A counterexample to Rosický's problem

Jan Šťovíček

ECC Workshop on Categories, Algebras and Representations Prague, September 13th, 2010

Jan Šťovíček (ECC)

Rosický's problem

September, 2010 1 / 18

Outline

The case of discrete valuation domains

- Balanced sequences and Walker's modules
- Employing the p^{λ} -adic topology

The counterexample

- Purity in finitely accessible categories
- Results of Osofsky and Lenzing
- Summary

Outline

The problem and motivation

- The case of discrete valuation domains
 Balanced sequences and Walker's modules
 - Employing the p^{λ} -adic topology

The counterexample

- Purity in finitely accessible categories
- Results of Osofsky and Lenzing
- Summary

Problem (Rosický)

Given a ring R, is there a regular cardinal λ such that the λ -pure global dimension of Mod-R is \leq 1?

Motivation

Representability of functors in triangulated categories. In this case: Obstructions to representability of certain functors $D(Mod-R) \rightarrow Ab$.

Theorem (Bazzoni-Š., 2010)

Let k be an uncountable field (e.g. $k = \mathbb{C}$). Assume that R is one of:

- $R = k[x_1, x_2, \ldots, x_n], n \ge 2,$

Then no such regular cardinal λ exists.

A D N A P N A D N A D

Problem (Rosický)

Given a ring R, is there a regular cardinal λ such that the λ -pure global dimension of Mod-R is ≤ 1 ?

Motivation

Representability of functors in triangulated categories. In this case: Obstructions to representability of certain functors $D(Mod-R) \rightarrow Ab$.

Theorem (Bazzoni-Š., 2010)

Let *k* be an uncountable field (e.g. $k = \mathbb{C}$). Assume that *R* is one of:

•
$$R = k[x_1, x_2, ..., x_n], n \ge 2,$$

Then no such regular cardinal λ exists.

• • • • • • • • • • • • •

Problem (Rosický)

Given a ring R, is there a regular cardinal λ such that the λ -pure global dimension of Mod-R is \leq 1?

Motivation

Representability of functors in triangulated categories. In this case: Obstructions to representability of certain functors $D(Mod-R) \rightarrow Ab$.

Theorem (Bazzoni-Š., 2010)

Let k be an uncountable field (e.g. $k = \mathbb{C}$). Assume that R is one of:

•
$$R = k[x_1, x_2, ..., x_n], n \ge 2,$$

Then no such regular cardinal λ exists.

Problem (Rosický)

Given a ring R, is there a regular cardinal λ such that the λ -pure global dimension of Mod-R is \leq 1?

Motivation

Representability of functors in triangulated categories. In this case: Obstructions to representability of certain functors $D(Mod-R) \rightarrow Ab$.

Theorem (Bazzoni-Š., 2010)

Let k be an uncountable field (e.g. $k = \mathbb{C}$). Assume that R is one of:

•
$$R = k[x_1, x_2, ..., x_n], n \ge 2,$$

Then no such regular cardinal λ exists.

Problem (Rosický)

Given a ring R, is there a regular cardinal λ such that the λ -pure global dimension of Mod-R is \leq 1?

Motivation

Representability of functors in triangulated categories. In this case:

Obstructions to representability of certain functors $D(Mod-R) \rightarrow Ab$.

Theorem (Bazzoni-Š., 2010)

Let k be an uncountable field (e.g. $k = \mathbb{C}$). Assume that R is one of:

•
$$R = k[x_1, x_2, ..., x_n], n \ge 2,$$

Then no such regular cardinal λ exists.

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Problem (Rosický)

Given a ring R, is there a regular cardinal λ such that the λ -pure global dimension of Mod-R is \leq 1?

Motivation

Representability of functors in triangulated categories. In this case: Obstructions to representability of certain functors $D(Mod-R) \rightarrow Ab$.

Theorem (Bazzoni-Š., 2010)

Let k be an uncountable field (e.g. $k = \mathbb{C}$). Assume that R is one of:

•
$$R = k[x_1, x_2, ..., x_n], n \ge 2,$$

Then no such regular cardinal λ exists.

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Problem (Rosický)

Given a ring R, is there a regular cardinal λ such that the λ -pure global dimension of Mod-R is \leq 1?

Motivation

Representability of functors in triangulated categories. In this case: Obstructions to representability of certain functors $D(Mod-R) \rightarrow Ab$.

Theorem (Bazzoni-Š., 2010)

Let k be an uncountable field (e.g. $k = \mathbb{C}$). Assume that R is one of:

- $R = k[x_1, x_2, ..., x_n], n \ge 2,$

Then no such regular cardinal λ exists.

3

Problem (Rosický)

Given a ring R, is there a regular cardinal λ such that the λ -pure global dimension of Mod-R is \leq 1?

Motivation

Representability of functors in triangulated categories. In this case: Obstructions to representability of certain functors $D(Mod-R) \rightarrow Ab$.

Theorem (Bazzoni-Š., 2010)

Let k be an uncountable field (e.g. $k = \mathbb{C}$). Assume that R is one of:

•
$$R = k[x_1, x_2, ..., x_n], n \ge 2,$$

Then no such regular cardinal λ exists.

3

Problem (Rosický)

Given a ring R, is there a regular cardinal λ such that the λ -pure global dimension of Mod-R is \leq 1?

Motivation

Representability of functors in triangulated categories. In this case: Obstructions to representability of certain functors $D(Mod-R) \rightarrow Ab$.

Theorem (Bazzoni-Š., 2010)

Let k be an uncountable field (e.g. $k = \mathbb{C}$). Assume that R is one of:

•
$$R = k[x_1, x_2, \ldots, x_n], n \ge 2,$$

$$P = \begin{pmatrix} k & V \\ 0 & k \end{pmatrix}, \dim_k V \ge 2.$$

Then no such regular cardinal λ exists.

3

Problem (Rosický)

Given a ring R, is there a regular cardinal λ such that the λ -pure global dimension of Mod-R is \leq 1?

Motivation

Representability of functors in triangulated categories. In this case: Obstructions to representability of certain functors $D(Mod-R) \rightarrow Ab$.

Theorem (Bazzoni-Š., 2010)

Let k be an uncountable field (e.g. $k = \mathbb{C}$). Assume that R is one of:

1
$$R = k[x_1, x_2, \ldots, x_n], n \ge 2,$$

$$P = \begin{pmatrix} k & V \\ 0 & k \end{pmatrix}, \dim_k V \ge 2.$$

Then no such regular cardinal λ exists.

3

Outline

The problem and motivation

2

The case of discrete valuation domains

- Balanced sequences and Walker's modules
- Employing the p^{λ} -adic topology

The counterexample

- Purity in finitely accessible categories
- Results of Osofsky and Lenzing
- Summary

- *R* a discrete valuation domain (e.g. \(\hinspace\)_p or k[[x]]).
- $p \in R$ a prime, unique up to multiplication by a unit.
- Given $G \in Mod-R$, inductively define $p^{\sigma}G$:
 - $\blacktriangleright p^0 G = G,$
 - $\triangleright \ p^{\sigma+1}G = p(p^{\sigma}G),$
 - $p^{\sigma}G = \bigcap_{\rho < \sigma} p^{\rho}G$ for σ limit.

Note:

$p^0 G \supseteq p^1 G \subseteq p^2 G \supseteq \cdots \supseteq p^{\sigma} G \supseteq p^{\sigma+1} G \supseteq \cdots$

is a transfinite sequence of iterated Jacobson radicals.

The length of *G* is defined as min{λ | p^λG = p^{λ+1}G}. For such λ, p^λG is divisible, so a summand of *G*. In particular, p^λG = 0 if *G* is reduced.

- R a discrete valuation domain (e.g. 2^p or k[[x]]).
- $p \in R$ a prime, unique up to multiplication by a unit.
- Given $G \in Mod-R$, inductively define $p^{\sigma}G$:
 - $\blacktriangleright p^0 G = G,$
 - $\triangleright \ p^{\sigma+1}G = p(p^{\sigma}G),$
 - $p^{\sigma}G = \bigcap_{\rho < \sigma} p^{\rho}G$ for σ limit.

Note:

$p^0 G \supseteq p^1 G \subseteq p^2 G \supseteq \cdots \supseteq p^{\sigma} G \supseteq p^{\sigma+1} G \supseteq \cdots$

is a transfinite sequence of iterated Jacobson radicals.

The length of *G* is defined as min{λ | p^λG = p^{λ+1}G}. For such λ, p^λG is divisible, so a summand of *G*. In particular, p^λG = 0 if *G* is reduced.

- R a discrete valuation domain (e.g. \u00dcc p or k[[x]]).
- $p \in R$ a prime, unique up to multiplication by a unit.
- Given $G \in Mod-R$, inductively define $p^{\sigma}G$:
 - $\triangleright p^0 G = G,$
 - $\triangleright \ p^{\sigma+1}G = p(p^{\sigma}G),$
 - $p^{\sigma}G = \bigcap_{\rho < \sigma} p^{\rho}G$ for σ limit.

Note:

$$p^0 G \supseteq p^1 G \subseteq p^2 G \supseteq \cdots \supseteq p^{\sigma} G \supseteq p^{\sigma+1} G \supseteq \cdots$$

is a transfinite sequence of iterated Jacobson radicals.

The length of *G* is defined as min{λ | p^λG = p^{λ+1}G}. For such λ, p^λG is divisible, so a summand of *G*. In particular, p^λG = 0 if *G* is reduced.

- R a discrete valuation domain (e.g. \$\hinspace{\mathbb{Z}}_{\rho}\$ or k[[x]]).
- $p \in R$ a prime, unique up to multiplication by a unit.
- Given $G \in Mod-R$, inductively define $p^{\sigma}G$:
 - ▶ $p^0 G = G$, ▶ $p^{\sigma+1} G = p(p^{\sigma}G)$, ▶ $p^{\sigma} G = \bigcap_{\alpha < \sigma} p^{\rho} G$ for σ limit.

Note:

$p^0 G \supseteq p^1 G \subseteq p^2 G \supseteq \cdots \supseteq p^{\sigma} G \supseteq p^{\sigma+1} G \supseteq \cdots$

is a transfinite sequence of iterated Jacobson radicals.

The length of *G* is defined as min{λ | p^λG = p^{λ+1}G}. For such λ, p^λG is divisible, so a summand of *G*. In particular, p^λG = 0 if *G* is reduced.

- R a discrete valuation domain (e.g. \$\hat{\mathbb{Z}}_p\$ or k[[x]]).
- $p \in R$ a prime, unique up to multiplication by a unit.
- Given $G \in Mod-R$, inductively define $p^{\sigma}G$:
 - $\blacktriangleright p^0 G = G,$
 - $\triangleright p^{\sigma+1}G = p(p^{\sigma}G),$
 - $p^{\sigma}G = \bigcap_{\rho < \sigma} p^{\rho}G$ for σ limit.

Note:

$p^0 G \supseteq p^1 G \subseteq p^2 G \supseteq \cdots \supseteq p^{\sigma} G \supseteq p^{\sigma+1} G \supseteq \cdots$

is a transfinite sequence of iterated Jacobson radicals.

The length of *G* is defined as min{λ | p^λG = p^{λ+1}G}. For such λ, p^λG is divisible, so a summand of *G*. In particular, p^λG = 0 if *G* is reduced.

- R a discrete valuation domain (e.g. \u00dc2p or k[[x]]).
- $p \in R$ a prime, unique up to multiplication by a unit.
- Given $G \in Mod-R$, inductively define $p^{\sigma}G$:
 - ▶ $p^0G = G$,
 - $\triangleright \ p^{\sigma+1}G = p(p^{\sigma}G),$
 - $p^{\sigma}G = \bigcap_{\rho < \sigma} p^{\rho}G$ for σ limit.

Note:

$p^0 G \supseteq p^1 G \subseteq p^2 G \supseteq \cdots \supseteq p^{\sigma} G \supseteq p^{\sigma+1} G \supseteq \cdots$

is a transfinite sequence of iterated Jacobson radicals.

The length of *G* is defined as min{λ | p^λG = p^{λ+1}G}. For such λ, p^λG is divisible, so a summand of *G*. In particular, p^λG = 0 if *G* is reduced.

- R a discrete valuation domain (e.g. \$\hinspace{\mathbb{Z}}_p\$ or k[[x]]).
- $p \in R$ a prime, unique up to multiplication by a unit.
- Given $G \in Mod-R$, inductively define $p^{\sigma}G$:
 - $p^{\sigma}G = G,$ $p^{\sigma+1}G = p(p^{\sigma}G),$ $p^{\sigma}G = \bigcap p^{\rho}G \text{ for } c$
 - $p^{\sigma}G = \bigcap_{\rho < \sigma} p^{\rho}G$ for σ limit.

Note:

$p^0 G \supseteq p^1 G \subseteq p^2 G \supseteq \cdots \supseteq p^{\sigma} G \supseteq p^{\sigma+1} G \supseteq \cdots$

is a transfinite sequence of iterated Jacobson radicals.

The length of *G* is defined as min{λ | p^λG = p^{λ+1}G}. For such λ, p^λG is divisible, so a summand of *G*. In particular, p^λG = 0 if *G* is reduced.

- R a discrete valuation domain (e.g. \$\hat{\mathbb{Z}}_p\$ or k[[x]]).
- $p \in R$ a prime, unique up to multiplication by a unit.
- Given $G \in Mod-R$, inductively define $p^{\sigma}G$:

•
$$p^0 G = G$$
,
• $p^{\sigma+1} G = p(p^{\sigma}G)$,
• $p^{\sigma} G = \bigcap_{\rho < \sigma} p^{\rho} G$ for σ limit.

Note:

$p^0 G \supseteq p^1 G \subseteq p^2 G \supseteq \cdots \supseteq p^{\sigma} G \supseteq p^{\sigma+1} G \supseteq \cdots$

is a transfinite sequence of iterated Jacobson radicals.

The length of *G* is defined as min{λ | p^λG = p^{λ+1}G}. For such λ, p^λG is divisible, so a summand of *G*. In particular, p^λG = 0 if *G* is reduced.

- R a discrete valuation domain (e.g. \$\hat{\mathbb{Z}}_p\$ or k[[x]]).
- $p \in R$ a prime, unique up to multiplication by a unit.
- Given $G \in Mod-R$, inductively define $p^{\sigma}G$:

Note:

$$p^0 G \supseteq p^1 G \subseteq p^2 G \supseteq \cdots \supseteq p^{\sigma} G \supseteq p^{\sigma+1} G \supseteq \cdots$$

is a transfinite sequence of iterated Jacobson radicals.

The length of *G* is defined as min{λ | p^λG = p^{λ+1}G}. For such λ, p^λG is divisible, so a summand of *G*. In particular, p^λG = 0 if *G* is reduced.

- R a discrete valuation domain (e.g. \$\hinspace{\mathbb{Z}}_p\$ or k[[x]]).
- $p \in R$ a prime, unique up to multiplication by a unit.
- Given $G \in Mod-R$, inductively define $p^{\sigma}G$:

•
$$p^0 G = G$$
,
• $p^{\sigma+1} G = p(p^{\sigma}G)$,
• $p^{\sigma} G = \bigcap_{\rho < \sigma} p^{\rho} G$ for σ limit.

Note:

$$p^0 G \supseteq p^1 G \subseteq p^2 G \supseteq \cdots \supseteq p^{\sigma} G \supseteq p^{\sigma+1} G \supseteq \cdots$$

is a transfinite sequence of iterated Jacobson radicals.

The length of *G* is defined as min{λ | p^λG = p^{λ+1}G}. For such λ, p^λG is divisible, so a summand of *G*. In particular, p^λG = 0 if *G* is reduced.

- R a discrete valuation domain (e.g. \$\hinspace{\mathbb{Z}}_p\$ or k[[x]]).
- $p \in R$ a prime, unique up to multiplication by a unit.
- Given $G \in Mod-R$, inductively define $p^{\sigma}G$:

•
$$p^0 G = G$$
,
• $p^{\sigma+1} G = p(p^{\sigma}G)$,
• $p^{\sigma} G = \bigcap_{\rho < \sigma} p^{\rho} G$ for σ limit.

Note:

$$p^0 G \supseteq p^1 G \subseteq p^2 G \supseteq \cdots \supseteq p^{\sigma} G \supseteq p^{\sigma+1} G \supseteq \cdots$$

is a transfinite sequence of iterated Jacobson radicals.

The length of *G* is defined as min{λ | p^λG = p^{λ+1}G}. For such λ, p^λG is divisible, so a summand of *G*. In particular, p^λG = 0 if *G* is reduced.

- R a discrete valuation domain (e.g. \$\hinspace{\mathbb{Z}}_p\$ or k[[x]]).
- $p \in R$ a prime, unique up to multiplication by a unit.
- Given $G \in Mod-R$, inductively define $p^{\sigma}G$:

▶
$$p^0 G = G$$
,
▶ $p^{\sigma+1} G = p(p^{\sigma} G)$,
▶ $p^{\sigma} G = \bigcap_{\rho < \sigma} p^{\rho} G$ for σ limit.

Note:

$$p^0 G \supseteq p^1 G \subseteq p^2 G \supseteq \cdots \supseteq p^{\sigma} G \supseteq p^{\sigma+1} G \supseteq \cdots$$

is a transfinite sequence of iterated Jacobson radicals.

• The length of *G* is defined as min $\{\lambda \mid p^{\lambda}G = p^{\lambda+1}G\}$. For such λ , $p^{\lambda}G$ is divisible, so a summand of *G*. In particular, $p^{\lambda}G = 0$ if *G* is reduced.

- R a discrete valuation domain (e.g. \$\hinspace{\mathbb{Z}}_p\$ or k[[x]]).
- $p \in R$ a prime, unique up to multiplication by a unit.
- Given $G \in Mod-R$, inductively define $p^{\sigma}G$:

▶
$$p^0 G = G$$
,
▶ $p^{\sigma+1} G = p(p^{\sigma} G)$,
▶ $p^{\sigma} G = \bigcap_{\rho < \sigma} p^{\rho} G$ for σ limit.

Note:

$$p^0 G \supseteq p^1 G \subseteq p^2 G \supseteq \cdots \supseteq p^{\sigma} G \supseteq p^{\sigma+1} G \supseteq \cdots$$

is a transfinite sequence of iterated Jacobson radicals.

• The length of *G* is defined as min $\{\lambda \mid p^{\lambda}G = p^{\lambda+1}G\}$. For such λ , $p^{\lambda}G$ is divisible, so a summand of *G*. In particular, $p^{\lambda}G = 0$ if *G* is reduced.

イロト イポト イラト イラト

Observation

 $G \mapsto p^{\lambda}G$ gives a functor $p^{\lambda}(-)$: Mod- $R \to Mod$ -R, which is not exact.

Definition

Let λ be an ordinal. A short exact sequence

 $0 \rightarrow A \rightarrow B \rightarrow C \rightarrow 0$

is λ -balanced if

$$0 \rightarrow p^{\sigma}A \rightarrow p^{\sigma}B \rightarrow p^{\sigma}C \rightarrow 0$$

is exact for each $\sigma < \lambda$.

Aim

Let λ be limit. Construct a set of modules S_{λ} such that

 λ -balanced $\iff S_{\lambda}$ -pure.

Jan Šťovíček (ECC)

Observation

 $G \mapsto p^{\lambda}G$ gives a functor $p^{\lambda}(-)$: Mod- $R \to Mod$ -R, which is not exact.

Definition

Let λ be an ordinal. A short exact sequence

 $0 \rightarrow A \rightarrow B \rightarrow C \rightarrow 0$

is λ -balanced if

$$0 \rightarrow p^{\sigma}A \rightarrow p^{\sigma}B \rightarrow p^{\sigma}C \rightarrow 0$$

is exact for each $\sigma < \lambda$.

Aim

Let λ be limit. Construct a set of modules S_{λ} such that

 λ -balanced $\iff \mathcal{S}_{\lambda}$ -pure.

Jan Šťovíček (ECC)

Observation

 $G \mapsto p^{\lambda}G$ gives a functor $p^{\lambda}(-)$: Mod- $R \to Mod$ -R, which is not exact.

Definition

Let λ be an ordinal. A short exact sequence

 $0 \rightarrow A \rightarrow B \rightarrow C \rightarrow 0$

is λ -balanced if

$$0 \rightarrow p^{\sigma}A \rightarrow p^{\sigma}B \rightarrow p^{\sigma}C \rightarrow 0$$

is exact for each $\sigma < \lambda$.

Aim

Let λ be limit. Construct a set of modules S_{λ} such that

 λ -balanced $\iff \mathcal{S}_{\lambda}$ -pure

Jan Šťovíček (ECC)

Observation

 $G \mapsto p^{\lambda}G$ gives a functor $p^{\lambda}(-)$: Mod- $R \to Mod$ -R, which is not exact.

Definition

Let λ be an ordinal. A short exact sequence

 $0 \rightarrow A \rightarrow B \rightarrow C \rightarrow 0$

is λ -balanced if

$$0 \rightarrow p^{\sigma} A \rightarrow p^{\sigma} B \rightarrow p^{\sigma} C \rightarrow 0$$

is exact for each $\sigma < \lambda$.

Aim

Let λ be limit. Construct a set of modules S_{λ} such that

 λ -balanced $\iff \mathcal{S}_{\lambda}$ -pure

Jan Šťovíček (ECC)

Observation

 $G \mapsto p^{\lambda}G$ gives a functor $p^{\lambda}(-)$: Mod- $R \to Mod$ -R, which is not exact.

Definition

Let λ be an ordinal. A short exact sequence

$$0 \rightarrow A \rightarrow B \rightarrow C \rightarrow 0$$

is λ -balanced if

$$0 \rightarrow p^{\sigma} A \rightarrow p^{\sigma} B \rightarrow p^{\sigma} C \rightarrow 0$$

is exact for each $\sigma < \lambda$.

Aim

Let λ be limit. Construct a set of modules S_{λ} such that

 λ -balanced $\iff \mathcal{S}_\lambda$ -pure

Jan Šťovíček (ECC)

Observation

 $G \mapsto p^{\lambda}G$ gives a functor $p^{\lambda}(-)$: Mod- $R \to Mod$ -R, which is not exact.

Definition

Let λ be an ordinal. A short exact sequence

$$0 \rightarrow A \rightarrow B \rightarrow C \rightarrow 0$$

is λ -balanced if

$$0 \rightarrow p^{\sigma} A \rightarrow p^{\sigma} B \rightarrow p^{\sigma} C \rightarrow 0$$

is exact for each $\sigma < \lambda$.

Aim

Let λ be limit. Construct a set of modules S_{λ} such that

 λ -balanced $\iff \mathcal{S}_\lambda$ -pu

Jan Šťovíček (ECC)

Observation

 $G \mapsto p^{\lambda}G$ gives a functor $p^{\lambda}(-)$: Mod- $R \to Mod$ -R, which is not exact.

Definition

Let λ be an ordinal. A short exact sequence

$$0 \rightarrow A \rightarrow B \rightarrow C \rightarrow 0$$

is λ -balanced if

$$0 \rightarrow p^{\sigma} A \rightarrow p^{\sigma} B \rightarrow p^{\sigma} C \rightarrow 0$$

is exact for each $\sigma < \lambda$.

Aim

Let λ be limit. Construct a set of modules S_{λ} such that

-balanced $\iff \mathcal{S}_\lambda$ -pure

Jan Šťovíček (ECC)

Observation

 $G \mapsto p^{\lambda}G$ gives a functor $p^{\lambda}(-)$: Mod- $R \to Mod$ -R, which is not exact.

Definition

Let λ be an ordinal. A short exact sequence

$$0 \rightarrow A \rightarrow B \rightarrow C \rightarrow 0$$

is λ -balanced if

$$0 \rightarrow p^{\sigma} A \rightarrow p^{\sigma} B \rightarrow p^{\sigma} C \rightarrow 0$$

is exact for each $\sigma < \lambda$.

Aim

Let λ be limit. Construct a set of modules S_{λ} such that

$$\lambda$$
-balanced $\iff S_{\lambda}$ -pure.

Jan Šťovíček (ECC)

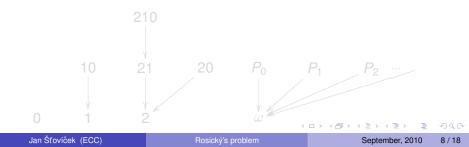
Walker's modules P_{β}

- Construct a module P_{β} using generators and relations.
- For an ordinal β , generators are indexed by finite sequences $\beta\beta_1\beta_2$, β_2 , such that $\beta > \beta_1 > \beta_2 > \cdots > \beta_n$

• Relations:

$$p \cdot \beta_1 \beta_2 \dots \beta_n \beta_{n+1} = \beta_1 \beta_2 \dots \beta_n$$
 and $p \cdot \beta = 0$.

• Note: β infinite $\implies P_{\beta}$ is $|\beta|$ -presented.

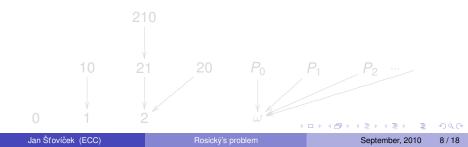


- Construct a module P_{β} using generators and relations.
- For an ordinal β , generators are indexed by finite sequences

 $\beta\beta_1\beta_2\ldots\beta_n$ such that $\beta>\beta_1>\beta_2>\cdots>\beta_n$.

• Relations:

$$p \cdot \beta_1 \beta_2 \dots \beta_n \beta_{n+1} = \beta_1 \beta_2 \dots \beta_n$$
 and $p \cdot \beta = 0$.

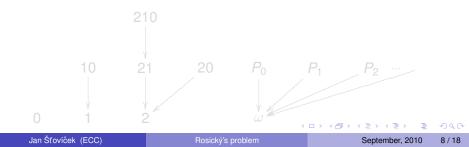


- Construct a module P_{β} using generators and relations.
- For an ordinal β , generators are indexed by finite sequences

 $\beta\beta_1\beta_2\ldots\beta_n$ such that $\beta>\beta_1>\beta_2>\cdots>\beta_n$.

• Relations:

$$p \cdot \beta_1 \beta_2 \dots \beta_n \beta_{n+1} = \beta_1 \beta_2 \dots \beta_n$$
 and $p \cdot \beta = 0$.

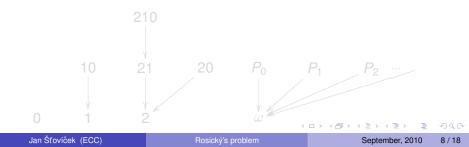


- Construct a module P_{β} using generators and relations.
- For an ordinal β , generators are indexed by finite sequences

 $\beta\beta_1\beta_2\dots\beta_n$ such that $\beta > \beta_1 > \beta_2 > \dots > \beta_n$.

• Relations:

$$p \cdot \beta_1 \beta_2 \dots \beta_n \beta_{n+1} = \beta_1 \beta_2 \dots \beta_n$$
 and $p \cdot \beta = 0$.

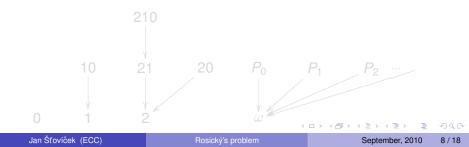


- Construct a module P_{β} using generators and relations.
- For an ordinal β , generators are indexed by finite sequences

 $\beta\beta_1\beta_2\dots\beta_n$ such that $\beta>\beta_1>\beta_2>\dots>\beta_n$.

• Relations:

$$p \cdot \beta_1 \beta_2 \dots \beta_n \beta_{n+1} = \beta_1 \beta_2 \dots \beta_n$$
 and $p \cdot \beta = 0$.

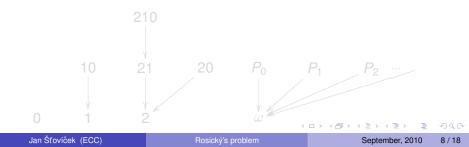


- Construct a module P_{β} using generators and relations.
- For an ordinal β , generators are indexed by finite sequences

 $\beta\beta_1\beta_2\dots\beta_n$ such that $\beta>\beta_1>\beta_2>\dots>\beta_n$.

Relations:

$$p \cdot \beta_1 \beta_2 \dots \beta_n \beta_{n+1} = \beta_1 \beta_2 \dots \beta_n$$
 and $p \cdot \beta = 0$.

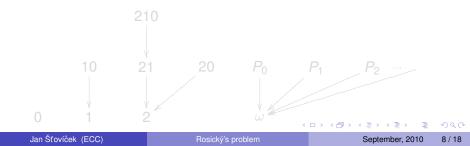


- Construct a module P_{β} using generators and relations.
- For an ordinal β , generators are indexed by finite sequences

 $\beta\beta_1\beta_2\dots\beta_n$ such that $\beta>\beta_1>\beta_2>\dots>\beta_n$.

Relations:

$$p \cdot \beta_1 \beta_2 \dots \beta_n \beta_{n+1} = \beta_1 \beta_2 \dots \beta_n$$
 and $p \cdot \beta = 0$.

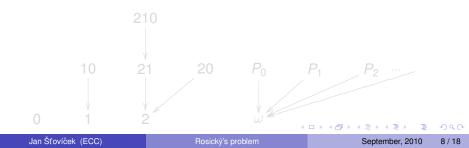


- Construct a module P_{β} using generators and relations.
- For an ordinal β , generators are indexed by finite sequences

 $\beta\beta_1\beta_2\ldots\beta_n$ such that $\beta>\beta_1>\beta_2>\cdots>\beta_n$.

Relations:

$$p \cdot \beta_1 \beta_2 \dots \beta_n \beta_{n+1} = \beta_1 \beta_2 \dots \beta_n$$
 and $p \cdot \beta = 0$.

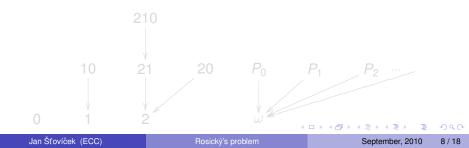


- Construct a module P_{β} using generators and relations.
- For an ordinal β , generators are indexed by finite sequences

 $\beta\beta_1\beta_2\ldots\beta_n$ such that $\beta>\beta_1>\beta_2>\cdots>\beta_n$.

Relations:

$$p \cdot \beta_1 \beta_2 \dots \beta_n \beta_{n+1} = \beta_1 \beta_2 \dots \beta_n$$
 and $p \cdot \beta = 0$.

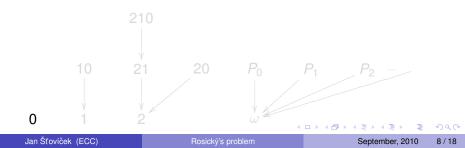


- Construct a module P_{β} using generators and relations.
- For an ordinal β , generators are indexed by finite sequences

 $\beta\beta_1\beta_2\ldots\beta_n$ such that $\beta>\beta_1>\beta_2>\cdots>\beta_n$.

Relations:

$$p \cdot \beta_1 \beta_2 \dots \beta_n \beta_{n+1} = \beta_1 \beta_2 \dots \beta_n$$
 and $p \cdot \beta = 0$.

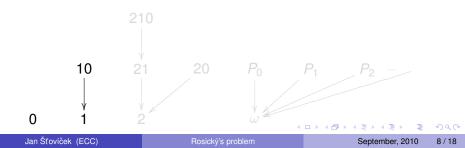


- Construct a module P_{β} using generators and relations.
- For an ordinal β , generators are indexed by finite sequences

 $\beta\beta_1\beta_2\ldots\beta_n$ such that $\beta>\beta_1>\beta_2>\cdots>\beta_n$.

Relations:

$$p \cdot \beta_1 \beta_2 \dots \beta_n \beta_{n+1} = \beta_1 \beta_2 \dots \beta_n$$
 and $p \cdot \beta = 0$.

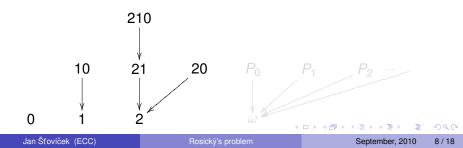


- Construct a module P_{β} using generators and relations.
- For an ordinal β , generators are indexed by finite sequences

 $\beta\beta_1\beta_2\dots\beta_n$ such that $\beta>\beta_1>\beta_2>\dots>\beta_n$.

Relations:

$$p \cdot \beta_1 \beta_2 \dots \beta_n \beta_{n+1} = \beta_1 \beta_2 \dots \beta_n$$
 and $p \cdot \beta = 0$.

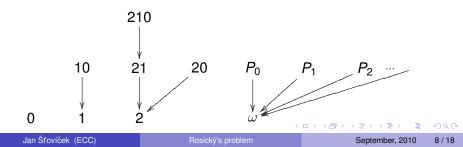


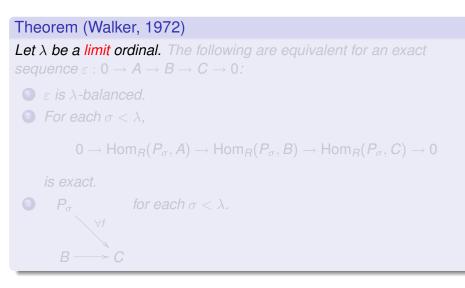
- Construct a module P_{β} using generators and relations.
- For an ordinal β , generators are indexed by finite sequences

 $\beta\beta_1\beta_2\dots\beta_n$ such that $\beta>\beta_1>\beta_2>\dots>\beta_n$.

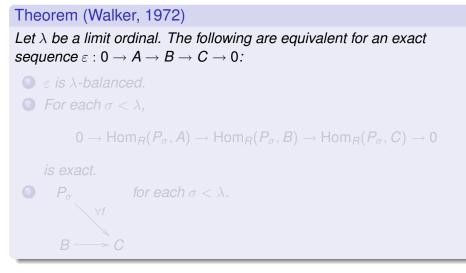
Relations:

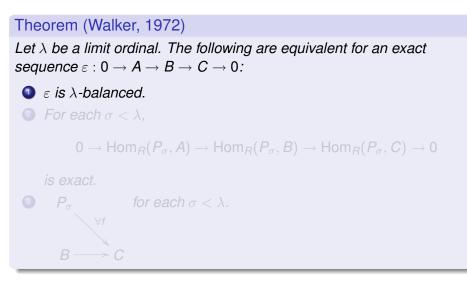
$$p \cdot \beta_1 \beta_2 \dots \beta_n \beta_{n+1} = \beta_1 \beta_2 \dots \beta_n$$
 and $p \cdot \beta = 0$.





3



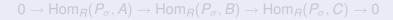


Jan Šťovíček (ECC)

Theorem (Walker, 1972)

Let λ be a limit ordinal. The following are equivalent for an exact sequence $\varepsilon : 0 \rightarrow A \rightarrow B \rightarrow C \rightarrow 0$:

- ε is λ -balanced.
- 2 For each $\sigma < \lambda$,

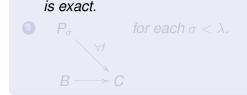


Theorem (Walker, 1972)

Let λ be a limit ordinal. The following are equivalent for an exact sequence $\varepsilon : 0 \rightarrow A \rightarrow B \rightarrow C \rightarrow 0$:

- ε is λ -balanced.
- 2 For each $\sigma < \lambda$,

 $0 \rightarrow \operatorname{Hom}_{R}(P_{\sigma}, A) \rightarrow \operatorname{Hom}_{R}(P_{\sigma}, B) \rightarrow \operatorname{Hom}_{R}(P_{\sigma}, C) \rightarrow 0$

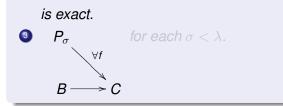


Theorem (Walker, 1972)

Let λ be a limit ordinal. The following are equivalent for an exact sequence $\varepsilon : 0 \rightarrow A \rightarrow B \rightarrow C \rightarrow 0$:

- ε is λ -balanced.
- 2 For each $\sigma < \lambda$,

 $0 \rightarrow \operatorname{Hom}_{R}(P_{\sigma}, A) \rightarrow \operatorname{Hom}_{R}(P_{\sigma}, B) \rightarrow \operatorname{Hom}_{R}(P_{\sigma}, C) \rightarrow 0$

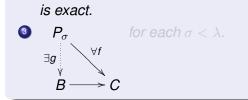


Theorem (Walker, 1972)

Let λ be a limit ordinal. The following are equivalent for an exact sequence $\varepsilon : \mathbf{0} \to \mathbf{A} \to \mathbf{B} \to \mathbf{C} \to \mathbf{0}$:

- $\bigcirc \varepsilon$ is λ -balanced.
- 2 For each $\sigma < \lambda$.

 $0 \rightarrow \operatorname{Hom}_{B}(P_{\sigma}, A) \rightarrow \operatorname{Hom}_{B}(P_{\sigma}, B) \rightarrow \operatorname{Hom}_{B}(P_{\sigma}, C) \rightarrow 0$



4 E N 4 E N

Image: A matrix and a matrix

Theorem (Walker, 1972)

Let λ be a limit ordinal. The following are equivalent for an exact sequence $\varepsilon : 0 \rightarrow A \rightarrow B \rightarrow C \rightarrow 0$:

- ε is λ -balanced.
- 2 For each $\sigma < \lambda$,

 $0 \rightarrow \operatorname{Hom}_{R}(P_{\sigma}, A) \rightarrow \operatorname{Hom}_{R}(P_{\sigma}, B) \rightarrow \operatorname{Hom}_{R}(P_{\sigma}, C) \rightarrow 0$

3

B N A **B** N

Image: Image:

Given a module *G* and an ordinal λ, the *p*^λ-adic topology on *G* is a linear topology with basis of neighborhoods of 0 ∈ *G* taken as

$$\mathcal{U}_0 = \{ \boldsymbol{p}^{\sigma} \boldsymbol{G} \mid \sigma < \lambda \}$$

• For abelian *p*-groups studied by Mines, 1968.

Facts

Assume λ is limit and *G* is reduced torsion. Then:

- p^{λ} -adic topology is discrete \iff length of *G* is $< \lambda$;
- ② p^{λ} -adic topology is Hausdorff \iff length of *G* is ≤ λ ;

 Given a module G and an ordinal λ, the p^λ-adic topology on G is a linear topology with basis of neighborhoods of 0 ∈ G taken as

 $\mathcal{U}_0 = \{ \boldsymbol{p}^{\sigma} \boldsymbol{G} \mid \sigma < \lambda \}$

• For abelian *p*-groups studied by Mines, 1968.

Facts

Assume λ is limit and *G* is reduced torsion. Then:

- p^{λ} -adic topology is discrete \iff length of *G* is $< \lambda$;
- ② p^{λ} -adic topology is Hausdorff \iff length of *G* is ≤ λ ;

Given a module G and an ordinal λ, the p^λ-adic topology on G is a linear topology with basis of neighborhoods of 0 ∈ G taken as

 $\mathcal{U}_0 = \{ \boldsymbol{p}^{\sigma} \boldsymbol{G} \mid \sigma < \lambda \}$

• For abelian *p*-groups studied by Mines, 1968.

Facts

Assume λ is limit and *G* is reduced torsion. Then:

- p^{λ} -adic topology is discrete \iff length of *G* is $< \lambda$;
- ⓐ p^{λ} -adic topology is Hausdorff \iff length of *G* is ≤ λ ;

Given a module G and an ordinal λ, the p^λ-adic topology on G is a linear topology with basis of neighborhoods of 0 ∈ G taken as

$$\mathcal{U}_{0} = \{ \boldsymbol{p}^{\sigma} \boldsymbol{G} \mid \sigma < \lambda \}$$

• For abelian *p*-groups studied by Mines, 1968.

Facts

Assume λ is limit and *G* is reduced torsion. Then:

- p^{λ} -adic topology is discrete \iff length of *G* is $< \lambda$;
- ◎ p^{λ} -adic topology is Hausdorff \iff length of *G* is $\leq \lambda$;

Given a module G and an ordinal λ, the p^λ-adic topology on G is a linear topology with basis of neighborhoods of 0 ∈ G taken as

$$\mathcal{U}_0 = \{ \boldsymbol{p}^{\sigma} \boldsymbol{G} \mid \sigma < \lambda \}$$

• For abelian *p*-groups studied by Mines, 1968.

Facts

Assume λ is limit and *G* is reduced torsion. Then:

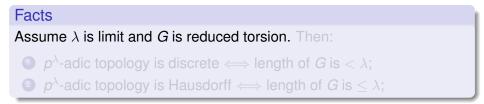
- p^{λ} -adic topology is discrete \iff length of G is $< \lambda$;
- ◎ p^{λ} -adic topology is Hausdorff \iff length of *G* is $\leq \lambda$;

4 3 5 4 3 5

Given a module G and an ordinal λ, the p^λ-adic topology on G is a linear topology with basis of neighborhoods of 0 ∈ G taken as

$$\mathcal{U}_0 = \{ \boldsymbol{p}^{\sigma} \boldsymbol{G} \mid \sigma < \lambda \}$$

• For abelian *p*-groups studied by Mines, 1968.



Given a module G and an ordinal λ, the p^λ-adic topology on G is a linear topology with basis of neighborhoods of 0 ∈ G taken as

$$\mathcal{U}_0 = \{ \boldsymbol{p}^{\sigma} \boldsymbol{G} \mid \sigma < \lambda \}$$

• For abelian *p*-groups studied by Mines, 1968.

Facts

Assume λ is limit and *G* is reduced torsion. Then:

• p^{λ} -adic topology is discrete \iff length of *G* is $< \lambda$;

 p^{λ} -adic topology is Hausdorff \iff length of G is $\leq \lambda$;

4 3 5 4 3 5 5

Given a module G and an ordinal λ, the p^λ-adic topology on G is a linear topology with basis of neighborhoods of 0 ∈ G taken as

$$\mathcal{U}_0 = \{ \boldsymbol{p}^{\sigma} \boldsymbol{G} \mid \sigma < \lambda \}$$

• For abelian *p*-groups studied by Mines, 1968.

Facts

Assume λ is limit and *G* is reduced torsion. Then:

- p^{λ} -adic topology is discrete \iff length of *G* is $< \lambda$;
- 2 p^{λ} -adic topology is Hausdorff \iff length of G is $\leq \lambda$;

4 3 5 4 3 5 5

Fact & Definition

Any linear topology determines a uniform space.

So we say that G is complete in the p^{λ} -adic topology provided that every Cauchy net converges.

Theorem (Salce, 1980)

Let

- R be a discrete valuation domain,
- λ an uncountable regular cardinal,
- G ∈ Mod-R reduced, torsion and λ-pure projective (= summand in a sum of < λ-presented modules).

Then G is complete in the p^{λ} -adic topology.

Fact & Definition

Any linear topology determines a uniform space. So we say that *G* is complete in the p^{λ} -adic topology provided that every Cauchy net converges.

Theorem (Salce, 1980)

Let

- R be a discrete valuation domain,
- λ an uncountable regular cardinal,
- G ∈ Mod-R reduced, torsion and λ-pure projective (= summand in a sum of < λ-presented modules).

Then G is complete in the p^{λ} -adic topology.

Fact & Definition

Any linear topology determines a uniform space. So we say that *G* is complete in the p^{λ} -adic topology provided that every Cauchy net converges.

Theorem (Salce, 1980)

Let

- R be a discrete valuation domain,
- λ an uncountable regular cardinal,
- G ∈ Mod-R reduced, torsion and λ-pure projective (= summand in a sum of < λ-presented modules).

Then G is complete in the p^{λ} -adic topology.

Fact & Definition

Any linear topology determines a uniform space. So we say that *G* is complete in the p^{λ} -adic topology provided that every Cauchy net converges.

Theorem (Salce, 1980)

Let

- R be a discrete valuation domain,
- λ an uncountable regular cardinal,
- G ∈ Mod-R reduced, torsion and λ-pure projective (= summand in a sum of < λ-presented modules).

Then G is complete in the p $^\lambda$ -adic topology.

Fact & Definition

Any linear topology determines a uniform space. So we say that *G* is complete in the p^{λ} -adic topology provided that every Cauchy net converges.

Theorem (Salce, 1980)

Let

- R be a discrete valuation domain,
- λ an uncountable regular cardinal,
- G ∈ Mod-R reduced, torsion and λ-pure projective (= summand in a sum of < λ-presented modules).

Then G is complete in the p $^\lambda$ -adic topology.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Fact & Definition

Any linear topology determines a uniform space. So we say that *G* is complete in the p^{λ} -adic topology provided that every Cauchy net converges.

Theorem (Salce, 1980)

Let

- R be a discrete valuation domain,
- λ an uncountable regular cardinal,
- G ∈ Mod-R reduced, torsion and λ-pure projective (= summand in a sum of < λ-presented modules).

Then G is complete in the p $^\lambda$ -adic topology.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Fact & Definition

Any linear topology determines a uniform space. So we say that *G* is complete in the p^{λ} -adic topology provided that every Cauchy net converges.

Theorem (Salce, 1980)

Let

- R be a discrete valuation domain,
- λ an uncountable regular cardinal,
- G ∈ Mod-R reduced, torsion and λ-pure projective (= summand in a sum of < λ-presented modules).

Then G is complete in the p^{λ} -adic topology.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Fact & Definition

Any linear topology determines a uniform space. So we say that *G* is complete in the p^{λ} -adic topology provided that every Cauchy net converges.

Theorem (Salce, 1980)

Let

- R be a discrete valuation domain,
- λ an uncountable regular cardinal,
- G ∈ Mod-R reduced, torsion and λ-pure projective (= summand in a sum of < λ-presented modules).

Then G is complete in the p^{λ} -adic topology.

Image: A matrix and a matrix

Theorem (Bazzoni-Š., 2010)

Let R be a discrete valuation domain and λ an uncountable regular cardinal.

Then the λ -pure global dimension of Walker's module P $_{\lambda}$ is > 1.

Idea behind proof

The exact sequence

$$0 \longrightarrow K \longrightarrow \bigoplus_{\beta < \lambda} P_{\beta}^{(\operatorname{Hom}_{R}(P_{\beta}, P_{\lambda}))} \longrightarrow P_{\lambda} \longrightarrow 0$$

is λ -pure and λ -balanced.

Solution K is not a closed subspace of $\bigoplus_{\beta < \lambda} P_{\beta}^{(\text{Hom}_R(P_{\beta}, P_{\lambda}))}$ in p^{λ} -adic topology, So it is nether complete nor λ -pure projective.

Theorem (Bazzoni-Š., 2010)

Let R be a discrete valuation domain and λ an uncountable regular cardinal.

Then the λ -pure global dimension of Walker's module P_{λ} is > 1.

Idea behind proof

The exact sequence

$$0 \longrightarrow K \longrightarrow \bigoplus_{\beta < \lambda} P_{\beta}^{(\operatorname{Hom}_{R}(P_{\beta}, P_{\lambda}))} \longrightarrow P_{\lambda} \longrightarrow 0$$

is λ -pure and λ -balanced.

Solution K is not a closed subspace of $\bigoplus_{\beta < \lambda} P_{\beta}^{(\text{Hom}_R(P_{\beta}, P_{\lambda}))}$ in p^{λ} -adic topology, So it is nether complete nor λ -pure projective.

Theorem (Bazzoni-Š., 2010)

Let R be a discrete valuation domain and λ an uncountable regular cardinal.

Then the λ -pure global dimension of Walker's module P_{λ} is > 1.

Idea behind proof

The exact sequence

$$0 \longrightarrow K \longrightarrow \bigoplus_{\beta < \lambda} P_{\beta}^{(\operatorname{Hom}_{R}(P_{\beta}, P_{\lambda}))} \longrightarrow P_{\lambda} \longrightarrow 0$$

is λ -pure and λ -balanced.

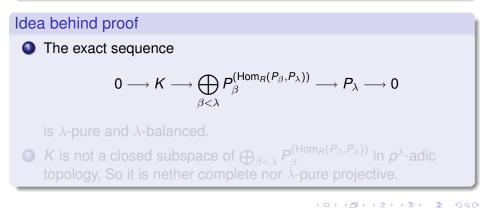
If K is not a closed subspace of $\bigoplus_{\beta < \lambda} P_{\beta}^{(\text{Hom}_R(P_{\beta}, P_{\lambda}))}$ in p^{λ} -adic topology, So it is nether complete nor λ -pure projective.

(3)

Theorem (Bazzoni-Š., 2010)

Let R be a discrete valuation domain and λ an uncountable regular cardinal.

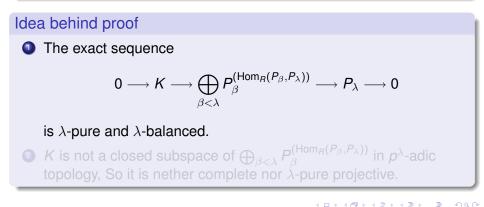
Then the λ -pure global dimension of Walker's module P_{λ} is > 1.



Theorem (Bazzoni-Š., 2010)

Let R be a discrete valuation domain and λ an uncountable regular cardinal.

Then the λ -pure global dimension of Walker's module P_{λ} is > 1.



Theorem (Bazzoni-Š., 2010)

Let R be a discrete valuation domain and λ an uncountable regular cardinal.

Then the λ -pure global dimension of Walker's module P_{λ} is > 1.

Idea behind proof

The exact sequence

$$0 \longrightarrow \mathcal{K} \longrightarrow \bigoplus_{\beta < \lambda} \mathcal{P}_{\beta}^{(\mathsf{Hom}_{\mathcal{R}}(\mathcal{P}_{\beta}, \mathcal{P}_{\lambda}))} \longrightarrow \mathcal{P}_{\lambda} \longrightarrow 0$$

is λ -pure and λ -balanced.

K is not a closed subspace of ⊕_{β<λ} P^{(Hom_R(P_β,P_λ))} in p^λ-adic topology, So it is nether complete nor λ-pure projective.

э.

Theorem (Bazzoni-Š., 2010)

Let R be a discrete valuation domain and λ an uncountable regular cardinal.

Then the λ -pure global dimension of Walker's module P_{λ} is > 1.

Idea behind proof

The exact sequence

$$0 \longrightarrow \mathcal{K} \longrightarrow \bigoplus_{\beta < \lambda} \mathcal{P}_{\beta}^{(\mathsf{Hom}_{\mathcal{R}}(\mathcal{P}_{\beta}, \mathcal{P}_{\lambda}))} \longrightarrow \mathcal{P}_{\lambda} \longrightarrow 0$$

is λ -pure and λ -balanced.

K is not a closed subspace of ⊕_{β<λ} P^{(Hom_R(P_β,P_λ))} in p^λ-adic topology, So it is nether complete nor λ-pure projective.

Jan	Šťo	víček	(ECC)
			(200)

э.

Theorem (Bazzoni-Š., 2010)

Let R be a discrete valuation domain and λ an uncountable regular cardinal.

Then the λ -pure global dimension of Walker's module P_{λ} is > 1.

Idea behind proof

The exact sequence

$$0 \longrightarrow \mathcal{K} \longrightarrow \bigoplus_{\beta < \lambda} \mathcal{P}_{\beta}^{(\mathsf{Hom}_{R}(\mathcal{P}_{\beta}, \mathcal{P}_{\lambda}))} \longrightarrow \mathcal{P}_{\lambda} \longrightarrow 0$$

is λ -pure and λ -balanced.

K is not a closed subspace of ⊕_{β<λ} P^{(Hom_R(P_β,P_λ))} in p^λ-adic topology, So it is nether complete nor λ-pure projective.

	ŏ.		
Jan	Sťov	/icek	(ECC)

э.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Outline

The problem and motivation

- The case of discrete valuation domains
 Balanced sequences and Walker's modules
 - Employing the p^{λ} -adic topology

The counterexample

- Purity in finitely accessible categories
- Results of Osofsky and Lenzing
- Summary

Definition

Let $\ensuremath{\mathcal{C}}$ be an category with direct limits. Then

- X ∈ C is finitely presentable if Hom_C(X, −) commutes with direct limits.
- C is a finitely accessible category if ∃ set S of finitely presentable objects such that C = lim S.
- *T* ⊆ *C* is a finitely accessible subcategory of *C* if *T* is closed under lim in *C* and for each *X* ∈ *T* we have

X finitely presentable in $\mathcal{T} \implies X$ finitely presentable \mathcal{C} .

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Definition

Let $\ensuremath{\mathcal{C}}$ be an category with direct limits. Then

- X ∈ C is finitely presentable if Hom_C(X, −) commutes with direct limits.
- C is a finitely accessible category if ∃ set S of finitely presentable objects such that C = lim S.
- *T* ⊆ *C* is a finitely accessible subcategory of *C* if *T* is closed under lim in *C* and for each *X* ∈ *T* we have

X finitely presentable in $\mathcal{T} \implies X$ finitely presentable \mathcal{C} .

A B F A B F

Definition

Let $\ensuremath{\mathcal{C}}$ be an category with direct limits. Then

- X ∈ C is finitely presentable if Hom_C(X, −) commutes with direct limits.
- C is a finitely accessible category if ∃ set S of finitely presentable objects such that C = lim S.
- *T* ⊆ *C* is a finitely accessible subcategory of *C* if *T* is closed under lim in *C* and for each *X* ∈ *T* we have

X finitely presentable in $\mathcal{T} \implies X$ finitely presentable \mathcal{C} .

(B)

Definition

Let $\ensuremath{\mathcal{C}}$ be an category with direct limits. Then

- X ∈ C is finitely presentable if Hom_C(X, −) commutes with direct limits.
- C is a finitely accessible category if ∃ set S of finitely presentable objects such that C = lim S.
- $T \subseteq C$ is a finitely accessible subcategory of C if T is closed under lim in C and for each $X \in T$ we have

X finitely presentable in $\mathcal{T} \implies X$ finitely presentable \mathcal{C} .

(B)

Definition

Let $\ensuremath{\mathcal{C}}$ be an category with direct limits. Then

- X ∈ C is finitely presentable if Hom_C(X, −) commutes with direct limits.
- C is a finitely accessible category if ∃ set S of finitely presentable objects such that C = lim S.
- *T* ⊆ *C* is a finitely accessible subcategory of *C* if *T* is closed under lim in *C* and for each *X* ∈ *T* we have

X finitely presentable in $\mathcal{T} \implies X$ finitely presentable \mathcal{C} .

(B)

Definition

Let \mathcal{C} be an category with direct limits. Then

- X ∈ C is finitely presentable if Hom_C(X, −) commutes with direct limits.
- C is a finitely accessible category if ∃ set S of finitely presentable objects such that C = lim S.
- $T \subseteq C$ is a finitely accessible subcategory of C if T is closed under lim in C and for each $X \in T$ we have

X finitely presentable in $\mathcal{T} \implies X$ finitely presentable \mathcal{C} .

(B)

Definition

Let \mathcal{C} be an category with direct limits. Then

- X ∈ C is finitely presentable if Hom_C(X, −) commutes with direct limits.
- C is a finitely accessible category if ∃ set S of finitely presentable objects such that C = lim S.
- *T* ⊆ *C* is a finitely accessible subcategory of *C* if *T* is closed under lim in *C* and for each *X* ∈ *T* we have

X finitely presentable in $\mathcal{T} \implies X$ finitely presentable \mathcal{C} .

Definition

Let $\ensuremath{\mathcal{C}}$ be an category with direct limits. Then

- X ∈ C is finitely presentable if Hom_C(X, −) commutes with direct limits.
- C is a finitely accessible category if ∃ set S of finitely presentable objects such that C = lim S.
- $T \subseteq C$ is a finitely accessible subcategory of C if T is closed under $\varinjlim in C$ and for each $X \in T$ we have

X finitely presentable in $\mathcal{T} \implies X$ finitely presentable \mathcal{C} .

A B > A B >

Definition

Let $\ensuremath{\mathcal{C}}$ be an category with direct limits. Then

- X ∈ C is finitely presentable if Hom_C(X, −) commutes with direct limits.
- C is a finitely accessible category if ∃ set S of finitely presentable objects such that C = lim S.
- $T \subseteq C$ is a finitely accessible subcategory of C if T is closed under $\varinjlim \cap C$ and for each $X \in T$ we have

X finitely presentable in $\mathcal{T} \implies X$ finitely presentable \mathcal{C} .

Fact

If ${\mathcal C}$ is additive finitely accessible and λ regular, it makes perfect sense to speak of

- () λ -pure exact sequences and λ -pure projective objects in C,
- ② λ -pure projective dimension of $G \in C$,
- (a) λ -pure global dimension of C.

Observation (irrelevance of the ambient category!)

If $\mathcal{T} \subseteq \mathcal{C}$ is a finitely accessible subcategory and $G \in \mathcal{T}$, then

 λ -pure proj.dim_T $G = \lambda$ -pure proj.dim_C G

Corollary λ -pure gl.dim $\mathcal{T} \leq \lambda$ -pure gl.dim \mathcal{C} .Jan Štovićek (ECC)Rosický's problemSeptember. 201015 / 18

Fact

If C is additive finitely accessible and λ regular, it makes perfect sense to speak of

э Jan Šťovíček (ECC)

Fact

If C is additive finitely accessible and λ regular, it makes perfect sense to speak of

1 λ -pure exact sequences and λ -pure projective objects in C,

э

イロト 不得 トイヨト イヨト

Fact

If C is additive finitely accessible and λ regular, it makes perfect sense to speak of

• λ -pure exact sequences and λ -pure projective objects in C,

2 λ -pure projective dimension of $G \in C$,

イロト 不得 トイヨト イヨト

э

Fact

If ${\mathcal C}$ is additive finitely accessible and λ regular, it makes perfect sense to speak of

- λ -pure exact sequences and λ -pure projective objects in C,
- 2 λ -pure projective dimension of $G \in C$,
- **3** λ -pure global dimension of C.

Observation (irrelevance of the ambient category!)

If $\mathcal{T} \subseteq \mathcal{C}$ is a finitely accessible subcategory and $G \in \mathcal{T}$, then

 λ -pure proj.dim_T $G = \lambda$ -pure proj.dim_C G

Corollary λ -pure gl.dim $T \leq \lambda$ -pure gl.dim C.

э

Fact

If ${\mathcal C}$ is additive finitely accessible and λ regular, it makes perfect sense to speak of

- λ -pure exact sequences and λ -pure projective objects in C,
- 2 λ -pure projective dimension of $G \in C$,
- **3** λ -pure global dimension of C.

Observation (irrelevance of the ambient category!)

If $\mathcal{T} \subseteq \mathcal{C}$ is a finitely accessible subcategory and $G \in \mathcal{T}$, then

λ -pure proj.dim_{\mathcal{T}} $G = \lambda$ -pure proj.dim_{\mathcal{C}} G

Corollary

 λ -pure gl.dim $\mathcal{T} \leq \lambda$ -pure gl.dim $\mathcal{C}.$

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ.

Fact

If ${\mathcal C}$ is additive finitely accessible and λ regular, it makes perfect sense to speak of

- λ -pure exact sequences and λ -pure projective objects in C,
- 2 λ -pure projective dimension of $G \in C$,
- **3** λ -pure global dimension of C.

Observation (irrelevance of the ambient category!)

If $\mathcal{T} \subseteq \mathcal{C}$ is a finitely accessible subcategory and $G \in \mathcal{T},$ then

λ -pure proj.dim_T $G = \lambda$ -pure proj.dim_C G

Corollary

 λ -pure gl.dim $\mathcal{T} \leq \lambda$ -pure gl.dim $\mathcal{C}.$

Fact

If ${\mathcal C}$ is additive finitely accessible and λ regular, it makes perfect sense to speak of

- λ -pure exact sequences and λ -pure projective objects in C,
- 2 λ -pure projective dimension of $G \in C$,
- **3** λ -pure global dimension of C.

Observation (irrelevance of the ambient category!)

If $\mathcal{T} \subseteq \mathcal{C}$ is a finitely accessible subcategory and $\textit{G} \in \mathcal{T},$ then

$$\lambda$$
-pure proj.dim _{\mathcal{T}} $G = \lambda$ -pure proj.dim _{\mathcal{C}} G

Corollary
 λ -pure gl.dim $\mathcal{T} \leq \lambda$ -pure gl.dim \mathcal{C} .Jan Šťoviček (ECC)Rosický's problemSeptember, 201015/18

Fact

If ${\mathcal C}$ is additive finitely accessible and λ regular, it makes perfect sense to speak of

- λ -pure exact sequences and λ -pure projective objects in C,
- 2 λ -pure projective dimension of $G \in C$,
- **3** λ -pure global dimension of C.

Observation (irrelevance of the ambient category!)

If $\mathcal{T} \subseteq \mathcal{C}$ is a finitely accessible subcategory and $\textit{G} \in \mathcal{T},$ then

 λ -pure proj.dim_{\mathcal{T}} $G = \lambda$ -pure proj.dim_{\mathcal{C}} G

Corollary λ -pure gl.dim $\mathcal{T} \leq \lambda$ -pure gl.dim \mathcal{C} .Jan Šťoviček (ECC)Rosický's problemSeptember, 201015/18

- Let *R* be a discrete valuation domain and λ regular uncountable.
- Let T be the category of torsion R-modules.
- Then T is a finitely accessible subcategory of Mod-R.
- We know that Walker's P_{λ} belong to T.
- Therefore, λ -pure proj.dim_T $P_{\lambda} > 1$.
- If we can embed T as a finitely accessible subcategory into Mod-*S* (*S* another ring). Then

 $1 < \lambda$ -pure gl.dim $T \leq \lambda$ -pure gl.dim (Mod-S).

• We can do this for $S = k[x_1, x_2, ..., x_n]$, $n \ge 2$, and for $S = \begin{pmatrix} k & V \\ 0 & k \end{pmatrix}$, dim_k $V \ge 2!$

3

- Let *R* be a discrete valuation domain and λ regular uncountable.
- Let \mathcal{T} be the category of torsion R-modules.
- Then T is a finitely accessible subcategory of Mod-R.
- We know that Walker's P_{λ} belong to T.
- Therefore, λ -pure proj.dim_T $P_{\lambda} > 1$.
- If we can embed T as a finitely accessible subcategory into Mod-S (S another ring). Then

 $1 < \lambda$ -pure gl.dim $T \leq \lambda$ -pure gl.dim (Mod-S).

• We can do this for $S = k[x_1, x_2, ..., x_n]$, $n \ge 2$, and for $S = \begin{pmatrix} k & V \\ 0 & k \end{pmatrix}$, dim_k $V \ge 2!$

3

- Let *R* be a discrete valuation domain and λ regular uncountable.
- Let \mathcal{T} be the category of torsion R-modules.
- Then T is a finitely accessible subcategory of Mod-R.
- We know that Walker's P_{λ} belong to T.
- Therefore, λ -pure proj.dim_T $P_{\lambda} > 1$.
- If we can embed T as a finitely accessible subcategory into Mod-*S* (*S* another ring). Then

 $1 < \lambda$ -pure gl.dim $T \leq \lambda$ -pure gl.dim (Mod-S).

• We can do this for $S = k[x_1, x_2, ..., x_n]$, $n \ge 2$, and for $S = \begin{pmatrix} k & V \\ 0 & k \end{pmatrix}$, dim_k $V \ge 2!$

-

- Let *R* be a discrete valuation domain and λ regular uncountable.
- Let \mathcal{T} be the category of torsion R-modules.
- Then T is a finitely accessible subcategory of Mod-R.
- We know that Walker's P_{λ} belong to T.
- Therefore, λ -pure proj.dim_T $P_{\lambda} > 1$.
- If we can embed T as a finitely accessible subcategory into Mod-*S* (*S* another ring). Then

 $1 < \lambda$ -pure gl.dim $T \leq \lambda$ -pure gl.dim (Mod-S).

• We can do this for $S = k[x_1, x_2, ..., x_n]$, $n \ge 2$, and for $S = \begin{pmatrix} k & V \\ 0 & k \end{pmatrix}$, dim_k $V \ge 2!$

-

- Let *R* be a discrete valuation domain and λ regular uncountable.
- Let \mathcal{T} be the category of torsion *R*-modules.
- Then T is a finitely accessible subcategory of Mod-R.
- We know that Walker's P_{λ} belong to T.
- Therefore, λ -pure proj.dim_T $P_{\lambda} > 1$.
- If we can embed T as a finitely accessible subcategory into Mod-S (S another ring). Then

 $1 < \lambda$ -pure gl.dim $T \leq \lambda$ -pure gl.dim (Mod-S).

• We can do this for $S = k[x_1, x_2, ..., x_n]$, $n \ge 2$, and for $S = \begin{pmatrix} k & V \\ 0 & k \end{pmatrix}$, dim_k $V \ge 2!$

- Let *R* be a discrete valuation domain and λ regular uncountable.
- Let \mathcal{T} be the category of torsion *R*-modules.
- Then T is a finitely accessible subcategory of Mod-R.
- We know that Walker's P_{λ} belong to \mathcal{T} .
- Therefore, λ -pure proj.dim_T $P_{\lambda} > 1$.
- If we can embed T as a finitely accessible subcategory into Mod-S (S another ring). Then

 $1 < \lambda$ -pure gl.dim $T \leq \lambda$ -pure gl.dim (Mod-S).

• We can do this for $S = k[x_1, x_2, ..., x_n]$, $n \ge 2$, and for $S = \begin{pmatrix} k & V \\ 0 & k \end{pmatrix}$, dim_k $V \ge 2!$

- Let *R* be a discrete valuation domain and λ regular uncountable.
- Let \mathcal{T} be the category of torsion *R*-modules.
- Then T is a finitely accessible subcategory of Mod-R.
- We know that Walker's P_{λ} belong to \mathcal{T} .
- Therefore, λ -pure proj.dim_T $P_{\lambda} > 1$.
- If we can embed T as a finitely accessible subcategory into Mod-S (S another ring). Then

 $1 < \lambda$ -pure gl.dim $T \leq \lambda$ -pure gl.dim (Mod-S).

• We can do this for $S = k[x_1, x_2, ..., x_n]$, $n \ge 2$, and for $S = \begin{pmatrix} k & V \\ 0 & k \end{pmatrix}$, dim_k $V \ge 2!$

- Let *R* be a discrete valuation domain and λ regular uncountable.
- Let \mathcal{T} be the category of torsion *R*-modules.
- Then T is a finitely accessible subcategory of Mod-R.
- We know that Walker's P_{λ} belong to \mathcal{T} .
- Therefore, λ -pure proj.dim_T $P_{\lambda} > 1$.
- If we can embed T as a finitely accessible subcategory into Mod-S (S another ring). Then

 $1 < \lambda$ -pure gl.dim $T \leq \lambda$ -pure gl.dim (Mod-S).

• We can do this for $S = k[x_1, x_2, ..., x_n]$, $n \ge 2$, and for $S = \begin{pmatrix} k & V \\ 0 & k \end{pmatrix}$, dim_k $V \ge 2!$

- Let *R* be a discrete valuation domain and λ regular uncountable.
- Let \mathcal{T} be the category of torsion *R*-modules.
- Then T is a finitely accessible subcategory of Mod-R.
- We know that Walker's P_{λ} belong to \mathcal{T} .
- Therefore, λ -pure proj.dim_T $P_{\lambda} > 1$.
- If we can embed T as a finitely accessible subcategory into Mod-S (S another ring). Then

 $1 < \lambda$ -pure gl.dim $T \leq \lambda$ -pure gl.dim (Mod-S).

• We can do this for $S = k[x_1, x_2, ..., x_n]$, $n \ge 2$, and for $S = \begin{pmatrix} k & V \\ 0 & k \end{pmatrix}$, dim_k $V \ge 2!$

イロト 不得 トイヨト イヨト ニヨー

- Let *R* be a discrete valuation domain and λ regular uncountable.
- Let \mathcal{T} be the category of torsion *R*-modules.
- Then T is a finitely accessible subcategory of Mod-R.
- We know that Walker's P_{λ} belong to \mathcal{T} .
- Therefore, λ -pure proj.dim_T $P_{\lambda} > 1$.
- If we can embed T as a finitely accessible subcategory into Mod-S (S another ring). Then

 $1 < \lambda$ -pure gl.dim $T \leq \lambda$ -pure gl.dim (Mod-S).

• We can do this for $S = k[x_1, x_2, ..., x_n]$, $n \ge 2$, and for $S = \begin{pmatrix} k & V \\ 0 & k \end{pmatrix}$, dim_k $V \ge 2!$

Theorem (Osofsky, 1973)

Let k be an uncountable field and R = k[x, y]. Then:

pure proj.dim_Rk(x, y) = 2.

Theorem (Lenzing, 1984)

Let *k* be an uncountable field and $R = \begin{pmatrix} k & k^2 \\ 0 & k \end{pmatrix}$. Let $G \in Mod$ -R be the generic module (analog of the fraction field). Then:

pure proj.dim_RG = 2

Remark

The case $R = \begin{pmatrix} k & V \\ 0 & k \end{pmatrix}$, dim_k V > 2, is covered by a result due to Baer, Brune and Lenzing.

Jan Šťovíček (ECC)

-

Theorem (Osofsky, 1973)

Let k be an uncountable field and R = k[x, y]. Then:

pure proj.dim_Rk(x, y) = 2.

Theorem (Lenzing, 1984)

Let *k* be an uncountable field and $R = \begin{pmatrix} k & k^2 \\ 0 & k \end{pmatrix}$. Let $G \in Mod$ -R be the generic module (analog of the fraction field). Then:

pure proj.dim_RG = 2.

Remark

The case $R = \begin{pmatrix} k & V \\ 0 & k \end{pmatrix}$, dim_k V > 2, is covered by a result due to Baer, Brune and Lenzing.

Theorem (Osofsky, 1973)

Let k be an uncountable field and R = k[x, y]. Then:

pure proj.dim_Rk(x, y) = 2.

Theorem (Lenzing, 1984)

Let k be an uncountable field and $R = \begin{pmatrix} k & k^2 \\ 0 & k \end{pmatrix}$. Let $G \in Mod$ -R be the generic module (analog of the fraction field). Then:

pure proj.dim_RG = 2

Remark

The case $R = \begin{pmatrix} k & V \\ 0 & k \end{pmatrix}$, dim_k V > 2, is covered by a result due to Baer, Brune and Lenzing.

-

Theorem (Osofsky, 1973)

Let k be an uncountable field and R = k[x, y]. Then:

pure proj.dim_Rk(x, y) = 2.

Theorem (Lenzing, 1984)

Let k be an uncountable field and $R = \begin{pmatrix} k & k^2 \\ 0 & k \end{pmatrix}$. Let $G \in Mod$ -R be the generic module (analog of the fraction field). Then:

pure proj.dim_RG = 2

Remark

The case $R = \begin{pmatrix} k & V \\ 0 & k \end{pmatrix}$, dim_k V > 2, is covered by a result due to Baer, Brune and Lenzing.

Jan Šťovíček (ECC)

Theorem (Osofsky, 1973)

Let k be an uncountable field and R = k[x, y]. Then:

pure proj.dim_Rk(x, y) = 2.

Theorem (Lenzing, 1984)

Let k be an uncountable field and $R = \begin{pmatrix} k & k^2 \\ 0 & k \end{pmatrix}$. Let $G \in Mod$ -R be the generic module (analog of the fraction field). Then:

pure proj.dim_RG = 2

Remark

The case $R = \begin{pmatrix} k & V \\ 0 & k \end{pmatrix}$, dim_k V > 2, is covered by a result due to Baer, Brune and Lenzing.

Theorem (Osofsky, 1973)

Let k be an uncountable field and R = k[x, y]. Then:

pure proj.dim_Rk(x, y) = 2.

Theorem (Lenzing, 1984)

Let k be an uncountable field and $R = \begin{pmatrix} k & k^2 \\ 0 & k \end{pmatrix}$. Let $G \in Mod$ -R be the generic module (analog of the fraction field). Then:

pure proj.dim_RG = 2.

Remark

The case $R = \begin{pmatrix} k & V \\ 0 & k \end{pmatrix}$, dim_k V > 2, is covered by a result due to Baer, Brune and Lenzing.

Jan Šťovíček (ECC)

Theorem (Osofsky, 1973)

Let k be an uncountable field and R = k[x, y]. Then:

pure proj.dim_Rk(x, y) = 2.

Theorem (Lenzing, 1984)

Let k be an uncountable field and $R = \begin{pmatrix} k & k^2 \\ 0 & k \end{pmatrix}$. Let $G \in Mod$ -R be the generic module (analog of the fraction field). Then:

pure proj.dim_RG = 2.

Remark

The case $R = \begin{pmatrix} k & V \\ 0 & k \end{pmatrix}$, dim_k V > 2, is covered by a result due to Baer, Brune and Lenzing.

Jan Šťovíček (ECC)

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ.

Theorem (Osofsky, 1973)

Let k be an uncountable field and R = k[x, y]. Then:

pure proj.dim_Rk(x, y) = 2.

Theorem (Lenzing, 1984)

Let k be an uncountable field and $R = \begin{pmatrix} k & k^2 \\ 0 & k \end{pmatrix}$. Let $G \in Mod$ -R be the generic module (analog of the fraction field). Then:

pure proj.dim_RG = 2.

Remark

The case $R = \begin{pmatrix} k & V \\ 0 & k \end{pmatrix}$, dim_k V > 2, is covered by a result due to Baer, Brune and Lenzing.

Jan Šťovíček (ECC)

・ロト ・ 日本 ・ 日本 ・ 日本 ・ 日本

The counterexample

When putting all the pieces together, we obtain:

Theorem (Bazzoni-Š., 2010)

Let k be an uncountable field and λ any infinite regular cardinal. Assume that R is one of:

■
$$R = k[x_1, x_2, ..., x_n], n \ge 2,$$

■ $R = \binom{k \ V}{0 \ k}, \dim_k V \ge 2.$

Then λ -pure gl.dim(Mod-R) > 1.

The counterexample

When putting all the pieces together, we obtain:

Theorem (Bazzoni-Š., 2010)

Let k be an uncountable field and λ any infinite regular cardinal. Assume that R is one of:

•
$$R = k[x_1, x_2, ..., x_n], n \ge 2,$$

• $R = \binom{k \ V}{0 \ k}, \dim_k V \ge 2.$

Then λ -pure gl.dim(Mod-R) > 1.