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BGP reflections for Dynkin A3 quivers

Fact (Happel)
Let k be a field. Then D(k(• ← • → •)) ' D(k(• → • ← •)).

Proof
Bernstein-Gelfand-Ponomarev reflection functors:

s− : repk (• ← • → •) //repk (• → • ← •)

Then Ls− ∼= T ⊗L − : D(k(• ← • → •)) '−→ D(k(• → • ← •)).
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A moral

We first need to construct the reflection functor s− for
modules/complexes and then derive it.
We cannot construct the equivalence right away at the level of the
derived categories because we cannot construct the pushout
there.
Or can we?
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Expressing (co)limits abstractly
Let C be a cocomplete category and I ∈ Cat a small category.
Then we have

CI
colim

**C
const

jj .

If say C is a category of complexes and W the class of
quasi-isomorphisms, we just derive the adjoint pair of functors!

CI [W−1
I ]

hocolim --C[W−1]
const

mm ,

where WI are the morphisms which are componentwise
quasi-isomorphisms and hocolim = Lcolim.
One should work with CI [W−1

I ] rather than C[W−1]I .

More explicitly: D(ModRI) rather than D(ModR)I .
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Jan Št’ovíček (Charles University) Tilting theory & derivators July 4, 2014 7 / 16



Expressing (co)limits abstractly
Let C be a cocomplete category and I ∈ Cat a small category.
Then we have

CI
colim

**C
const

jj .

If say C is a category of complexes and W the class of
quasi-isomorphisms, we just derive the adjoint pair of functors!

CI [W−1
I ]

hocolim --C[W−1]
const

mm ,

where WI are the morphisms which are componentwise
quasi-isomorphisms and hocolim = Lcolim.
One should work with CI [W−1

I ] rather than C[W−1]I .

More explicitly: D(ModRI) rather than D(ModR)I .
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BGP reflections revisited

Now we obtain Ls− as:

D(k(• ← • → •)) left Kan //D(k�)
restr. //D(k(• → • ← •))

Subtle point: Interpretation of the above “representations.”

to stability
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Definition

Idea (Grothendieck, Heller, Franke, others)
Given (C,W ), the category of I-shaped diagrams in the homotopy
category C[W−1] contains too little information. We need to remember
CI [W−1

I ] instead, i.e. the homotopy category of I-shaped diagrams.

Definition
A prederivator is a strict 2-functor D : Cat op → CAT:

D : I
f
&&

g
88�� η J 7−→ D(I) �� η

∗ D(J)
g∗

jj

f∗tt

A derivator is a prederivator satisfying certain simple
category-theoretic axioms to allow for a well behaved calculus of
homotopy Kan extensions.
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Jan Št’ovíček (Charles University) Tilting theory & derivators July 4, 2014 10 / 16



Relevance of representation theory

Let k be a field. Then the corresponding derivator Dk is given by

Dk (I) = D(Mod kI).

Although Dk enhances the rather uninteresting category
D(Mod k), the derivator itself is very interesting.
In some sense, the main goal of representation theory is to
understand this derivator in detail.
There is more: Representation theoretic concepts
(Auslander-Reiten theory, reflection functors, tilting modules) are
very useful in studying general derivators.
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Surprise #1: homotopy theory sneaks in

Let T be the derivator of topological spaces, i.e. C = Top, W =
weak equivalences, and T (I) = TopI [W−1

I ].
Then T is a universal derivator (Cisinski, Heller). Roughly
speaking, given a derivator D and X ∈ D(∗), there are a canonical
functors

“−⊗X ′′ : T (J)→ D(J), pt. 7→ X .

Even more holds. Every derivator is a module over T :

⊗ : T ×D −→ D

(Cisinski, Heller).
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Stability

The derivators D enhancing derived categories satisfy more:
1 the base category D(∗) is pointed
2 homotopy pullbacks = homotopy pushouts

(recall the example with reflections again!) back to reflections

Such derivators are called stable.
A topological example: The derivator S of topological spectra.
This is a universal stable derivator with a canonical action

⊗ : S ×D −→ D

for each stable derivator D (Cisinski, Tabuada).
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Jan Št’ovíček (Charles University) Tilting theory & derivators July 4, 2014 13 / 16



Stability

The derivators D enhancing derived categories satisfy more:
1 the base category D(∗) is pointed
2 homotopy pullbacks = homotopy pushouts

(recall the example with reflections again!) back to reflections

Such derivators are called stable.
A topological example: The derivator S of topological spectra.
This is a universal stable derivator with a canonical action

⊗ : S ×D −→ D

for each stable derivator D (Cisinski, Tabuada).
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Surprise #2: canonical triangulation

Theorem (Franke, Maltsiniotis, Groth)
A stable derivator admits a canonical additive structure, i.e. we actually
have a 2-functor

D : Cat op → ADD.

Under an additional mild hypothesis, we even have a canonical
triangulated structure:

D : Cat op → TRIA.

Remark
Unlike for standalone triangulated categories, the triangulation on a
derivator is not an additional structure. It is only a shadow of universal
constructions inherent to the derivator.
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Jan Št’ovíček (Charles University) Tilting theory & derivators July 4, 2014 14 / 16



Outline

1 Back to the dawn of tilting theory

2 Homotopy (co)limits

3 Grothendieck derivators

4 Results
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Results
Theorem (Groth & Š., 2013)
Let Q,Q′ be two finite oriented trees with the same underlying graph.
Then

D(Q) ' D(Q′)

for any stable derivator D . Moreover, this equivalence can be taken of
the form

T ⊗[Q] − : D(Q)→ D(Q′)

for a suitable spectral bimodule T ∈ S (Q′ ×Q).

Other (intended) results and applications:

A conceptual explanation of May’s axioms for tensor triang. cat.
Stable derivators are also enhancements of various versions of
“higher triangulated” categories.
Equivalences for all quivers without oriented cycles.
Ambitious: abstract representation theory.
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