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Functors from module categories

Rings and modules

Let (R,+,−, 0, ·, 1) be a commutative ring and let ModR be the
category of right R-modules.

Examples to keep in mind in this talk: M a manifold/alg. variety over
a field k , R the ring of all smooth/holomorphic/polynomial functions

M : k
f

R-modules can encode among others vector bundles over M. More
details will follow vector bdl’s .
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Functors from module categories

Non-exactness of Hom functors

Given any module X , the assignment

Y ∈ ModR 7−→ HomR(X ,Y )

gives a functor
HomR(X ,−) : ModR −→ Ab

This functor is left-exact, i.e. given a short exact sequence

0 −→ K −→ Y −→ C −→ 0

of modules, we obtain an exact sequence of groups

0 −→ HomR(X ,K ) −→ HomR(X ,Y ) −→ HomR(X ,C ) −→ ∗

What should be there instead of ∗ ?
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Jan Št’ov́ıček (Charles University) Derived categories October 21, 2011 4 / 28



Functors from module categories

Derived functors

Classical answer: derived functors.

Given a left exact functor

F : ModR −→ Ab,

(e.g. F = HomR(X ,−)), there is a canonical way to produce a series
of functors

R1F ,R2F ,R3F , . . . : ModR −→ Ab

(the right derived functors of F ) such that starting with a short exact
sequence of R-modules

0 −→ K −→ Y −→ C −→ 0,

we obtain a natural long exact sequence

0 −→ F (K ) −→ F (Y ) −→ F (C ) −→ R1F (K ) −→ R1F (Y ) −→
−→ R1F (C ) −→ R2F (K ) −→ R2F (Y ) −→ R2F (C ) −→ · · ·
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Derived categories

Motivation

The derived category D(R) of the module category ModR provides a
flexible language for homological algebra and the right framework for
working with derived functors.

It is a complicated object, though. It contains infinitely many copies
of ModR as full subcategories:

D(R)

ModR[−1] ModR ModR[1]· · · · · ·
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Derived categories

Construction of the derived category

We start the the category C(R) of cochain complexes over ModR.
An object X of C(R) is a diagram of modules

· · · −−−−→ X−1 ∂−1

−−−−→ X 0 ∂0

−−−−→ X 1 ∂1

−−−−→ X 2 −−−−→ · · ·
such that ∂ ◦ ∂ = 0.

Morphisms f : X → Y in C(R) are defined in the obvious way as a
commutative diagrams

· · · −−−−→ X−1 ∂−−−−→ X 0 ∂−−−−→ X 1 ∂−−−−→ X 2 −−−−→ · · ·

f −1

y f 0

y f 1

y f 2

y
· · · −−−−→ Y−1 ∂−−−−→ Y 0 ∂−−−−→ Y 1 ∂−−−−→ Y 2 −−−−→ · · ·

Cohomology modules: Hn(X ) = Ker ∂n/ Im ∂n−1 for an integer n.
This is in fact again a functor, Hn : C(R)→ ModR.
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Derived categories

Construction of the derived category—continued

The point: We are interested in the cohomology of complexes rather
then in the complexes themselves.

That is, if f : X → Y is a homomorphisms of complexes such that

Hn(f ) : Hn(X ) −→ Hn(Y )

is an isomorphism for all n ∈ Z, then f morally should be an
isomorphism. Such morphisms are called quasi-isomorphisms.

Such f ’s are ubiquitous, we have for example for R = Z:

· · · −−−−→ 0 −−−−→ Z m·−−−−−→ Z −−−−→ 0 −−−−→ · · ·

proj.

y
· · · −−−−→ 0 −−−−→ Z/mZ −−−−→ 0 −−−−→ · · ·
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Derived categories

Construction of the derived category—continued

To summarize so far: We have the category C(R) of cochain
complexes of R-modules and the class Σ of all quasi-morphisms. We
consider quasi-isomorphic complexes as “the same”.

The brutal step: We force the quasi-isomorphisms to become
isomorphisms. That is, we formally add an inverse to every σ ∈ Σ.

Up to some inessential set-theoretical annoyances, one can always do
this. The result is by definition the derived category
D(R) = C(R)[Σ−1]. It comes together with the canonical
“localization” functor

Q : C(R) −→ D(R).

Q sends every σ ∈ Σ to an isomorphism and it is a universal functor
with this property.

The hard part is to understand the category we get.
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Derived categories

Taking smaller steps

We shall perform the passage from C(R) to D(R) in two smaller
steps.

Making a morphism invertible can cause another morphism to become
zero (if σ◦α = 0, then α vanishes after making σ invertible).

First we take the quotient category K(R) = C(R)/I, where I is a
two-sided ideal of some (not all) morphisms which must vanish under
Q : C(R)→ D(R). I is the class of the so-called null-homotopic
morphisms of complexes.

In the second step, the morphisms from Σ (or more precisely their
images under Q ′ : C(R) � K(R)) are made invertible. That is, we
construct D(R) as K(R)[Σ−1].

The latter is more tractable since Σ is a multiplicative system in
K(R) (unlike in C(R)). In other words, it allows the calculus of left
and right fractions. skip fractions
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Derived categories

Calculus of left fractions

LF1 If σ, τ are composable morphisms in Σ

X
σ

Y
τ

Z

then so is τ ◦ σ. The identity morphisms 1X : X −→ X belong to Σ
for every object X .

LF2 Given morphisms α, σ with σ ∈ Σ

X
α

Z

σ

Y

W
β

τ

(i.e. a “right fraction” α · σ−1), we can form a commutative square
with τ ∈ Σ (i.e. a α · σ−1 = τ−1 · β).
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Jan Št’ov́ıček (Charles University) Derived categories October 21, 2011 12 / 28



Derived categories

Calculus of left fractions—continued

LF3 Let α be a morphism. If there is σ ∈ Σ such that

X
σ

Y
α

Z

composes to zero (i.e. α must become zero in K(R)[Σ−1], then there
is τ ∈ Σ such that

Y
α

Z
τ

W

composes to zero.
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Derived categories

Equality of fractions

Suppose we have two left fractions σ1
−1 · α1 and σ2

−1 · α2 between
objects Z and Y :

Z

α1

α2

Y

σ1

σ2

X1

X2

W
β τ

We make σ1
−1 · α1 and σ2

−1 · α2 equal provided that we can complete the
above diagram in such a way that τ ∈ Σ.
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Derived categories

Composing morphisms

Suppose we have two composable fractions σ1
−1 · α1 and σ2

−1 · α2:

X

α1

U

Y

σ1 α2

V

Z

σ2

W
β τ

LF2

The composition is defined (using LF1) to be the fraction

X

β ◦ α1

W

Z .

τ ◦ σ2
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Derived categories

Construction of the derived category—summary

D(R) = C(R)[Σ−1], where Σ is the class of quasi-isomorphisms.

To understand what D(R) looks like, it is better to take two smaller
steps:

C(R) D(R)

K(R)

Q

quotient Ore localization

The category carries an extra important structure: It is a so-called
triangulated category. As far as this talk is concerned, this feature is
ruthlessly ignored!
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Derived categories

Derived functors

Suppose again that we have a left exact functor F : ModR −→ Ab. If
we apply F to a complex of R-modules, the result is a complex of
abelian groups. That is, we naturally get a functor

F : C(R) −→ C(Ab).

It is essentially for free to push F further to

F : K(R) −→ K(Ab).

We encounter troubles if we wish to go one step further and construct
a functor

D(R) −→ D(Ab).

Cause: If σ is a quasi-isomorphism, F (σ) need not be (the
non-exactness of F again!)
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Derived categories

Derived functors—continued

Since we cannot lift F to a functor D(R)→ D(Ab) directly, we take
the “best” approximation—the total right derived functor

RF : D(R) −→ D(Ab).

Given a complex X ∈ K(R), we define RF (X ) indirectly via

HomD(Ab)(−,RF (X )) = lim−→HomD(Ab)(−,F (C )),

where the colimit is indexed by the comma-category of all
quasi-isomorphisms X

σ−→C . The functor RF (X ) is well defined since
the comma category has a terminal object X

τ−→i(X ) (a so-called
K -injective resolution of X ). Then in fact RF (X ) = F (i(X )).

Fact: Hn ◦ RF ∼= RnF for each n ≥ 0. That is, the total right derived
functor RF contains all information about the classical right derived
functors RnF !
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Sheaf cohomology

Outline

1 Functors from module categories

2 Derived categories

3 Sheaf cohomology

4 A view towards Grothendieck duality
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Sheaf cohomology

The structure sheaf

Suppose M is a smooth manifold and U ⊆ M be an open subset.
Denote by OM(U) the ring of all smooth functions U → R.

Given open V ⊆ U ⊆ M, we have the restriction homomorphism of
R-algebras:

resUV : OM(U) −→ OM(V ), f 7−→ f |V .

Fact: The manifold structure on M is completely determined by

1 the topology on M and
2 the collection OM = (OM(U), resUV ) of the R-algebras OM(U) together

with the restriction homomorphisms resUV . OM is called the structure
sheaf of M.

This is an alternative description of a manifold compared to giving an
atlas. Especially popular in algebraic geometry.
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Sheaf cohomology

Vector bundles

A vector bundle over M is a surjective morphism of manifolds
π : E → M for which there is n ≥ 0 and an open cover M =

⋃
i Ui

such that for every i :

π−1(Ui ) Ui × Rn

Ui

∼

π|Ui
proj.

Given U ⊆ M open, denote by

E(U) = {s : U → π−1(U) | π ◦ s = 1U},

the collection of sections over the set U. This is naturally an
OM(U)-module, and it is free if U = Ui for some i .
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Sheaf cohomology

Vector bundles–continued

Starting with a vector bundle π : E → M, we obtain the following:

1 for each open U ⊆ M an OM(U)-module E(U) of sections over U;
2 for each open V ⊆ U ⊆ M the restriction maps

resUV : E(U) −→ E(V ), s 7−→ s|V

compatible with the module structure;
3 the so-called sheaf axiom holds: a section over an open set can be

glued together from sections over smaller open sets;
4 locally, E(U) is a free module of a fixed finite rank.

Fact: 1 and 2 determine the vector bundle structure of π : E → M.

Collections E = (E(U), resUV ) satisfying 1–3 are called sheaves of
OM -modules. In particular, vector bundles can be viewed as special
sheaves of OM -modules.
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Sheaf cohomology

Sheaves of OM-modules

The category of all sheaves of OM -modules is denoted by ModOM .

It is an abelian category—i.e. the notion of a short exact sequence
makes sense and it is well-behaved. In fact more is known: it is a
so-called Grothendieck category.

We can form the derived category D(OM) as for usual modules over
rings, and we can construct total derived functors of functors
F : ModOM −→ Ab.

The same constructions can be done for complex analytic manifolds
and algebraic varieties.
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Jan Št’ov́ıček (Charles University) Derived categories October 21, 2011 23 / 28



Sheaf cohomology

Sheaves of OM-modules

The category of all sheaves of OM -modules is denoted by ModOM .

It is an abelian category—i.e. the notion of a short exact sequence
makes sense and it is well-behaved. In fact more is known: it is a
so-called Grothendieck category.

We can form the derived category D(OM) as for usual modules over
rings, and we can construct total derived functors of functors
F : ModOM −→ Ab.

The same constructions can be done for complex analytic manifolds
and algebraic varieties.
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Sheaf cohomology

Sheaf cohomology

There is a special functor for which the derived functor is particularly
interesting: the global section functor:

ΓM : ModOM −→ Ab, E 7−→ E(M).

Observation Γ = HomOM
(OM ,−). In particular, Γ is left exact, but

need not be exact.

Sheaf cohomology functors Hn
M : ModOM → Ab are defined as the

right derived functors RnΓM . They tell us something about the global
geometry of M.

With our machinery, we are now able to construct the total derived
functor

RΓM : D(OM) −→ D(Ab).
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A view towards Grothendieck duality

The Serre duality theorem

Theorem (Serre 1955)

Let M be a compact connected complex manifold of dimension d ≥ 0. Let
Ωd
M be the line bundle of holomorphic d-forms, and given a vector bundle
E ∈ ModOM , denote E∗ = Hom(E ,Ωd

M).
Then for every i in the range 0 ≤ i ≤ d, there is a natural isomorphism

H i
M(E)∗ ∼= Hd−i

M (E∗).
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A view towards Grothendieck duality

Grothendieck duality

Theorem (reformulation, Grothendieck)

Consider the global section functor as a functor

ΓM : ModOM −→ ModC.

Then a restriction of RΓM to a suitable subcategory of D(OM), which
contains all vector bundles, has a right adjoint.

Remark

ΓM is a left exact functor, not right exact. Therefore, ΓM definitely cannot
have a right adjoint, but RΓM has!
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A view towards Grothendieck duality

Grothendieck duality—continued

Given a morphism of manifolds f : M → N, there is standard
pushforward functor

f∗ : ModOM −→ ModON

If N = {?} is a single point, then f∗ equals

ΓM : ModOM −→ ModC = ModON

from the previous slide.

The Grothendieck duality theorem says that in algebraic geometry,
some restriction of Rf∗ has a right adjoint in much broader generality
that for N = {?}.
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