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Fact (Happel)
Let k be a field. Then D(k(e < e — o)) ~ D(k(e — o < o)).

Proof
@ Bernstein-Gelfand-Ponomarev reflection functors:
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@ ThenLs™ = T @L —: D(k(e < @ — o)) — D(k(e — @ < o)).
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A moral

@ We first need to construct the reflection functor s— for
modules/complexes and then derive it.

@ We cannot construct the equivalence right away at the level of the
derived categories because we cannot construct the pushout
there.

@ Or canwe?
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Expressing (co)limits abstractly

@ Let C be a cocomplete category and / € Caf a small category.
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Definition

Idea (Grothendieck, Heller, Franke, others)

Given (C, W), the category of /-shaped diagrams in the homotopy
category C[W~"] contains too little information. We need to remember
C’[W,‘1] instead, i.e. the homotopy category of /-shaped diagrams.

Definition
A prederivator is a strict 2-functor 2: Cat°® — CAT:

f*
2. 1 yod — 20 9()
g g*
A derivator is a prederivator satisfying certain simple

category-theoretic axioms to allow for a well behaved calculus of
homotopy Kan extensions.
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Relevance of representation theory

@ Let k be a field. Then the corresponding derivator % is given by
k(1) = D(Mod k).

@ Although 2 enhances the rather uninteresting category
D(Mod k), the derivator itself is very interesting.

@ In some sense, the main goal of representation theory is to
understand this derivator in detail.

@ There is more: Representation theoretic concepts
(Auslander-Reiten theory, reflection functors, tilting modules) are
very useful in studying general derivators.
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Surprise #1: homotopy theory sneaks in

@ Let .7 be the derivator of topological spaces, i.e. C = Top, W =
weak equivalences, and 7 (/) = Top'[W,"].

@ Then .7 is a universal derivator (Cisinski, Heller). Roughly
speaking, given a derivator 2 and X € Z(x), there are a canonical
functors

“—@X' TWJ) = 2(J), pt— X

@ Even more holds. Every derivator is a module over .7:

R: T XY —9D

(Cisinski, Heller).
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Stability

@ The derivators 2 enhancing derived categories satisfy more:

@ the base category Z(x) is pointed
@ homotopy pullbacks = homotopy pushouts
(recall the example with reflections again!)

@ Such derivators are called stable.
@ A topological example: The derivator . of topological spectra.
@ This is a universal stable derivator with a canonical action

QR: XD —9

for each stable derivator & (Cisinski, Tabuada).
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Theorem (Franke, Maltsiniotis, Groth)

A stable derivator admits a canonical additive structure, i.e. we actually
have a 2-functor

9: Cat°® — ADD.

Under an additional mild hypothesis, we even have a canonical
triangulated structure:

2 Cat®® — TRIA.

Remark

Unlike for standalone triangulated categories, the triangulation on a
derivator is not an additional structure.
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Surprise #2: canonical triangulation

Theorem (Franke, Maltsiniotis, Groth)

A stable derivator admits a canonical additive structure, i.e. we actually
have a 2-functor
9: Cat°® — ADD.

Under an additional mild hypothesis, we even have a canonical
triangulated structure:

2 Cat®® — TRIA.

Remark

Unlike for standalone triangulated categories, the triangulation on a
derivator is not an additional structure. It is only a shadow of universal
constructions inherent to the derivator.
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Results

Theorem (Groth & S., 2013)

Let Q, Q' be two finite oriented trees with the same underlying graph.
Then

2(Q) ~ 2(Q))

for any stable derivator . Moreover, this equivalence can be taken of
the form

T®[Q] —: 2(Q) - 2(Q))
for a suitable spectral bimodule T € .7(Q’' x Q).

Other (intended) results and applications:

@ A conceptual explanation of May’s axioms for tensor triang. cat.

@ Stable derivators are also enhancements of various versions of
“higher triangulated” categories.

@ Equivalences for all quivers without oriented cycles.
@ Ambitious: abstract representation theory.
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