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Knots and links
— A knot is a smooth, closed and oriented curve in R3.

Unknot Trefoil Knot 41

— A link is a finite disjoint union of knots.

Hopf link Solomon’s knot
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Isotopy classes of knots and links
— We usually work with 2-dimensional projections of knots

,
where we remember for each crossing which part is above and
which below. Such projections are called knot or link diagrams.

— How do we recognize knots which are actually “the same”
(= isotopic)?

and

— Various approaches:
• describing changes in the projection which do not change the

isotopy class of the knot—Reidemeister moves.
• algebraic invariants—Jones polynomial, functors.
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Reidemeister moves

Reidemeister I

Reidemeister II Reidemeister III

Theorem (Reidemeister 1926, Alexander and Briggs 1927)

Two knots are isotopic

if and only if their diagrams can be
transferred to each other using planar isotopy

and the
Reidemeister moves I–III above.
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Jones polynomial
— Using only the Reidemeister moves, still not very easy to

decide whether two knots (or links) are isotopic.

— There is a simple algorithic way to assign to each link
diagram L a Laurent polynomial PL ∈ Z[q,q−1] such that
PL = PL′ whenever L and L′ are diagrams of isotopic links.

— PL is called the Jones polynomial and it is fully determined by
the so called skein relation:

q−2 ·
〈 〉

+ q ·
〈 〉

= (q − q−1) ·
〈 〉

and its value on the unknot ( ).
— Discovered by Vaughan Jones in 1983, based on work of

Alexander and Conway.
— Not a complete knot invariant, but quite powerful in

distinguishing knots.
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www.ntnu.no Jan Št’ovíček, Categorification—the sl2 case



7

Jones polynomial
— Using only the Reidemeister moves, still not very easy to

decide whether two knots (or links) are isotopic.
— There is a simple algorithic way to assign to each link

diagram L a Laurent polynomial PL ∈ Z[q,q−1]

such that
PL = PL′ whenever L and L′ are diagrams of isotopic links.

— PL is called the Jones polynomial and it is fully determined by
the so called skein relation:

q−2 ·
〈 〉

+ q ·
〈 〉

= (q − q−1) ·
〈 〉

and its value on the unknot ( ).
— Discovered by Vaughan Jones in 1983, based on work of

Alexander and Conway.
— Not a complete knot invariant, but quite powerful in

distinguishing knots.
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Tangles

— A tangle is a finite collection of smooth oriented curves in R3.

1

— We will also assume that our tangles are inside a stripe of
height 1 and all end points of non-closed curves are in the
delimiting planes.
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Operations on tangles
— Given two tangles with compatible ends, we can form a

composition tangle:

T1

,
T2 T1 ◦ T2

— Given any pair of tangles, we can form a tensor product:

T ′1

,

T ′2 T ′1 ⊗ T ′2

— Important: These operations are compatible with isotopies!
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Tensor category of tangles
— We form a category of tangles, denoted by T , as follows:

• Objects: finite sequences of signs + and −, and the empty
set ∅.

• Morphisms: isotopy classes of tangles with orientation
prescribed by the signs:

+ + + −

+ + + + − −
∈ HomT

(
(+ + +−), (+ + + +−−)

)
• Composition: As in the slide before—well defined.

— We also have a tensor product:
(X ,Y ) 7→ X ⊗ Y (concatenating, eg. (+−)⊗ (+) = (+−+)),
(f ,g) 7→ f ⊗ g (as in the slide before on morphisms).

— Associativity: (X ⊗ Y )⊗ Z ∼= X ⊗ (Y ⊗ Z ).
— T is a tensor category, HomT (∅, ∅) = {isotopy classes of links}.
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www.ntnu.no Jan Št’ovíček, Categorification—the sl2 case



11

Tensor category of tangles
— We form a category of tangles, denoted by T , as follows:

• Objects: finite sequences of signs + and −, and the empty
set ∅.

• Morphisms: isotopy classes of tangles with orientation
prescribed by the signs:

+ + + −

+ + + + − −
∈ HomT

(
(+ + +−), (+ + + +−−)

)
• Composition: As in the slide before—well defined.

— We also have a tensor product:
(X ,Y ) 7→ X ⊗ Y (concatenating, eg. (+−)⊗ (+) = (+−+)),
(f ,g) 7→ f ⊗ g (as in the slide before on morphisms).

— Associativity: (X ⊗ Y )⊗ Z ∼= X ⊗ (Y ⊗ Z ).
— T is a tensor category, HomT (∅, ∅) = {isotopy classes of links}.
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Invariants of tangles

— Let R = C[q,q−1] and V = Rk be a free R-module, k ≥ 2.

— One can construct a functor F : T → modR of tensor
categories such that F (X ) = V ⊗R V ⊗R · · · ⊗R V︸ ︷︷ ︸

length(X)

(Reshetikhin and Turaev 1990).
— If T is a tangle, then F ([T ]) : V⊗m → V⊗n is an isotopy

invariant.
— In particular for a link L, we have F ([L]) : R → R. So F ([L])

acts as multiplication by a Laurent polynomial PL(q) ∈ R.
— Indeed, we can reconstruct the Jones polynomial by making a

particular choice of F for k = 2!
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Construction of the invariants
— All morphisms in T are generated, using composition and ⊗,

by six elementary ones:

— As for links, two tangles are isotopic if and only if their
diagrams can be transformed to each other using planar
isotopy and the Reidemeister moves.

— This can be translated into a finite list of relations for the
generators above, for example:

◦ ◦ = ◦ ◦
— It is enough to define six R-linear maps V⊗2 → V⊗2, V⊗2 → R

and R → V⊗2 satisfying these relations and this uniquely
defines the functor F : T → modR.

— Based on work of Turaev and Yetter, around 1988.
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YB-equation and quantum groups

— Put Φ = F ( ), recall Reidemeister III:

— This forces Φ to satisfy

(Φ⊗IdV )◦(IdV⊗Φ)◦(Φ⊗IdV ) = (IdV⊗Φ)◦(Φ⊗IdV )◦(IdV⊗Φ),

a so called quantum Yang-Baxter equation.
— Solutions to this equation are called R-matrices.
— In order to construct them, Drinfeld and Jimbo independently

introduced quantum groups (around 1985)—a class of
associative non-commutative algebras.
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The sl2-case
— One representative of quantum groups is Uq(sl2)

defined as
the associative non-commutative algebra over R = C[q,q−1]
with generators E ,F ,K ,K−1 and relations:
• KK−1 = 1 = K−1K ,
• KEK−1 = q2E ,
• KFK−1 = q−2F ,
• EF − FE = K 2−K−2

q−q−1 .

— In fact, we can equip V = R2 with a structure of a left
Uq(sl2)-module such that the functor F sending X to
V⊗length(X) is actually a functor

F : T → modUq(sl2).
— This refers to the sl2-case from the title. One can also consider

other quantum groups.
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First steps
Topological objects Alg. invariants Categorification
(±,±, . . . ,±) V⊗m

a category Cm

tangle (up to isotopy) V⊗m → V⊗n

a functor Cm → Cn

link (up to isotopy) f (x) ∈ C[q,q−1]

a complex
(Khovanov homology)

— We require that:
• the functor be an isotopy invariant (more precisely, isotopic

tangles yield isomorphic functors),
• composition of tangles correspond to composition of functors.

— We also wish to reconstruct V⊗m → V⊗n from Cm → Cn. This
is done by passing to the Grothendieck groups. Thus, we in
fact categorify the algebraic invariant (vector spaces 7→
categories, linear maps 7→ functors).

— In our case, C0 = Db(grmod C), F : C0 → C0 determined by FC.
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Grothendieck groups
— If C is an abelian category,

then the (complexified)
Grothendieck group of C, denoted by K0(C), is a C-vector
space defined by
• basis {[X ] | X ∈ C},
• relations: [Y ] = [X ] + [Z ] for each exact sequence

0→ X → Y → Z → 0.

— If C is a triangulated category, we can do the same trick with
triangles.

— Well known: if C is abelian, then K0(C) ∼= K0(Db(C)) via
C → Db(C).

— Note:
• K0(C0) ∼= C[q,q−1] for C0 = Db(grmod C). The action of q

corresponds to the shift in grading.
• We want K0(Cm) ∼= V⊗m ∼= R2m

(where R = C[q,q−1]).
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www.ntnu.no Jan Št’ovíček, Categorification—the sl2 case



18

Grothendieck groups
— If C is an abelian category, then the (complexified)

Grothendieck group of C, denoted by K0(C), is a C-vector
space defined by
• basis {[X ] | X ∈ C},
• relations: [Y ] = [X ] + [Z ] for each exact sequence

0→ X → Y → Z → 0.

— If C is a triangulated category, we can do the same trick with
triangles.

— Well known: if C is abelian, then K0(C) ∼= K0(Db(C)) via
C → Db(C).

— Note:
• K0(C0) ∼= C[q,q−1] for C0 = Db(grmod C). The action of q

corresponds to the shift in grading.

• We want K0(Cm) ∼= V⊗m ∼= R2m
(where R = C[q,q−1]).
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What are the categories and functors?

— Bernstein, Frenkel and Khovanov 1999; Stroppel 2005:
• Cm =

⊕m
i=0Oi,m−i

where each Oi,m−i is a graded version of a
parabolic subcategory of the principal block of the category O
for slm.

• Cm → Cn are so-called projective functors.
— Khovanov 2002; Khovanov and Chen 2006:

• Cm = Db(grmodA), where A is a combinatorially defined graded
algebra.

— Cautis and Kamnitzer
• Cm are derived categories of equivariant sheaves on certain

smooth projective varieties.

— Beyond the sl2-case: Cautis and Kamnitzer, Sussan,
Mazorchuk and Stroppel and others.

www.ntnu.no Jan Št’ovíček, Categorification—the sl2 case



19

What are the categories and functors?

— Bernstein, Frenkel and Khovanov 1999; Stroppel 2005:
• Cm =

⊕m
i=0Oi,m−i where each Oi,m−i is a graded version of a

parabolic subcategory of the principal block of the category O
for slm.

• Cm → Cn are so-called projective functors.
— Khovanov 2002; Khovanov and Chen 2006:

• Cm = Db(grmodA), where A is a combinatorially defined graded
algebra.

— Cautis and Kamnitzer
• Cm are derived categories of equivariant sheaves on certain

smooth projective varieties.

— Beyond the sl2-case: Cautis and Kamnitzer, Sussan,
Mazorchuk and Stroppel and others.
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Representations of slk

— Recall: slk = {A ∈ Mk×k (C) | tr M = 0}.

— Example: sl2 = C · E ,F ,H where E = (0
0

1
0), F = (0

1
0
0),

H = (1
0

0
−1).

— If A,B ∈ slk , so is [A,B] := AB − BA. slk is a Lie algebra.
— Important: We have the triangular decomposition

slk = n− ⊕ h⊕ n+.
— An slk -module is complex vector space W together with a

linear action w 7→ A · w for each A ∈ slk such that
[A,B]w = A · (B · w)− B · (A · w) for all A,B ∈ slk and w ∈W .

— A weight space Wα corresponding to α : h→ C is defined as
Wα = {w ∈W | H · w = α(H)w for each H ∈ h}.
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— Important: We have the triangular decomposition

slk = n− ⊕ h⊕ n+.
— An slk -module is complex vector space W together with a

linear action w 7→ A · w for each A ∈ slk such that
[A,B]w = A · (B · w)− B · (A · w) for all A,B ∈ slk and w ∈W .

— A weight space Wα corresponding to α : h→ C is defined as
Wα = {w ∈W | H · w = α(H)w for each H ∈ h}.
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Weight lattices and root systems

sl2:

−4 −3 −2 −1 0 1 2 3 4

EF

sl3:

E1F1

E2

F2

E12

F12

Legend:
fundamental weights

roots
other weights walls

Components delimited by walls are called chambers.
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The category O

— Introduced by Bernstein, Gelfand and Gelfand, 1976.

— The category O for slk is the category formed by all
slk -modules W such that

• W is finitely generated over slk ,
• W decomposes into weight spaces,
• W is locally n+-finite.

— There is a canonical decomposition O =
⊕
Oλ, where λ runs

over all weights in a fixed chamber (including walls),
a so-called block decomposition.

— For each λ, Oλ is equivalent to modAλ, where Aλ is a graded
finite dimensional algebra over C (grading due to Beilinson,
Ginzburg and Soergel, 1996).

www.ntnu.no Jan Št’ovíček, Categorification—the sl2 case



23

The category O

— Introduced by Bernstein, Gelfand and Gelfand, 1976.
— The category O for slk is the category formed by all

slk -modules W such that

• W is finitely generated over slk ,
• W decomposes into weight spaces,
• W is locally n+-finite.

— There is a canonical decomposition O =
⊕
Oλ, where λ runs

over all weights in a fixed chamber (including walls),
a so-called block decomposition.

— For each λ, Oλ is equivalent to modAλ, where Aλ is a graded
finite dimensional algebra over C (grading due to Beilinson,
Ginzburg and Soergel, 1996).
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Facts about O, continued
— For each pair λ, µ, we have a so-called translation functor

θµ
λ : Oλ → Oµ

which is exact and preserves projectivity and injectivity.
— These functors are often equivalences, unless we translate

onto a wall or out of a wall.
— If λ is not on a wall and µ is on a wall, then

θλ
µ ◦ θ

µ
λ : Oλ → Oλ

is called a translation through the wall. These are exactly the
functors Bernstein-Frenkel-Khovanov-Stroppel used for the
categorification.

— To be precise, there are a few more technical
aspects—grading, parabolic subcategories, Enright-Shelton
equivalences and choosing suitable bases for K0(Oλ) (Verma
modules).

www.ntnu.no Jan Št’ovíček, Categorification—the sl2 case



24

Facts about O, continued
— For each pair λ, µ, we have a so-called translation functor

θµ
λ : Oλ → Oµ

which is exact and preserves projectivity and injectivity.

— These functors are often equivalences, unless we translate
onto a wall or out of a wall.

— If λ is not on a wall and µ is on a wall, then
θλ
µ ◦ θ

µ
λ : Oλ → Oλ

is called a translation through the wall. These are exactly the
functors Bernstein-Frenkel-Khovanov-Stroppel used for the
categorification.

— To be precise, there are a few more technical
aspects—grading, parabolic subcategories, Enright-Shelton
equivalences and choosing suitable bases for K0(Oλ) (Verma
modules).
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www.ntnu.no Jan Št’ovíček, Categorification—the sl2 case



24

Facts about O, continued
— For each pair λ, µ, we have a so-called translation functor

θµ
λ : Oλ → Oµ

which is exact and preserves projectivity and injectivity.
— These functors are often equivalences, unless we translate

onto a wall or out of a wall.
— If λ is not on a wall and µ is on a wall, then

θλ
µ ◦ θ

µ
λ : Oλ → Oλ

is called a translation through the wall. These are exactly the
functors Bernstein-Frenkel-Khovanov-Stroppel used for the
categorification.

— To be precise, there are a few more technical
aspects—grading, parabolic subcategories, Enright-Shelton
equivalences and choosing suitable bases for K0(Oλ) (Verma
modules).
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