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Abstract

The finiteness of the little finitistic dimension of an artin algebra R is known to
be equivalent to the existence of a tilting R-module T such that {T}⊥ = (P<∞)⊥

where P<∞ is the category of all finitely presented R-modules of finite projective
dimension. Moreover, T can be taken finitely generated if and only if P<∞ is con-
travariantly finite.

In this paper, we describe explicitly the structure of T for the IST-algebra, a finite
dimensional algebra with P<∞ not contravariantly finite. We also characterize the
indecomposable modules in P<∞, and all tilting classes over this algebra.
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The point is that the little finitistic dimension of an artin algebra R equals n < ∞ if
and only if there is an n-tilting R-module T such that {T}⊥ = (P<∞)⊥ where P<∞

is the category of all finitely presented R-modules of finite projective dimension,
and C⊥ =

⋂
1≤i<ω Ker Exti

R(C,−) for a class of R-modules C. Moreover, T can be
taken finitely generated if and only if P<∞ is contravariantly finite, [3].

Though in principle T can be computed by an iteration of (P<∞)⊥- approximations
of the regular module R, the structure of T remains unknown in general.

The main goal of this paper is to give an explicit description of T in an important
case where P<∞ is not contravariantly finite, namely for the IST-algebra A – the
particular path algebra over a field with relations introduced by Igusa, Smalø and
Todorov in [13]. A is known to have infinite global dimension, but the little and the
big finitistic dimensions of A equal 1, so T is an infinite dimensional A-module of
projective dimension 1. Besides describing T , we also characterize all indecompos-
able A-modules in P<∞, and all tilting classes over A.

The paper is organized as follows. After recalling necessary definitions and prelimi-
nary results (Section 1), we concentrate on the IST-algebra A, giving an overview of
basic facts (Section 2), characterizing all indecomposable A-modules in P<∞ up to
isomorphism (Proposition 16) and computing their τ -translates. Next, we character-
ize the lattice of all tilting classes in A-Mod (Section 4) and compute corresponding
tilting modules for some of these classes (Section 5), among them our tilting module
T .

We also give examples of particular infinite dimensional A-modules that are in
the tilting class T = (P<∞)⊥, but are not isomorphic to a direct limit of finite
dimensional A-modules in T (Section 4.2).

1 Preliminaries

Let R be a ring (associative and unital) and let us denote by R-Mod (Mod-R) the
category of left (right) R-modules, respectively. Let R-mod and mod-R be the cor-
responding full subcategories of all modules possessing a projective resolution with
all projective modules finitely generated. Note that in case when R is noetherian, R-
mod and mod-R coincide with the class of finitely generated left and right modules,
respectively. For convenience, all modules from now on will be left R-modules if
not stated otherwise. Further, let us denote by P<∞

n the full subcategory of R-mod
consisting of the modules with proj.dim ≤ n and by P<∞ the full subcategory of
R-mod consisting of the modules of finite projective dimension.

A pair (A,B) of classes of modules is called a (hereditary) cotorsion pair if A = ⊥B
and B = A⊥, where ⊥B = {X ∈ R-Mod|Exti

R(X,B) = 0 for all B ∈ B and i ≥ 1}
and A⊥ = {X ∈ R-Mod|Exti

R(A,X) = 0 for all A ∈ A and i ≥ 1}. A cotorsion
pair (A,B) is said to be cogenerated by a class of modules C if the class A is the
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smallest possible containing C, that is A = ⊥(C⊥) and B = C⊥. In case C contains
just one module C, we will write C⊥ instead of {C}⊥.

A module T (not necessarily finitely generated) is said to be n-tilting for n < ω if
it satisfies the following conditions:

(1) proj.dimT ≤ n,

(2) Exti
R(T, T (κ)) = 0 for each i ≥ 1 and cardinal κ,

(3) there is an exact sequence 0 → R → T0 → T1 → · · · → Tm → 0, where m < ω
and Tj ∈ AddT for 0 ≤ j ≤ m.

Here, AddT stands for the class of all modules isomorphic to direct summands of
direct sums of copies of T .

A class of modules T is said to be n-tilting if there is an n-tilting module T such
that T = T⊥. A cotorsion pair (A,B) is said to be n-tilting if B is an n-tilting class,
or equivalently if it is cogenerated by some n-tilting module. A (n-)tilting class is
of finite type in the sense of [2] if its corresponding cotorsion pair is cogenerated by
some set of modules of R-mod. Note that n-tilting classes of finite type are exactly
the classes S⊥ for S ⊆ P<∞

n , [19, 2.9].

The tilting theory is closely related to the second finitistic dimension conjecture.
Let us denote by FdimR and fdimR the big and the little finitistic dimension of R
respectively; that is, the supremum of the projective dimensions of all modules with
proj. dim < ∞ or all finitely generated modules with proj. dim < ∞, respectively.
The first finitistic dimension conjecture stated that FdimR and fdimR coincide
whenever R is a finite dimensional algebra over a field, and it was proved to be false
(cf. [18], [21]). The second conjecture states that fdimR < ∞ for finite dimensional
algebras and it is still an open problem in general, even though it turned out to
be true for several special cases, [20]. In particular, a sufficient but not necessary
condition is the contravariant finiteness of P<∞. The following theorem relating the
second conjecture to tilting theory is shown in [3]:

Theorem 1 Let R be a left noetherian ring and (A,B) be the cotorsion pair cogen-
erated by P<∞. Then fdimR < ∞ if and only if B is a tilting class. Moreover, if T
is a tilting module such that T⊥ = B, then fdimR = proj. dimT .

In the rest of this section, we recall some results concerning modules over artin
algebras. A ring R is called an artin algebra if its centre C is artinian and R is
finitely generated as a C-module. We will use the following notation: D will stand
for the canonical duality between left and right R-modules. For a finitely generated
R-module X, we denote by TrX its transpose, by τX = DTrX its Auslander-
Reiten translation, and by τ− = TrD “inverse” of the translation. For unexplained
terminology see [6].

For R-modules X, Y , denote by HomR(X, Y ) the quotient group of HomR(X,Y )
by the subgroup of homomorphisms from X to Y which factor through an injective

3



module. Similarly, let HomR(X,Y ) be the quotient of HomR(X, Y ) by the homo-
morphisms which factor through projective modules. We will need the following
important result:

Theorem 2 (Auslander-Reiten formulas) [5], [14] Let R be an artin algebra
and let X, Y ∈ R-Mod, X finitely generated. Then there are following isomorphisms
functorial in both X and Y :

(1) D Ext1R(X, Y ) ∼= HomR(Y, τX)

(2) Ext1R(Y, X) ∼= DHomR(τ−X,Y )

We also need a characterisation of the finitely generated modules of projective or
injective dimensions at most 1, which immediately follows from [6, IV.1.16]:

Proposition 3 Let R be an artin algebra and X ∈ R-mod. Then:

(1) proj.dimX ≤ 1 if and only if HomR(I, τX) = 0 for every injective module I.

(2) inj.dimX ≤ 1 if and only if HomR(τ−X, P ) = 0 for every projective module
P . 2

As a straightforward corollary, we get:

Corollary 4 Let X ∈ R-mod. Then:

(1) If proj. dimX ≤ 1, then X⊥ = KerHomR(−, τX).

(2) If inj.dimX ≤ 1, then ⊥X = Ker HomR(τ−X,−).

Finally, we deduce the following lemma for artin algebras, which is useful in Sec-
tion 4.2. It was introduced in [4] with a different proof:

Lemma 5 A finitely generated module M belongs to (P<∞
1 )⊥ if and only if it is

filtered by factors of the injective cogenerator D(R).

PROOF. The if part is obvious, since (P<∞
1 )⊥∩R-mod is closed under factors and

extensions. For the only if part, it is enough to prove that HomR(D(R),M) 6= 0 for
each non-zero M ∈ (P<∞

1 )⊥ ∩ R-mod. Moreover, it is sufficient to prove this only
for M indecomposable non-injective. Assume to the contrary that HomR(D(R),M)
is trivial. Then proj. dim τ−M ≤ 1 by Proposition 3. Thus Ext1R(τ−M, M) = 0, a
contradiction to the existence of an almost split sequence, [6, V.1.15].
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2 An example by Igusa, Smalø and Todorov

Let us fix an algebraically closed field k and let A be the algebra introduced by
Igusa, Smalø and Todorov in [13], shortly IST-algebra. It is a path algebra over k
over the quiver

Γ : 1 ·
γ

&& · 2βhh
α

aa

with relations αγ = βγ = γα = 0. In our notation, paths are composed as maps
from right to left. From now on, all modules will be considered as modules over
this algebra if not stated otherwise. Basic properties of A-modules are summarized
in [1, Section 5].

Let us denote Λ = A/〈γ〉; then Λ is isomorphic to Kronecker algebra, the hereditary
algebra kΓ′ over the following quiver:

Γ′ : 1 · · 2βhh
α

aa

Modules M with γM = 0 will be called Kronecker modules, since they are also
Λ-modules. Let us denote by Pi, Ii and Si the indecomposable projective, injective
and simple A-module corresponding to the vertex i (i = 1, 2), respectively. Then
dimk P1 = 2, dimk P2 = 4 and dimk I1 = dimk I2 = 3. Let P<∞ be the full subcate-
gory of all finitely generated A-modules of finite projective dimension as before, and
let KP<∞ be the full subcategory of P<∞ having exactly the Kronecker modules
in P<∞ as objects.

We will briefly recall basic facts about the Kronecker modules. A detailed descrip-
tion of the finite dimensional Λ-modules is done in [6]. More properties of infinite
dimensional Λ-modules can be found in [16], [15] or [11].

The finite dimensional indecomposable Λ-modules are divided into three families,
preprojective, preinjective and regular modules:

(1) The preprojectives Qn, n ≥ 1, are the modules with the representation V1 =
kn, V2 = kn−1, fβ = (E, 0)T and fα = (0, E)T , where E is the unit matrix
(n− 1)× (n− 1).

(2) The preinjectives Jn, n ≥ 1, are the modules with the representation V1 =
kn−1, V2 = kn, fβ = (E, 0) and fα = (0, E).

(3) For the quasi-simple regulars Rλ, λ ∈ k ∪ {∞}, the vector spaces of the repre-
sentation are V1 = V2 = k. For λ ∈ k, fβ is the multiplication by λ and fα is
the identity map. For λ = ∞, fβ the identity map and fα = 0.

(4) Every quasi-simple regular module Rλ, λ ∈ k ∪ {∞}, defines a tube; that is, a
chain of indecomposable modules

Rλ = Rλ,1 ⊆ Rλ,2 ⊆ Rλ,3 ⊆ . . .
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connected by the almost split sequences 0 → Rλ,n → Rλ,n−1 ⊕ Rλ,n+1 →
Rλ,n → 0 in Λ-mod. Any finite dimensional indecomposable regular module
occurs in this way.

Note, that there are no non-zero homomorphisms from preinjectives to preprojec-
tives or regulars, and no non-zero homomorphisms from regulars to preprojectives.
Moreover, dimk HomΛ(Rλ, Rµ) = δλ,µ for any λ, µ ∈ k ∪ {∞}.

Prüfer modules Rλ,∞ are defined as the direct limits of the ascending chains:

Rλ,1 ⊆ Rλ,2 ⊆ Rλ,3 ⊆ . . .

Then HomΛ(Rλ,∞, Rµ) = 0 and dimk HomΛ(Rµ, Rλ,∞) = δλ,µ for any λ, µ ∈ k ∪
{∞}.

3 Finitely generated modules of finite projective dimension

3.1 Simple modules and composition series in P<∞

In fact, P<∞ is not an abelian category, but it is closed under extensions, kernels of
epimorphisms and cokernels of monomorphisms. We will call an object X of P<∞

simple in P<∞, if it has no proper submodule that is again an object of P<∞, or
equivalently if it has no proper factor again in P<∞.

For every finitely generated A-module M , there is an exact sequence

0 → Pn
1 → M → M → 0

where n < ω and M is a Kronecker module. As a cosequence, we get:

Lemma 6 [1, Proposition 5.1] A module M is an object of P<∞ if and only if it
has a finite filtration

0 = M0 ⊂ M1 ⊂ · · · ⊂ Ml = M

with the factors Mj/Mj−1 isomorphic either to P1 or to Rλ for some λ ∈ k.

Note also that the modules P1 and Rλ, λ ∈ k, are then precisely the simples in P<∞

in our sense.

3.2 The (non-)uniqueness of the composition series

In general, there is no result analogous to the Jordan-Hölder Theorem in P<∞. Take
for example the short exact sequences 0 → P1

ιλ→ P2 → Rλ → 0. These exist for all
λ ∈ k.
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But the number of the factors isomorphic to P1 is unique. Consider a function
f : P<∞ → ω defined by the formula:

f(U) = dimk HomA(U,R∞)

Since P1 is projective, we have Ext1A(P1, R∞) = 0. The module R∞ has no submod-
ule isomorphic to S2, so Ext1A(Rλ, R∞) = Ext1Λ(Rλ, R∞) = 0 for each λ ∈ k by [1,
5.3]. Thus, Ext1A(U,R∞) = 0 for every U ∈ P<∞ and f(V ) = f(U)+f(W ) for each
exact sequence 0 → U → V → W → 0 of modules from P<∞. Further, f(P1) = 1
and f(Rλ) = 0 for each λ ∈ k. The function f “counts” the number of factors
isomorphic to P1 in composition series of modules U ∈ P<∞, and its definition is
independent of the particular composition series.

If we are only concerned with the modules in KP<∞, then composition series are
unique in the sense of Jordan-Hölder. This can be seen by a similar reasoning as for
P1, this time using the functions:

gµ(U) = dimk HomA(U,Rµ,∞), µ ∈ k

Again, Ext1A(Rλ, Rµ,∞) = 0 for every λ, µ ∈ k and gµ(Rλ) = δλ,µ. The function
gµ “counts” the factors isomorphic to Rµ and its definition is independent of the
particular composition series.

3.3 Determining regular Kronecker modules by matrices

Let M ∈ KP<∞. Then we can write

M ∼= Rλ1,i1 ⊕ · · · ⊕Rλm,im

for some Kronecker regular modules Rλ1,i1 , . . . , Rλm,im with λ1, . . . , λm ∈ k. In
particular, the linear map x 7→ αx is a bijective map e2M → e1M , since this is true
for every Rλj ,ij . Let us denote by α−1

M the inverse map for a given module M and
define the map χM ∈ Endk(e1M) by the formula χM (x) = β · α−1

M (x).

Let us focus on the matrix JM of the linear map χM in the Jordan canonical form,
with respect to some suitable k-basis of the vector space e1M . When M ∼= Rλ,i,
then JM is the Jordan cell of size i× i corresponding to the eigenvalue λ, that is:

JM =




λ 1

λ
. . .
. . . 1

λ




In general, JM is block-diagonal, built of the Jordan cells corresponding to the direct
summands Rλ1,i1 , . . . , Rλm,im of M . That is, JM = diag(JRλ1,i1

, . . . , JRλm,im
)
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Let N be another module from KP<∞. It is easy to see that if the vector spaces
e1M and e1N have the same dimension and the linear maps χM and χN are similar,
then the modules M and N are isomorphic. Thus we can state:

Lemma 7 Two modules M , N from KP<∞ are isomorphic if and only if the Jor-
dan canonical forms of matrices of the linear maps χM and χN are the same up to
the order of Jordan cells.

3.4 Special modules of finite projective dimension

Definition 8 A module M ∈ P<∞ will be called special if its composition series
in P<∞ admits exactly one factor isomorphic to P1 and if it has no submodule
isomorphic to any Rλ, λ ∈ k. Let us denote by SP<∞ the full subcategory of P<∞

consisting of the special modules.

For example, the modules P1 and P2 are special. It is easy to see that special modules
are indecomposable. Clearly, if M ∈ SP<∞ and M ′ is a non-zero submodule of
M belonging to P<∞, then M ′ ∈ SP<∞ too. All modules in SP<∞ have even
dimension, since by [13] the same is true for all modules in P<∞. In the next few
paragraphs we will show that for each non-zero even n < ω there is exactly one
isomorphism class of modules of dimension n in SP<∞. We will start by proving
the existence.

Lemma 9 Let λ ∈ k, and let δ : 0 → P1 → M → Rλ → 0 be an exact sequence.
Then either δ splits or M ∼= P2. Moreover, δ splits if and only if M has a submodule
isomorphic to Rλ.

PROOF. There is always an exact sequence 0 → P1
ιλ→ P2 → Rλ → 0, and since

P2 is projective, we have the following commutative diagram:

0 −−−−→ P1
ιλ−−−−→ P2 −−−−→ Rλ −−−−→ 0

f

y
y

∥∥∥
δ : 0 −−−−→ P1 −−−−→ M −−−−→ Rλ −−−−→ 0

Since dimk EndA(P1) = dimk e1P1 = 1, f is either the zero map or an isomorphism.
In the first case δ splits, in the second case M ∼= P2. The second assertion holds,
because P2 has no submodule isomorphic to Rλ.

Proposition 10 Take n < ω non-zero even. Then there is a module M ∈ SP<∞

of dimension n.

PROOF. We have the module P1 for n = 2. So let n > 2. Put m = n
2 − 1 and

choose m distinct elements λ1, . . . , λm of the field k. For each λj , consider the exact
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sequence 0 → P1
ιj→ P2 → Rλj

→ 0. We will construct the desired module M by
the following push-out, where σ : Pm

1 → P1 is the summation map:

0 −−−−→ Pm
1

⊕
j

ιj−−−−→ Pm
2 −−−−→ ⊕

j Rλj −−−−→ 0

σ

y
y

∥∥∥
0 −−−−→ P1

ι−−−−→ M
π−−−−→ ⊕

j Rλj −−−−→ 0

Suppose that there is a submodule N ⊆ M isomorphic to Rλ for some λ ∈ k. But
soc N ∼= S1 and soc ι(P1) ∼= S2, so ι(P1) ∩N = 0 and π ¹ N is monic. The module
π(N) being a submodule of

⊕
j Rλj and π(N) ∼= Rλ, there must be an index j such

that λ = λj and π(N) = Rλj
. Then we have the commutative diagram

0 −−−−→ P1
ιj−−−−→ P2 −−−−→ Rλj −−−−→ 0

σ¹P1

y
y

∥∥∥

0 −−−−→ P1
ι−−−−→ ι(P1) + N

π¹ι(P1)+N−−−−−−−→ Rλj
−−−−→ 0

The map in the left column, and therefore also the map in the middle column,
is an isomorphism. But the first row does not split and the second row does, a
contradiction. Thus M ∈ SP<∞.

Next, we would like to prove that every two modules in SP<∞ of the same dimension
are isomorphic. This is obvious for the dimension 2. First, we will prove a lemma
which places a restriction on possible forms of cokernels of inclusions of the module
P1 into a chosen module from SP<∞.

Lemma 11 Let M ∈ SP<∞ and 0 → P1
ι→ M

π→ ⊕m
j=1 Rλj ,ij → 0 be an exact

sequence. Then the elements λ1, . . . , λm are pairwise distinct.

PROOF. Assume for a contradiction that the converse is true. Without loss of gen-
erality, put λ = λ1 = λ2. Then the module

⊕m
j=1 Rλj ,ij has a submodule isomorphic

to Rλ⊕Rλ, and this gives rise to the exact sequence 0 → P1
ι→ M ′ π¹M ′

→ Rλ⊕Rλ → 0.
Denote M ′

v = π−1(Rλ) where Rλ is the v-th component of Rλ ⊕Rλ, v = 1, 2. Since

0 → P1 → M ′
v → Rλ → 0 (1)

does not split, we have M ′
v
∼= P2 by Lemma 9. Take a generator h of ι(P1) corre-

sponding to e1 in the presentation of P1 as Ae1. Let g1, g2 be generators of M ′
1, M ′

2,
respectively, corresponding to the element e2 ∈ P2 = Ae2. We see immediately from
the non-split exact sequence (1) that βgv − λαgv ∈ ι(P1) \ {0} for v = 1, 2. Hence

h, (βg1 − λαg1), (βg2 − λαg2) ∈ ι(e1P1)
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And since ι(e1P1) is a 1-dimensional k-vector space, we can assume by possibly
multiplying g1 or g2 by a scalar that

βgv − λαgv = h, v = 1, 2

Finally, denote g = g1− g2. It is straightforward to check that the submodule of M
generated by g is isomorphic to Rλ, a contradiction.

The core of the proof of uniqueness is the following proposition, which states that
there is no other restriction for the form of a cokernel of the inclusion ι, apart from
the one in Lemma 11.

Proposition 12 Let M ∈ SP<∞, M 6∼= P1. Put n = (dimk M)/2 − 1. Then for
arbitrary pairwise distinct elements λ1, . . . , λm ∈ k and positive integers i1, . . . ,
im such that i1 + · · · + im = n, there is an inclusion ι : P1 → M with Coker ι ∼=⊕m

j=1 Rλj ,ij .

PROOF. Start by considering an arbitrary inclusion ι′ : P1 → M and denote
C = Coker ι′ ∼= ⊕q

j=1 Rµj ,i′j
. Then by Lemma 7, the module C is determined up to

isomorphism by the Jordan canonical form of a matrix of the linear map χC . But
there is only one Jordan cell for each eigenvalue of χC in the Jordan canonical form
by Lemma 11. Thus, the cokernel C is in fact determined only by the multiplicities
of the eigenvalues of χC . Using the following construction, we can increase by 1 a
multiplicity of a chosen λ ∈ k as an eigenvalue, or λ ∈ k will become an eigenvalue if
it has not been before. And we can do this at the cost of decreasing the multiplicity
of the eigenvalue µ1 by 1. After applying this method a finite number of times, we
can “change” the eigenvalues, and thus also the cokernel of an inclusion P1 → M ,
to any prescribed form.

Take an exact sequence 0 → P1
ι′→ M

π→ ⊕q
j=1 Rµj ,i′j

→ 0. Let us denote Mj =
π−1(Rµj ,i′j

). Further, take the “canonical” generators ḡj,v of Rµj ,i′j
satisfying

βḡj,1 = µjαḡj,1 (2)
βḡj,v = µjαḡj,v + αḡj,v−1, 1 < v ≤ i′j (3)

Let us denote by gj,v some fixed preimages of ḡj,v under π; that is, ḡj,v = π(gj,v).
Since all ḡj,v could have been chosen to lie in e2Rµj ,i′j

, we can w.l.o.g. assume that
all gj,v are in e2M . Moreover, equations (2) yields that βgj,1 − µjαgj,1 ∈ ι′(e1P1).
Since the vector space ι′(e1P1) is only 1-dimensional, we can assume, possibly by
multiplying some of the gj,v’s by a scalar, that there is a non-zero element h ∈
ι′(e1P1) such that h = βgj,1−µjαgj,1 for each j ≤ q. And it is easy to see from the
representation of P1 that h generates ι′(P1).

Take the module L ⊆ M1 generated by g1,1. Then L ∼= P2 by Lemma 9 and for any

fixed λ ∈ k, there is an exact sequence 0 → P1
ϑ→ L → Rλ → 0. In fact, we have
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also the following exact sequence for some regular Kronecker module Y :

0 → P1
ϑ→ M

σ→ Y → 0

Denote f̄j,v = σ(gj,v) and let h′ be a generator of ϑ(P1) such that h′ = βg1,1−λαg1,1.
Then

βf̄j,v = σ(βgj,v) = σ(µjαgj,v + αgj,v−1 + cj,vh) = µjαf̄j,v + αf̄j,v−1 + cj,vσ(h)

where cj,v ∈ k are suitable constants, and for convenience we assume gj,0 = 0 and
f̄j,0 = 0. This comes from the fact that βgj,v − µjαgj,v − αgj,v−1 ∈ ι′(e1P1) by
equations (2) and (3) and ι′(e1P1) is a 1-dimensional k-vector space generated by
h. Further:

h = βg1,1 − µ1αg1,1 = h′ + (λ− µ1)αg1,1

So we have:
cj,vσ(h) = cj,v(λ− µ1)ασ(g1,1) = cj,v(λ− µ1)αf̄1,1

and together:
βf̄j,v = µjαf̄j,v + αf̄j,v−1 + cj,v(λ− µ1)αf̄1,1

The matrix of the linear endomorphism χY of the vector space e1Y , with respect
to the basis αf̄j,v, j ≤ q, v ≤ i′j and the pairs (j, v) being ordered lexicographically,
is of the form 



λ ∗ ∗ ∗ ∗ ∗ · · ·
µ1

. . .

. . . 1

µ1

µ2 1
. . . . . .




where the symbols ∗ in the first row are to be substituted by some suitably chosen
elements of k. Comparing the eigenvalues of χY with the eigenvalues of χC , we see
that we have exactly changed one occurence of µ1 for one occurence of λ.

Proposition 13 Let n < ω. Then any two modules in SP<∞ of dimension n are
isomorphic.

PROOF. It is enough to carry out the proof only for n > 2 even. Choose an
arbitrary M ∈ SP<∞ of dimension n. Put m = n

2 − 1 and choose m pairwise
distinct elements λ1, . . . , λm of the field k. Then, by the former proposition, there
is an exact sequence

0 → P1
ι→ M

π→
m⊕

j=1

Rλj → 0

11



Let N be the factor of the module Pm
2 , with generators of the individual compo-

nents of Pm
2 denoted g1, . . . , gm, determined by the relations βgi− λiαgi = βgi+1−

λi+1αgi+1. Then the dimension of N is at most n = 2m + 2, since dimk e1P
m
2 =

dimk e2P
m
2 = 2m, and for both these vector spaces we have m − 1 k-independent

relations. Further, considering the proof of the preceding proposition, there is an
epimorphism N → M which maps every element gi to some suitably chosen gener-
ator of π−1(Rλi). Thus, dimk M = dimk N = 2m + 2 = n and N ∼= M . And since
the module N is independent of the choice of the module M , we have at most one
isomorphism class of A-modules in SP<∞ for each dimension.

For every n ≥ 1, let us denote by Pn one fixed representative of the objects of
SP<∞ of dimension 2n. This notation is consistent with the former notation of the
indecomposable projectives P1 a P2, since these two modules are representatives of
the modules in SP<∞ of dimensions 2 and 4, respectively.

3.5 Auslander-Reiten translation of modules from P<∞

In view of Corollary 4, it is convenient to determine the Auslander-Reiten transla-
tions of the modules in P<∞. In this subsection, we will prove that the modules Rλ,
λ ∈ k, are invariant with respect to the translation, while the modules from SP<∞

are mapped to the Kronecker preprojective modules.

It is well-known that the functor (−)∗ = HomA(−, A) maps the indecomposable
projective (left) A-module Pi = Aei to an indecomposable projective right A-module
isomorphic to eiA, i = 1, 2. And the latter isomorphism assigns to the path p ∈ eiA
ending at the vertex i the following homomorphism from Aei to A:

p∗ : Aei → A

ei 7→ p (∈ A)

From now on, we will identify the modules eiA and P ∗
i . In particular, we will denote

the homomorphism in P ∗
i corresponding to a path p ∈ eiA as p∗ to distinguish

elements of A considered as left or right A-module. Note that the right A-module
structure of P ∗

i is given by p∗ · q = (pq)∗ for a path q ∈ A. It is also clear that a
homomorphism f ∈ P ∗

i is determined by its value on ei. Thus, if f(ei) =
∑m

j=1 ajpj

for some paths p1, . . . , pm ∈ A and elements a1, . . . , am ∈ k, then f =
∑m

j=1 ajp
∗
j .

Lemma 14 Let λ ∈ k. Then τRλ
∼= Rλ.

PROOF. The minimal projective presentation of the module Rλ is 0 → P1
ιλ→

P2 → Rλ → 0, where ιλ(e1) = β − λα. Considering the map ι∗λ : P ∗
2 → P ∗

1 , we see:
(
ι∗λ(e∗2)

)
(e1) = e∗2ιλ(e1) = e∗2(β − λα) = β − λα

Thus, ι∗λ(e∗2) = β∗ − λα∗. The module P ∗
1 has a k-basis e∗1, α∗, β∗. For M =

P ∗
1 / Im ι∗λ, we have dimk Me1 = dimk Me2 = 1 and Mγ = 0. Therefore, DM must

12



be a Kronecker quasi-simple regular module. Because M(β − λα) = 0, it is also
(β − λα)DM = 0, and thus DM = DTrRλ

∼= Rλ.

Recall that Qj denotes the j-th indecomposable Kronecker preprojective module;
that is dimk e1Qj = j and dimk e2Qj = j−1. For P1 and P2, obviously τP1 = τP2 =
0.

Lemma 15 Let 3 ≤ n < ω. Then τPn
∼= Qn−2.

PROOF. Looking at the first (push-out) diagram in the proof of Proposition 10,
we see that there is a projective presentation of Pn of the form

0 → Pn−2
1

ϑ→ Pn−1
2 → Pn → 0 (4)

Next, fix n− 1 pairwise distinct elements λ1, . . . , λn−1 of the field k. Let us denote
by fj the residue of the trivial path e1 in the j-th copy of P1 and by gl the residue of
the path e2 in the l-th copy of P2. Examining the proof of Proposition 13 (namely,
the construction of the module N there which turns out to be isomorphic to Pn),
we can assume that ϑ acts as follows:

ϑ(fj) = (βgj − λjαgj)− (βgj+1 − λj+1αgj+1), 1 ≤ j ≤ n− 2

Consequently, it is straightforward to see that the presentation (4) is minimal.

For arbitrary A-modules M , N and non-zero natural numbers m, v, there is a canon-
ical bijection between the elements of HomA(Mm, Nv) and the matrices v × m
over HomA(M,N). Let us denote by ij : M → Mm the j-th inclusion and by
pl : Nv → N the l-th projection. Then this bijection assigns to an homomor-
phism h ∈ HomA(Mm, Nv) the matrix (plh ij)l≤v,j≤m. Moreover, i∗j : (M∗)m → M∗

is the j-th projection, p∗l : N∗ → (N∗)v is the l-th inclusion, and by the sim-
ilar canonical bijection for right A-module homomorphisms, the element h∗ ∈
HomA((N∗)v, (M∗)m) corresponds to the matrix (i∗jh

∗p∗l )j≤m,l≤v.

Now put M = P1, N = P2, m = n− 2 and v = n− 1. Then the map ϑ corresponds
to the matrix (ϑlj), where ϑlj = plϑ ij . It holds:

ϑlj(e1) = plϑ(fj) =





β − λlα for l = j

−(β − λlα) for l = j + 1
0 otherwise

It follows that:
(
ϑ∗jj(e

∗
2)

)
(e1) = e∗2ϑjj(e1) = e∗2(β − λjα) = β − λjα(

ϑ∗j+1,j(e
∗
2)

)
(e1) = e∗2ϑj+1,j(e1) = e∗2

(− (β − λj+1α)
)

= −(β − λj+1α)

Thus:

ϑ∗lj(e
∗
2) =





β∗ − λlα
∗ = e∗1 · (β − λlα) for l = j

−(β∗ − λlα
∗) = −e∗1 · (β − λlα) for l = j + 1

0 otherwise

13



For the map ϑ∗ : (P ∗
2 )n−1 → (P ∗

1 )n−2, let us denote by g′l the residue of the element
e∗2 in the l-th copy of P ∗

2 , and by f ′j the residue of the element e∗1 in the j-th copy
of P ∗

1 . We attain the following formulas by composing the results of the former
computations:

ϑ∗(g′l) =





f ′l (β − λlα) for l = 1
f ′l (β − λlα)− f ′l−1(β − λlα) for 1 < l < n− 1
−f ′l−1(β − λlα) for l = n− 1

Since λ1, . . . , λn−1 are pairwise distinct, we have dimk(Imϑ∗)e2 = n − 1. Clearly
(Imϑ∗)e1 = 0. And we have dimk P ∗

1 e1 = 1, dimk P ∗
1 e2 = 2. Thus for the module

L = (P ∗
1 )n−2/ Imϑ∗ we have dimk Le1 = n− 2 and dimk Le2 = 2(n− 2)− (n− 1) =

n− 3. Then dimk e1DL = n− 2 and dimk e2DL = n− 3. Moreover, DL = DTrPn

must be an indecomposable Kronecker module, and by the characterisation of such
modules we have DL ∼= Qn−2.

3.6 Indecomposable modules in P<∞

We will use the results of the preceding section to characterize the indecomposable
modules of P<∞ up to isomorphism.

Proposition 16 Let 0 6= M ∈ P<∞ be indecomposable. Then one of the following
cases holds true:

(1) M ∼= Rλ,i for some λ ∈ k and i ≥ 1,

(2) M ∼= Pn for some n ≥ 1.

Before we prove the proposition itself, we need some auxiliary lemmas.

Lemma 17 Let M ∈ P<∞ such that M has no submodule isomorphic to Rλ for
any λ ∈ k. Then M is SP<∞-filtered.

PROOF. We will prove the lemma by an induction on the number n of composition
factors isomorphic to P1 in a composition series of M in P<∞. There is nothing to
prove for n = 1. Let n > 1. Take a composition series

0 = M0 ⊂ M1 ⊂ · · · ⊂ Ml = M

of M such that the last index j for which Mj+1/Mj
∼= P1 is the greatest possible.

Then M/Mj ∈ SP<∞ by the assumption and Mj is SP<∞-filtered by the induction
hypothesis. Thus, M is SP<∞-filtered too.

Lemma 18 Let M be a finitely generated SP<∞-filtered module. Then M is a
direct sum of modules from SP<∞.

14



PROOF. The modules P1 a P2 are projective and every module Pn, n ≥ 3 has a
minimal projective presentation of the form 0 → Pn−2

1 → Pn−1
2 → Pn → 0. Thus, a

minimal projective presentation of the module M must be of the form:

0 → Pm
1 → P u

1 ⊕ P v
2 → M → 0

The module TrM is a factor of (P ∗
1 )m by definition. Therefore, the module DTrM

is a submodule of D(P ∗
1 )m = Im

1 . Since I1 is a Kronecker module, so is τM .

Let us choose an arbitrary λ ∈ k ∪ {∞}. Then

D Ext1A(Pn, Rλ) ∼= HomA(Rλ, τPn) ∼= HomA(Rλ, Qn−2) = 0

for all n ≥ 3. The first isomorphism follows by Theorem 2 and Proposition 3 and the
second by Lemma 15. In particular, Ext1A(M,Rλ) = 0, and so HomA(Rλ, τM) = 0.
Thus, the module τM is preprojective, that is τM ∼= ⊕m

j=1 Qij for some i1, . . . , im.
Then

M ∼= P ⊕ τ−(τM) ∼= P ⊕
m⊕

j=1

Pij+2

for some finitely generated projective module P .

PROOF. [Proposition 16] Let M ∈ P<∞ be indecomposable. If M is a Kronecker
module, we are in the case number 1.

Suppose M is not a Kronecker module and L is a maximal KP<∞-submodule of M .
Since the subcategory KP<∞ is closed under extensions, M/L has no submodule
isomorphic to Rλ, λ ∈ k. Then M/L is SP<∞-filtered by Lemma 17. Further, we
have

D Ext1A(Pn, Rλ) ∼= HomA(Rλ, τPn) ∼= HomA(Rλ, Qn−2) = 0

for all λ ∈ k and n ≥ 3 — the first isomorphism by Theorem 2 and Proposition 3
and the second by Lemma 15. In particular, Ext1A(M/L, L) = 0 and M ∼= L⊕M/L.
Thus, L = 0 and M ∈ SP<∞ by Lemma 18.

4 Tilting classes

4.1 The lattice of tilting classes

Since FdimA = 1 by [13], every tilting A-module is 1-tilting. By [9], all 1-tilting
classes over any associative unital ring are of finite type. Thus, every tilting class in
A-Mod can be obtained as S⊥, where S is some subset of objects of P<∞. Let us
denote by indP<∞ a representative subset of the indecomposable modules in P<∞.
Obviously, it is always possible to choose S as a subset of indP<∞.
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Proposition 19 The class T ⊆ A-Mod is a tilting class if and only if there is a
subset S ⊆ indP<∞ such that S⊥ = T . 2

Let S ⊆ indP<∞. Let us denote S̄ = ⊥(S⊥) ∩ indP<∞. It is easy to see that
S⊥ = S̄⊥. We will call a subset S of indP<∞ closed if S = S̄. Clearly, the lattice
of 1-tilting classes is anti-isomorphic to the lattice of closed subsets of indP<∞. A
description of the closed subsets follows.

Theorem 20 A subset S ⊆ indP<∞ is closed if and only if it satisfies the following
conditions:

(1) P1 ∈ S, P2 ∈ S.

(2) If Rλ,i ∈ S for some λ ∈ k and i ≥ 1, then Rλ,j ∈ S for every j ≥ 1.

(3) If Rλ,i ∈ S for some λ ∈ k and i ≥ 1, then Pj ∈ S for every j ≥ 1.

(4) If Pn ∈ S for some n ≥ 3, then Pj ∈ S for every j ≤ n.

PROOF. First, assume S ⊆ indP<∞ is closed. The necessity of the condition 1 is
obvious. For Kronecker regular modules, we have the exact sequences:

0 → Rλ,i → Rλ,i−1 ⊕Rλ,i+1 → Rλ,i → 0

Thus, if Rλ,i ∈ S, then also Rλ,i−1, Rλ,i+1 ∈ S. The condition 2 follows by induction.
Further, by Proposition 12 we have

0 → P1 → Pj → Rλ,j−1 → 0,

for each j ≥ 3. This implies the condition 3. Let n ≥ 3 and M ∈ P⊥
n . Then

HomA(M, Qn−2) = 0 by Corollary 4 and Lemma 15. Thus, HomA(M,Qj−2) = 0 for
each 3 ≤ j ≤ n, since Qn−2 has submodules isomorphic to Qj−2. This means that
M ∈ P⊥

j , and Pj ∈ ⊥(P⊥
n ) for each 3 ≤ j ≤ n. This yields condition 4.

Conversely, let S ⊆ indP<∞ satisfy the conditions 1–4. Assume that there is some
M ∈ S̄ \ S. If M = Rλ,i for some λ and i, then Rλ,j 6∈ S for each j ≥ 1 by
the condition 2. But this implies Rλ ∈ S⊥ using the characterization of indP<∞

in Proposition 16. Then also Rλ ∈ S̄⊥, which is a contradiction. Thus, it remains
only the case M = Pn for some n ≥ 3. But then Rλ,i 6∈ S for each λ ∈ k, i ≥ 1
and Pj 6∈ S for each j ≥ n by the conditions 3 and 4. So S consists only of some
of the modules P1, . . . , Pn−1, again by Proposition 16. But then Corollary 4 and
Lemma 15 yield Qn−2 ∈ S⊥ = S̄⊥ and D Ext1A(Pn, Qn−2) ∼= HomA(Qn−2, Qn−2) 6=
0, a contradiction to the assumption Pn ∈ S̄.

Corollary 21 (P<∞)⊥ = {Rλ|λ ∈ k}⊥ =
⋂

λ∈k KerHomA(−, Rλ).

PROOF. For the first equality, see [1, 5.4]. Or alternatively, if we take S = {Rλ|λ ∈
k}, then S̄ = indP<∞ by the former theorem. Thus S⊥ = (indP<∞)⊥ = (P<∞)⊥.
The second equality follows from Corollary 4 and Lemma 14.
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4.2 Impossibility of reconstructing a tilting class from finitely generated mod-
ules by direct limits

This section is inspired by the dual case, where every 1-cotilting class C over a
noetherian ring could be reconstructed from its finitely generated modules by di-
rect limits. That is C = lim−→(C ∩ R-mod), C being closed under direct limits, since
every 1-cotilting module is pure-injective by [7]. So there is a bijective correspon-
dence between the 1-cotilting classes and the torsion-free classes of finitely generated
modules containing RR, [19].

But an analogous proposition with direct limits is not true for 1-tilting classes over
IST-algebra. Take T = (P<∞)⊥ and T <∞ = T ∩A-mod. Then T = lim−→T <∞ implies
that lim−→T <∞ is closed under direct products. This is equivalent to the covariant
finiteness of T <∞ in A-mod by [1], and thus to the contravariant finiteness of P<∞

in A-mod by [17]. But this is not true for IST-algebra. The aim of this subsection
is to give particular examples of modules from T \ lim−→T <∞.

Proposition 22 Let T = (P<∞)⊥ and T <∞ = T ∩A-mod. Then the Prüfer module
Rλ,∞ is a member of T for each λ ∈ k, but HomA(M,Rλ,∞) = 0 for all M ∈ T <∞.

PROOF. It is well-known that HomA(Rλ,∞, Rµ) = 0 for each µ ∈ k. Therefore,
Rλ,∞ ∈ T by Corollary 21.

We have HomA(I,Rλ) = 0 for an injective cogenerator I = I1⊕ I2 by Proposition 3
and Lemma 14. Then also HomA(I,Rλ,∞) = 0 and HomA(M, Rλ,∞) = 0 for every
factor M of I. Thus, HomA(M, Rλ,∞) = 0 for each M ∈ T <∞ by Lemma 5.

Corollary 23 Rλ,∞ ∈ T \ lim−→T <∞ for each λ ∈ k.

5 Tilting modules

5.1 Constructing more complex preenvelopes

Now we are close to show an explicit structure of a tilting module for the class
(P<∞)⊥. First, we need the following general proposition which is valid for any
ring R. Let us recall that a module X over an arbitrary ring is said to be FP2,
if it possesses an exact sequence W2 → W1 → W0 → X → 0 with W0, W1,W2

finitely generated projective R-modules. Then whenever X is an FP2 module,
X⊥1 = Ker Ext1R(X,−) is closed under direct limits, thus also under filtrations
and arbitrary direct sums (see eg. [1]).

Proposition 24 Let R be an arbitrary ring and S be a set of FP2 modules such that
Ext1R(X,Y ) = 0 for any pair of distinct modules X, Y ∈ S. Further, let M ∈ R-Mod
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be any module and assume that

0 → M → JX → CX → 0

is a special X⊥1-preenvelope with an {X}-filtered cokernel CX for each X ∈ S.
Then the second row of the following push-out diagram (the map σ just adding up
the components of the direct sum) is a special S⊥1-preenvelope of M :

0 −−−−→ M (S) −−−−→ ⊕
X∈S JX −−−−→ ⊕

X∈S CX −−−−→ 0

σ

y
y

∥∥∥
0 −−−−→ M −−−−→ J −−−−→ ⊕

X∈S CX −−−−→ 0

PROOF. It is sufficient to prove that J ∈ S⊥1 and C =
⊕

X∈S CX ∈ ⊥1(S⊥1) =
KerExt1R(−,S⊥1). But the latter is clear, since the module C is a direct sum of S-
filtered modules and ⊥1C is closed under direct sums and filtrations for an arbitrary
class of modules C.

Choose an arbitrary Y ∈ S. If we take only the component corresponding to the
module Y in the first row of the commutative diagram above, and if we denote by
σ′ the restriction of the map σ to that component, we will get an induced diagram:

0 0y
y

0 −−−−→ M −−−−→ JY −−−−→ CY −−−−→ 0

σ′
y

y
y

0 −−−−→ M −−−−→ J −−−−→ ⊕
X∈S CX −−−−→ 0y

y
⊕

X∈S\{Y }CX
⊕

X∈S\{Y }CXy
y

0 0

By assumption, X ∈ Y ⊥1 for each X ∈ S \ {Y } and Y ⊥1 is closed under filtrations
and direct sums, thus

⊕
X∈S\{Y }CX ∈ Y ⊥1 . But also JY ∈ Y ⊥1 , therefore J ∈ Y ⊥1 .

And this is true for any Y ∈ S, so J ∈ S⊥1 .

5.2 Structure of tilting modules for R⊥
λ

Construction 25 (R⊥
λ -preenvelopes of P1 and P2) Let λ ∈ k. By Proposition 12,

there is an exact sequence 0 → P1 → Pn+1
σ→ Rλ,n → 0 for each n ≥ 1. If we take

an inclusion j : Rλ,n−1 → Rλ,n for any n ≥ 2, then the module M = σ−1(Im j) is
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clearly an object of SP<∞ (cf. the remark after Def. 8), thus M ∼= Pn by Propo-
sition 13. Moreover, Pn+1/M ∼= Rλ,n/ Im j ∼= Rλ. So we have the following exact
sequence for any n ≥ 1:

0 −−−−→ Pn
ιn+1,n−−−−→ Pn+1 −−−−→ Rλ −−−−→ 0

Let us denote ιm,n = ιm,m−1 . . . ιn+2,n+1ιn+1,n and ιn,n = 1Pn for every m > n ≥ 1.
The following squares are obviously commutative for n ≥ 2:

P1
ιn,1−−−−→ Pn∥∥∥ ιn+1,n

y
P1

ιn+1,1−−−−→ Pn+1

Further, Coker ιn,1 is Rλ-filtered, thus Coker ιn,1
∼= Rλ,n−1 by Lemma 11. Therefore,

we have the exact commutative diagrams with monomorphisms in columns:

0 −−−−→ P1
ιn,1−−−−→ Pn

πn−−−−→ Rλ,n−1 −−−−→ 0∥∥∥ ιn+1,n

y jn

y
0 −−−−→ P1

ιn+1,1−−−−→ Pn+1
πn+1−−−−→ Rλ,n −−−−→ 0

Let us denote by Tλ the direct limit of the modules Pn, n ≥ 1, with the inclusions
ιm,n, m ≥ n ≥ 1. We obtain the exact sequence:

δ1 : 0 −−−−→ P1
ι−−−−→ Tλ

π−−−−→ Rλ,∞ −−−−→ 0

Next, take the commutative diagram with the canonical inclusions in columns:

0 −−−−→ P1
ι2,1−−−−→ P2

π2−−−−→ Rλ −−−−→ 0∥∥∥ ι′
y j′

y
0 −−−−→ P1

ι−−−−→ Tλ
π−−−−→ Rλ,∞ −−−−→ 0

Then Coker ι′ ∼= Coker j′ ∼= Rλ,∞, thus we have the exact sequence:

δ2 : 0 −−−−→ P2
ι′−−−−→ Tλ

π′−−−−→ Rλ,∞ −−−−→ 0

Using this notation, we get:

Proposition 26 The short exact sequences δ1 and δ2 are special R⊥
λ -preenvelopes

of the indecomposable projective modules P1 and P2, respectively.
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PROOF. It is sufficient to prove that Tλ ∈ R⊥
λ and Rλ,∞ ∈ ⊥(R⊥

λ ). The latter is
clear, since the Prüfer module Rλ,∞ is Rλ-filtered.

It is enough to show that HomA(Tλ, Rλ) = 0 by Corollary 4 and Lemma 14. Take
an arbitrary f ∈ HomA(Tλ, Rλ). If we apply the functor HomA(−, Rλ) to the exact
sequence 0 → P1

ι2,1−−→ P2 → Rλ → 0, we obtain

0 −−−−→ HomA(Rλ, Rλ) −−−−→ HomA(P2, Rλ)
HomA(ι2,1,Rλ)−−−−−−−−−→ HomA(P1, Rλ)

But dimk HomA(Rλ, Rλ) = 1, and also dimk HomA(Pi, Rλ) = dimk eiRλ = 1 for
i = 1, 2. This implies HomA(ι2,1, Rλ) = 0. So fι = fι′ι2,1 = 0. Therefore, there is a
map f̄ such that f = f̄π. But now f̄ ∈ HomA(Rλ,∞, Rλ) = 0, and thus f = 0.

Theorem 27 Let λ ∈ k and Tλ be as in Contruction 25. Then Tλ ⊕ Rλ,∞ is a
tilting module corresponding to the tilting class R⊥

λ .

PROOF. By the proof of [19, Theorem 29], once we have a tilting class T , we can
construct a corresponding tilting module by iterating special T -preenvelopes start-
ing with the regular module AA. Since R⊥

λ is a 1-tilting class, we need to construct
only the first iteration. We have AA ∼= P1⊕P2, and by the former proposition, there
is a special R⊥

λ -preenvelope of A of the form

0 → A → Tλ ⊕ Tλ → Rλ,∞ ⊕Rλ,∞ → 0

The corresponding tilting module is then T = (Tλ⊕Tλ)⊕ (Rλ,∞⊕Rλ,∞). Note that
if T ′ is a module such that T ′ ∈ AddT and T ∈ AddT ′, then T ′ is tilting too, and
T⊥ = (T ′)⊥. Putting T ′ = Tλ ⊕Rλ,∞ gives us the desired result.

Remark 28 Let us write down a linear representation corresponding to the module
Tλ. It is of the shape

V1

fγ

%%
V2fβii

fα

__

with the linear maps satisfying equations fαfγ = fβfγ = fγfα = 0.

Since Tλ is countable dimensional, we put V1 = V2 = k(ω). Then the linear maps
for Tλ are given by the following column-finite matrices:

fα =




0 0 0 . . .

0 1

0 1
...

. . .




, fβ =




0 1

0 λ 1

0 λ
. . .

...
. . .




, fγ =




1 0 0 . . .

0 0

0 0
...

. . .



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For the sake of completeness, we also write down a representation of the correspond-
ing Prüfer module Rλ,∞:

fα =




1 0 0 . . .

0 1

0 1
...

. . .




, fβ =




λ 1

0 λ 1

0 λ
. . .

...
. . .




, fγ =




0 0 0 . . .

0 0

0 0
...

. . .




Note also that in contrast to Proposition 13, the modules Tλ and Tµ are non-
isomorphic for λ 6= µ. Otherwise, there would be an inclusion i : P1 → Tµ with
the cokernel isomorphic to Rλ,∞. But this is not possible, since a cokernel of any
inclusion i : P1 → Tµ is isomorphic to Rµ,∞ ⊕ M , where M is a suitable finitely
generated Kronecker regular module.

5.3 Structure of a tilting module for (P<∞)⊥

Theorem 29 Let X ⊆ k be a non-empty subset and put S = {Rλ | λ ∈ X}.
For each λ ∈ X take the special preenvelope 0 → P1

ιλ→ Tλ → Rλ,∞ → 0 from
Construction 25, and take the following push-out diagram with the summation map
σ:

0 −−−−→ P
(X)
1 −−−−→ ⊕

λ∈X Tλ −−−−→ ⊕
λ∈X Rλ,∞ −−−−→ 0

σ

y
y

∥∥∥
0 −−−−→ P1 −−−−→ TX −−−−→ ⊕

λ∈X Rλ,∞ −−−−→ 0

Then T = TX ⊕ ⊕
λ∈X Rλ,∞ is a tilting module corresponding to the tilting class

S⊥.

PROOF. The set S fulfills the assumptions of Proposition 24. Thus, the exact
sequence 0 → P1 → TX → ⊕

λ∈X Rλ,∞ → 0 is a special S⊥-preenvelope of the
projective P1.

Take an arbitrary µ ∈ X. Then we have the following commutative diagram with
isomorphisms in the first and monomorphisms in the other columns:

0 −−−−→ P1 −−−−→ P2 −−−−→ Rµ −−−−→ 0∥∥∥ ι′
y j′

y
0 −−−−→ P1

ιµ−−−−→ Tµ −−−−→ Rµ,∞ −−−−→ 0

σ′
y ι′′

y j′′
y

0 −−−−→ P1 −−−−→ TX −−−−→ ⊕
λ∈X Rλ,∞ −−−−→ 0
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Thus TX/ Im ι′′ι′ ∼= ⊕
λ∈X Rλ,∞/ Im j′′j′ ∼= ⊕

λ∈X Rλ,∞, and we have the following
short exact sequence, which is necessarily a special S⊥-preenvelope of the module
P2:

0 −−−−→ P2
ι′′ι′−−−−→ TX −−−−→ ⊕

λ∈X Rλ,∞ −−−−→ 0

Since A ∼= P1 ⊕ P2, the module T ⊕ T is tilting corresponding to the tilting class
S⊥ [19, Proof of Theorem 2.9], and so is T itself.

With the notation of Theorem 29, we get for X = k:

Corollary 30 Tk ⊕
⊕

λ∈k Rλ,∞ is a tilting module corresponding to (P<∞)⊥.
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