more is known: it is a
so-called Grothendieck category.

@ We can form the derived category D(Oy) as for usual modules over
rings, and we can construct total derived functors of functors
F: ModOp; — Ab.

@ The same constructions can be done for complex analytic manifolds
and algebraic varieties.
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Sheaf cohomology

@ There is a special functor for which the derived functor is particularly
interesting: the global section functor:

F: ModOy — Ab, &€ —s E(M).
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Sheaf cohomology

@ There is a special functor for which the derived functor is particularly
interesting: the global section functor:

F: ModOy — Ab, &€ —s E(M).

@ Observation ' = Homop,,(Opm, —). In particular, T is left exact, but
need not be exact.
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Sheaf cohomology

@ There is a special functor for which the derived functor is particularly
interesting: the global section functor:

F: ModOy — Ab, &€ —s E(M).

@ Observation ' = Homop,,(Opm, —). In particular, T is left exact, but
need not be exact.

@ Sheaf cohomology functors Hy,: ModOyp — Ab are defined as the
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geometry of M.
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Sheaf cohomology

@ There is a special functor for which the derived functor is particularly
interesting: the global section functor:

F: ModOy — Ab, &€ —s E(M).

@ Observation ' = Homop,,(Opm, —). In particular, T is left exact, but
need not be exact.

@ Sheaf cohomology functors Hy,: ModOyp — Ab are defined as the
right derived functors R™T"p;. They tell us something about the global
geometry of M.

@ With our machinery, we are now able to construct the total derived

functor
Rl : D(Op) — D(ADb).
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Outline

@ A view towards Grothendieck duality
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A view towards Grothendieck duality

The Serre duality theorem

Theorem (Serre 1955)

Let M be a compact connected complex manifold of dimension d > 0. Let
Qj\’/, be the line bundle of holomorphic d-forms, and given a vector bundle
& € ModOy, denote £* = Hom(&,Q,).
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A view towards Grothendieck duality

The Serre duality theorem

Theorem (Serre 1955)

Let M be a compact connected complex manifold of dimension d > 0. Let

Qj\’/, be the line bundle of holomorphic d-forms, and given a vector bundle
& € ModOy, denote £* = Hom(&,Q,).

Then for every i in the range 0 < i < d, there is a natural isomorphism

His(€)* = Hy/(€7).
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A view towards Grothendieck duality

Grothendieck duality

Theorem (reformulation, Grothendieck)

Consider the global section functor as a functor

v ModOp — ModC.

Then a restriction of RI p; to a suitable subcategory of D(Oy), which
contains all vector bundles, has a right adjoint.
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Grothendieck duality

Theorem (reformulation, Grothendieck)

Consider the global section functor as a functor
v ModOy; — ModC.

Then a restriction of RI p; to a suitable subcategory of D(Oy), which
contains all vector bundles, has a right adjoint.

Remark

"y is a left exact functor, not right exact. Therefore, ', definitely cannot
have a right adjoint, but Rl has!
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Grothendieck duality—continued

@ Given a morphism of manifolds f: M — N, there is standard
pushforward functor

f.: ModOp —> ModOpy
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Grothendieck duality—continued

@ Given a morphism of manifolds f: M — N, there is standard
pushforward functor

f.: ModOp —> ModOpy
o If N = {x} is a single point, then f, equals
v ModOp — ModC = ModOy

from the previous slide.
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o If N = {x} is a single point, then f, equals
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@ The Grothendieck duality theorem says that in algebraic geometry,
some restriction of Rf, has a right adjoint in much broader generality
that for N = {x}.
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