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Abstract

We give a characterization of the indecomposable modules for the Kronecker alge-
bra. Since the Kronecker algebra is of infinte representation type, this is not obtained
in a straightforward way. We do this by means of the functors D Tr and Tr D. Also
the Coxeter transformation plays a central role in the discussion.

1 Introduction

For any ring R, the indecomosable modules in the module category over R are always of
great interest. As with the prime numbers over the integers, the indecomosable modules
play the role of the building blocks in the category of R-modules. If our ring is a path
algebra over a quiver, then the indecomposable modules will play an additional role. In
the finitely generated case, we have a one to one correspondace between finitely generated
representations over the quiver and finitely generated modules over the path algebra.
Then for a representation over a quiver we may be interested in finding suitable basis
for the vector spaces such that the linear transformations look ’nice’. One approach to
this problem is to find the indecomposable representations, which, in a sense, fundamental
representations, and also yield the linear transformations that cannot be broken down into
easier ones.

Given two finite dimensional k-vector spaces, V1, V2 and two linear transformations Tα

and Tβ with Tα, Tβ : V1 −→ V2, we may then be intereseted in finding a basis for V1 and
V2 such that the linear trasformations look nice. This is what happens if we are in the
case of the Kronecker algebra.

The Kronecker algebra is of infinite representation type, meaning that the indecompos-
able modules over the Kronecker algebra constitute an infinte set. This poses, in general,
a problem in describing the indecomposable objects, however, in the case of the Kronecker
algebra we are able to give a full description of this set and its elements.

We do this by means of the Auslander-Reiten translation and the Coxeter transforma-
tion.

2 Preliminaries

During this section we go through some rudimentary facts and definitions. These facts
are assumed to be well known to the reader, so proofs will be omitted. First things first,
all rings will be unital and with 1 6= 0, for a ring R, we denote by ModR the category of
left R-modules. If M is a right R-module, then it is a left R op-module in a natural way.
Hence denote by Mod R op the category of right modules. And by modR denote the full
subcategory of ModR which consists of finitely generated left R-modules, and mod R op

the finitely generated right R-modules. For brevity, the word module will itself mean left
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module. We define the projective dimension, pdM , of a module M to be the smallest
number n ∈ N such that

0 −→ Pn −→ · · · −→ P1 −→ P0 −→ M −→ 0

is exact and Pi projective. Otherwise, if no such n exists we say pdM = ∞. Dually, the
injective dimension, idM , is the smallest m ∈ N such that

0 −→ M −→ I0 −→ I1 −→ · · · −→ Im −→ 0

is exact with the Ij ’s injective. We say that idM = ∞ if there is no such long exact
sequence. Obviously, pd M = 0 if and only if M is projective, and idM = 0 if and only if
M is injective. Furthermore, for a ring R define the left global dimension of R as follows
gl. dim R = sup{pd M | M is a left R-module (not necessarily finitely generated)}.

We call a ring, R, left hereditary if all left ideals are projective. R is left hereditary if
and only if gl. dim R ≤ 1, this then gives a charachterization of hereditary rings in the sense
of the global dimension. We shall call a left artin ring hereditary if it is left hereditary.

Let us turn our attention to exact sequences. The following fact is well known in
homological algebra, and we need it here. It describes how one can continue short exact
sequences when passed to Hom by Ext.

Proposition 2.1. Let 0 −→ X −→ Y −→ Z −→ 0 be a short exact sequence of R-modules,
and let M be a R-module, R ring. Then there exists long exact sequences:

0 −→ HomR(M, X) −→ HomR(M, Y ) −→ HomR(M, Z) −→
−→ Ext1R(M, X) −→ Ext1R(M, Y ) −→ Ext1R(M, Z) −→

−→ Ext2R(M, X) −→ Ext2R(M, Y ) −→ Ext2R(M, Z) −→ · · ·

and

0 −→ HomR(Z, M) −→ HomR(Y, M) −→ HomR(X, M) −→
−→ Ext1R(Z, M) −→ Ext1R(Y, M) −→ Ext1R(X, M) −→

−→ Ext2R(Z, M) −→ Ext2R(Y, M) −→ Ext2R(X, M) −→ · · ·

Closely related with the vanishing of ExtR(Y, X) is whether Y is projective and X
injective.

Proposition 2.2. R is a ring. For R-modules X and Y we have the following.

(i) X is projective if and only if Ext1R(X, Y ) = 0 for all Y if and only if Extn
R(X, Y ) = 0

for all Y and n ≥ 1.

(ii) Y is injective if and only if Ext1R(X, Y ) = 0 for all X if and only if Extn
R(X, Y ) = 0

for all X and n ≥ 1.

We also state an important duality of projectives over an artin algebra. We introduce
some notation before we present the important fact. Given an artin algebra Λ, then by
( )∗ we mean HomΛ( ,Λ). Also, given f : P −→ Q, define f∗ : Q∗ −→ P ∗ by g 7−→ gf
for all g ∈ HomΛ(Q,Λ).
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Proposition 2.3. Let Λ be an artin algebra. Then the functor ( )∗ : P(Λ) −→ P(Λop)
is a duality.

Let Γ = (Γ0,Γ1) be a oriented multigraph, with Γ0 the set of vertices and Γ1 the set
of edges (arrows). We call Γ a quiver, furthermore, if Γ0 and Γ1 are both finite, then we
say that Γ is a finite quiver. Also, for each i ∈ Γ0 define ei as the trivial path from vertex
i to i. Then given α ∈ Γ1 ∪ {ei}i∈Γ0 , an arrow, we denote by s(α) = i and e(α) = j as the
initial vertex and terminal vertex, respectively, of the arrow α. A path in the quiver Γ is
a composition of arrows in Γ, αr · · ·α1, with s(αt) = e(αt−1) for 1 ≤ t ≤ r, or the trivial
paths ei. And by l(ρ) denote the length of a path ρ as the number of non-trivial arrows
in the composition of ρ. We can then construct an k-algebra, k a field, in the following
fashion; for α, β arrows, define the product βα as the following

βα =

{
0 , if e(α) 6= s(β).
βα , if e(α) = s(β).

and by expanding this defenition inductively to paths we get a multiplication rule for paths.
By letting the set of all paths be a basis for this algebra, and a general element of the
algebra to be a k-linear combination of paths, we then get the desired algebra structure.
We call this algebra the path algebra of Γ, and usually denote it by the symbol kΓ. We
see that if Γ is a finite quiver, then kΓ is a finite dimensional algebra if and only if Γ has
no oriented cycles.

A representation of a quiver Γ is pair (V, T ) such that V is a set of vector spaces
V = {Vi} for i ∈ Γ0 and T is set of linear transformations {Tα} for α ∈ Γ1 such that
Tα : Vi −→ Vj if there is an arrow from vertex i to j. Denote the category of such (finite
dimensional) representations by Rep Γ. Now, if we are given a representation of a quiver
Γ, we are able to construct a kΓ-module in the following manner. Let M =

⊕
Vi and for

m ∈ M and Tα : Vi −→ Vj , we define α ·m as (0, . . . , T (vi), 0, . . . , 0), i.e. all zeros except
at the j’th position, where m = (vi)i∈Γ0 . This then gives a module structure. Conversely,
if we are given a kΓ-module, M , we then construct the representation (V, T ) by Vi = Mei,
where ei is the trivial path at vertex i, and Tα = α for all arrows α ∈ Γ1. We have an
equivalence of categories.

Proposition 2.4. Γ a quiver with no oriented cycles and k a field, then there is an
equivalence between mod kΓ and Rep Γ.

Another important notion concerning modules over a path algebra, is the dimension
vector of a module. Given a quiver Γ = (Γ0,Γ1) and k a field, denote by dim M =
(dimk Me1, dimk Me2, . . . ,dimk Men) for a kΓ-module M , with Γ0 = {1, 2, . . . , n}.

Throughout the remaining of the paper, Λ will denote a hereditary artin algebra. If
not stated otherwise, all modules are assumed to be finitely generated.

3 The Kronecker Algebra

Let Γ be the quiver

Γ : 1
α //
β
// 2

if k is a field, then we denote Λ = kΓ to be the path algebra defined by the quiver Γ. This
is algebra is called the Kronecker algebra. Λ is then a four dimensional algebra over k.
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Now the simple Λ-modules are given by the representations k
//// 0 and 0 //// k .

Taking the injective envelope and the projective cover we get the injective and projective
indecomposable Λ-modules. They are given by the representations

k
//// 0 , k2

(1,0) //

(0,1)
// k , k

(
1
0

)
//(

0
1

) // k2 , 0 //// k

with respective dimension vectors: (1, 0), (2, 1), (1, 2), (0, 1). We will denote these mod-
ules by I1, I2, P1, P2.

4 The Transpose

This section is devoted to the transpose and the dual of the transpose, we will introduce
these notions here, and go through some elementary and some non-trivial properties of
them. In this section, Λ will be an artinian algebra over a commutative artin ring k, that
is we have a ring homomorphism ϕ : k −→ Λ with Im ϕ ⊆ Z(Λ) and Λ is finitely generated
as a R-module.

Given a minimal projective presentation P1
f−−→ P0

p−−→ X −→ 0 of X in modΛ, i.e.
p : P0 −→ X and f : P1 −→ Ker p are projective covers, we define the transpose of
X, Tr X = Coker f∗. This means we have the exact sequence P ∗

0
f∗−−→ P ∗

1 −→ TrX −→ 0.
We state some immediate consequences of this definition.

Proposition 4.1. All modules are in modΛ

(i) P ∗
0

f∗−−→ P ∗
1

q−−→ TrX −→ 0 is a minimal projective presentation of TrX whenever

P1
f−−→ P0

p−−→ X −→ 0 is a minimal projective presentation of an indecomposable
nonprojective module X.

(ii) Tr (
⊕n

i=1 Xi) '
⊕n

i=1 TrXi , n finite.

(iii) TrX = 0 if and only if X is projective.

(iv) TrTr X ' XP for all X, where XP are the non-projective direct summands of X.

(v) If X and Y have no nonzero projective direct summands, then TrX ' TrY if and
only if X ' Y .

Proof. (iv) and (v) will follow from the other parts of the proposition.
(i) Assume the contrary, since ( )∗ is an equivalence of finitely generated projectives,

it sends a projective Λ-module to a projective Λop-module, thus we are then left with
two options either 1) P ∗

1
q−−→ TrX is not a projective cover or 2) P ∗

0
f∗−−→ Ker q is not a

projective cover. Assume 2), and let R
h−−→ Ker q be a projective cover of Ker q. Since P ∗

0

is projective and f∗ is epimorphic on the kernel of q, we then get the following commutative
diagram

R
h //

u

��

Ker q // 0

P ∗
0

f∗ //

v

��

Ker q // 0

R
h // Ker q // 0
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Now let g = vu and consider the commutative diagram

R
h //

g

��

Ker q

R
h // Ker q

We now claim that g is an isomorphism. g is epimorphic since h = hg is epimorphic and h
is an essential epimorphism. From the diagram above we assert that Ker g ⊆ Ker h. Now
Ker g is a direct summand of R since g is a map onto a projective, that is R = Ker g ⊕N
with N in modΛ. But the commutativity of the above diagram gives that the composition
N −→ R

h−−→ K is epi, which by the essentiality of h gives 0 −→ N −→ R epi. Thus
Ker g = 0 and we get as desired that g is an isomorphism. This then means that u is split
mono and v is split epi. We can then view u as an inclusion, and if we let Ker v = S we get
that P ∗

0 ' R⊕S, we also get that f∗|S = hv|S = 0. By applying the contravariant additive

functor ( )∗ and identifiyng P ∗∗
0 with P0 we arrive at P1

f−−→ P0 −→ X −→ 0, where P0 '
R∗⊕S∗. Since f∗|S = f∗ιS = 0, where ιS is the natural embedding of S into P ∗

0 ' R⊕S,
we get that 0 = (f∗ιS)∗ = πS∗f where f is identified with f∗∗ and πS∗ is the natural
projection onto S∗. Thus Im f ⊆ R∗. Since X = Coker f ' P0/Im f ' S∗ ⊕ (R∗/Im f).
This is impossible, since X is assumed to be indecomposable nonprojective.

Now assume that P ∗
1

q−−→ TrX is not a projective cover. For the same reason as above
we get a non-trivial decomposition of P ∗

1 ' S ⊕ T with S −→ TrX the projective cover
and q|T = 0, in other words T ⊆ Ker q. This yields Ker q ' M ⊕ T with M = (S ∩Ker q).
Since T is a direct summand in a projective, T is itself projective. Now P ∗

0 −→ Ker q is
the projective cover we get the following commutative diagram:

T
h

~~~~
~~

~~
~

P ∗
0

f ′ // T

where f ′ = pT f∗ and pT is the canonical projection pT : M ⊕ T −→ T . This then implies
that P ∗

0 = Im h⊕Ker f ′ ' T ⊕Ker f ′ since t = f ′h(t) = 0 for t ∈ Ker h. Let K = Ker f ′.
If we now take the projective covers of M and T , we get the following diagram

K ⊕ T

f∗

��

' PM ⊕ PT(
πM 0
0 πT

)
��

M ⊕ T M ⊕ T

with πM : PM −→ M and πT : PT −→ T projective covers. This then yields a decom-
position of f∗ into fK ⊕ fT where fT is an isomorphism onto T . If we now apply ( )∗

and identify P ∗∗
i with Pi for i = 0, 1 we get that P0 and P1 both have a projective direct

summand isomorphic to T ∗ and f decomposes to fK∗⊕fT ∗ where fT ∗ is an isomorphism of
T ∗. Recall that P1 −→ P0 −→ X −→ 0 is exact, which means that T ∗ ⊆ Ker p. This then
contradicts the assumption that P1 −→ P0 −→ X −→ 0 is a minimal projective presenta-
tion, since the composition K∗ −→ K∗ ⊕ T ∗ −→ X is epimorphic with the inclusion map
on the left, however the inclusion is not epi, hence violating the condition of essensiality.

(ii) It follows from the fact that HomΛ( ,Λ) : P(Λ) −→ P(Λop) is a duality and the
universal property of Coker .
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(iii) If X is projective indecomposable, then 0 −→ 0 −→ X −→ X −→ 0 is a minimal
projective presentation. Then X∗ −→ 0 −→ TrX −→ 0 is exact and we get TrX = 0. If
TrX = 0 and X indecomposable then P ∗

0 −→ P ∗
1 −→ 0 −→ 0 is not a minimal projective

presentation, thus by (i) we get that X is projective. Now by (ii) we get the case when X
is decomposable.

Tr will not usually define a functor between module categories in general, in order
for it to be a functor we need to move to stable categories modulo projectives. We
will denote by P(A,B) the R-submodule of HomΛ(A,B) which consist of all morphisms
f : A −→ B which factor through a projective, i.e. there is a projective,P , in modΛ
such that f = hg for some morphisms g : A −→ P and h : P −→ B. We then define
HomΛ(A,B) = HomΛ(A,B)/P(A,B). Furthermore, we will denote the stable category
of finitely generated Λ-modules modulo projectives by modΛ, which objects are exactly
the objects of mod Λ and morphisms are the factors HomΛ(A,B). We state the next
proposition without proof, for proof see [ARS97, IV.1].

Proposition 4.2. The functor Tr : modΛ −→ modΛop is an equivalence of categories.

Since R is artin, we only have finitely many non-isomorphic simple R-modules, say
S1, . . . , Sn. Let I =

⊕
I(Si), where Si −→ I(Si) is the injective envelope. Then the

contravariant functor HomR( , I) : modR −→ modR is a duality, and this duality then
induces a duality D = HomR( , I) : modΛ −→ modΛop. For a path algebra over a field
k, this duality reduces to D = Homk( , k). If (V, T ) is a representation of a quiver Γ,
then D(V, T ) is the representation of the opposite quiver, Γop, with (D(V ))i = D(Vi) =
V ∗

i the usual dual space of a vector space, and for Tα : Vi −→ Vj in (V, T ) we have
D(Tα) : D(Vj) −→ D(Vi) given by D(Tα)(g)(v) = g(Tαv) for g ∈ D(Vj) and v ∈ Vi. If

we are in the case of the Kronecker algebra, and given the representation k
1 //
t
//k , then

D(V1) = D(V2) = k and D(1) = 1 and D(t) = t by the correct change of basis. Thus the

dual representation is then k k
t

oo
1oo .

We might now be intereseted in knowing what happens on modΛ under the action of
D. If f ∈ P(A,B), that is

P
g

  @
@@

@@
@@

A

h
??~~~~~~~ f // B

is commutative for some projective P . Since D is a duality we get the following commu-
tative diagram

D(P )
D(h)

##H
HH

HH
HH

HH

D(B)

D(g)
;;vvvvvvvvv D(f) // D(A)

with D(P ) injective in modΛop. Thus if f : A −→ B factors through a projective, D(f) :
D(B) −→ D(A) factors through an injective. We are then tempted to introduce the stable
category modulo injectives. Let A and B be in mod Λ and let I (A,B) ⊆ HomΛ(A,B)
be the R-submodule consisting of all morphism which factor through an injective, that
is all morphisms f : A −→ B which for some g : A −→ I and h : I −→ B and I
injective in modΛ are such that f = hg. We will usually denote the factor module
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HomΛ(A,B)/I (A,B) by HomΛ(A,B). We will then write modΛ when refering to the
stable cateory modulo injectives, that is the category consisting of the same objects as
modΛ but the hom-sets are the factor modules HomΛ(A,B) for Λ-modules A and B.
From the observation above we see that the duality D : modΛ −→ modΛ induces a
duality D : mod Λ −→ modΛ. Combining this fact with Proposition 4.2 results in the
following proposition.

Proposition 4.3. The compositions D Tr : mod Λ −→ modΛ and Tr D : modΛ −→
modΛ are inverse equivalences of categories.

We now give some basic properties of D Tr following Proposition 4.1.

Proposition 4.4.

(i) If P1
f−−→ P0 −→ X −→ 0 is a minimal projective presentation of an indecomposable

non-projective Λ-module X, then 0 −→ D TrX
g−−−→ D(P ∗

0 )
D(f∗)−−−−→ D(P ∗

1 ) is a
minimal injective copresentation, that is g : D TrX −→ D(P ∗

0 ) and the induced
morphism h : Coker g −→ D(P ∗

1 ) are injective envelopes.

(ii) (DI0)∗ −→ (DI1)∗ −→ Tr DX −→ 0 is a minimal projective presentation of Tr DX
whenever 0 −→ X −→ I0 −→ I1 is a minimal injective copresentation of a nonin-
jective module X.

(iii) D Tr (
⊕

i∈I Xi) '
⊕

i∈I D TrXi where I is finite and all Xi’s are in modΛ.

(iv) D TrX = 0 if and only if X is projective.

(v) D TrX has no nonzero injective direct summands for all X in modΛ.

(vi) For all X in modΛ, (Tr D)D TrX ' XP where XP are the nonprojective direct
summands of X.

(vii) If X and Y have no nonzero projective direct summands, then D TrX ' D TrY if
and only if X ' Y .

Another important connection to note is that if Λ is in addition hereditatry and for X
and Y in modΛ with X, Y with no nonzero projective direct summands, then P(X, Y ) =
0. Let f ∈ P(X, Y ), then there is some projective P in mod Λ and h : X −→ P and
g : P −→ Y such that f = gh. Now this implies h : X −→ Im f ⊆ P is split epi, in other
words X ' Im h ⊕ Z, with Im h projective. This yields Im h = 0 and f = 0. In view
of this we denote by modP Λ the full subcategory of modΛ in which the objects are the
objects X in modΛ with X ' XP , that is all objects with no nonzero projective direct
summands. The assertation above the yields a useful property calculationwise for D Tr .

Proposition 4.5. Λ a hereditary artin algebra. Then there is an equivalence of categories
between modP Λ and modΛ.

We now turn our attention to studying some important modules that show up in ac-
cordance with the functors D Tr and Tr D. Let Λ be a hereditary artin algebra, we say
that a Λ-module Q is preprojective if there is a nonnegative integer such that (D Tr )nQ
is projective. Furthermore, Q is indecomposable preprojective if Q is indecompos-
able. Dually, we define a Λ-module J to be preinjective if (Tr D)mJ is injective for
some nonnegative integer m. We say that J is indecomposable preinjective if it is
indecomposable and preinjective. If an indecomposable module is neither preprojective
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nor preinjective, then we call it regular. An easy observation to make is that Q is pre-
projective if and only if (D Tr )nQ = 0 for some n. Dually, J is preinjective if and only if
(Tr D)mJ = 0, where m ≥ 0

We give a complete characterization of finitely generated indecomposable preprojec-
tives (preinjectives) for a hereditary artin algebra.

Proposition 4.6. Let Λ be an hereditary artin algebra. Q is an indecomposable prepro-
jective Λ-module if and only if there is an indecompsable projective Λ-module, P , such that
Q ' (Tr D)mP for some m ≥ 0.

Proof. If Q ' (Tr D)mP then it is preprojective by definition, and indecomposable since
the functor D Tr is additive. Conversely, if Q is indecomposable projective this is trivial.
Assume Q non-projective indecomposable preprojective. Then there exists an indecom-
posable projective P 6= 0 and some m ∈ N such that P ' (D Tr )mQ. Applying the Tr D
functor m times gives us (Tr D)mP ' (Tr D)m(D Tr )mQ ' Q. As desired.

The dual of this proposition follows by a small observation, namely

Lemma 4.7. If Λ is an artin algebra, then (Tr D)nDX ' D(D Tr )nX for all X in modΛ.

Proof. We prove this by induction on n. For n = 1 this is trivially true since D2 ' 1 as
functors. Assume that it holds for n = k, k ≥ 1.

(Tr D)k+1DX = Tr D(Tr D)kDX ' (Tr D)D(D Tr )kX ' D(D Tr )(D Tr )kX

= D(D Tr )k+1X

which concludes the proof.

Hence we get the dual result of Proposition 4.6.

Proposition 4.8. Λ as above. J is a indecomposable preinjective Λ-module if and only
if there is a indecompsable injective Λ-module, I, such that J ' (D Tr )nI for some n ≥
0.

5 The Coxeter Transformation

Let Γ be a quiver and assume Λ is finite dimensional and gl. dim Λ < ∞, where Λ is the
path algebra of Γ. Let S1, . . . , Sm be a complete list of simple Λ-modules. It is easy to check
that the set of the dimension vectors of the simple modules, {dim S1, . . . ,dim Sm}, give a
basis for the abelian group Zm. However, if P1, . . . , Pm is a complete list of projective inde-
composable Λ-modules, such that Pj

//Sj
//0 is a projective cover, then {dim Pi}m

i=1

is also a basis for Zm. This is obtained by the fact that Λ has a finite global dimension, say,
n. Then there is a long exact sequence 0 −→ Qin −→ · · · −→ Qi1 −→ Qi0 −→ Si −→ 0
with Qij projective for each simple Si. This yields, dim Si =

∑n
j=0(−1)jQij . Clearly,

dim Qij is in span{dim Pi}n
i=1, this yields that {dim Pi} is a basis for Zm. Similarily we

get that {dim Ij}m
j=1 is a basis for Zm, where I1, . . . , Im are all the indecomposable injec-

tives in modΛ, and 0 //Sj
//Ij is a injective envelope. Using the notation above we

can define the Coxeter transformation, c, to be c(dim Pj) = −dim Ij for j = 1, . . . ,m.
Since Ij ' D P ∗

j we see that c(dim Pj) = −dim D P ∗
j . We present some properties of the

Coxeter transformation here.

Proposition 5.1. Let Λ be a hereditary artin algebra and let c be the Coxeter transfor-
mation. Then for indecomposable Λ-module X we have the following:
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(i) If X is nonprojective, then c(dim X) = dim D TrX.

(ii) X is projective if and only if c(dim X) is negative.

(iii) c(dim X) is either positive or negative.

(iv) If X is noninjective, then c−1(dim X) = dim Tr DX.

(v) X is injective if and only if c−1(dim X) is negative.

(vi) c−1(dim X) is either positive or negative.

Proof. (i) Let X be an indecomposable nonprojective Λ-module and let 0 −→ P1 −→
P0 −→ X −→ 0 be a minimal projective presentation. Applying ( )∗ results in the exact
sequence 0 −→ X∗ −→ P ∗

0 −→ P ∗
1 −→ TrX −→ 0. However, X∗ = 0 since there are no

nonzero maps from an indecomposable nonprojective module to an hereditary ring. Thus
we are left with 0 −→ P ∗

0 −→ P ∗
1 −→ TrX −→ 0. This yields the short exact sequence

0 −→ D TrX −→ DP ∗
1 −→ DP ∗

0 −→ 0, and calculating the dimension vectors give

dim D TrX = dim DP ∗
1 − dim DP ∗

0 =
c(−dim P1) + c(dim P0) = c(dim P0 − dim P1) = c(dim X)

(ii) If X is projective, then c(dim X) is trivially negative by definition. If c(dim X) is
negative then X is trivially projective by (i).

(iii) This follows by (ii). The rest of the propostion follows by the duality D.

Some easy made observations follow from this proposition, we give them in the following
corollary.

Corollary 5.2. Let X and Y be indecomposable Λ-modules for a hereditary artin algebra.
If c is the Coxeter transformation and dim X = dim Y .

(i) X is projective if and only if Y is projective.

(ii) If X is projective, then X ' Y .

(iii) X is preprojective if and only if cn(dim X) is negative for some n ∈ N.

(iv) If X is preprojective, then X ' Y .

(v) X is injective if and only if Y is injective.

(vi) If X is injective, then X ' Y .

(vii) X is preinjective if and only if c−m(dim X) is negative for some m ∈ N.

(viii) If X is preinjective, then X ' Y .

Proof. (i) If X and Y are indecomposable, then by (ii) in the previous proposition we get
that X is an indecomposable projective module if and only if c(dim X) is negative, since
c(dim X) = c(dim Y ) we get that X is projective if and only if Y is projective.

(ii) Let X be projective and let dim Y = dim X, then by (i) we get that Y is projective.
Since dim Y = dim X there is a nonzero map from X to Y , say f : X −→ Y . Since Λ is
hereditary we get that X ' Im f ⊕Ker f , now since X is indecomposable and f nonzero,
we get that Ker f = 0. Hence X ' Y , since 0 −→ X −→ Y −→ Y/Im f −→ 0 and
dim Y/Im f = 0.

9



(iii) If X is indecomposable, we know that X is preprojective if and only if (D Tr )mX
is projective for some nonnegative m, then by the previous proposition we get that this is
equivivalent to cn(dim X) being negative for some natural number n.

(iv) For X and Y indecomposable with dim X = dim Y and let X be preprojective. By
(iii) we know that cn(dim X) = cn(dim Y ) is negative with n ∈ N. Let n be the smallest
such number, then dim(D Tr )n−1X = cn−1(dim X) = cn−1(dim Y ) = dim(D Tr )n−1Y is
positive. Thus (D Tr )n−1X and (D Tr )n−1Y are indecomposable projective and by (ii)
are isomorphic. Thus X ' Y .

The rest are just dual statements of the ones proven and follow trivially.

In the case of the Kronecker algebra we have that (1, 2) 7−→ (−1, 0) and (0, 1) 7−→
(−2,−1) by the Coxeter transformation. Hence we get the following matrix:

c =
(

3 −2
2 −1

)
= I −

(
−2 2
−2 2

)
From this it is easy to see the powers of c

cn = I − n

(
−2 2
−2 2

)
for n ∈ Z.

6 Preprojective and Preinjective
indecomposables

Recall that the indecomposable preprojective and preinjective modules over an artin alge-
bra occur as D Tr and Tr D shifts of the indecomposable projectives and injectives. Thus
we are interested in investigating shifts of the modules found in section 3. We do this in
the manner of the Coxeter transformation. Let P1, P2, I1, I1 be the modules presented in
Section 3, hence

dim(Tr D)tP1 = c−t(dim P1) =
(

I + t

(
−2 2
−2 2

)) (
1
2

)
=

(
2t + 1
2t + 2

)
dim(Tr D)tP2 =

(
2t

2t + 1

)
dim(D Tr )sI1 =

(
2s + 1

2s

)
dim(D Tr )sI2 =

(
2s + 2
2s + 1

)
What we now have established is that the dimension vectors of the preprojectives are of
the form (n, n + 1) and the dimension vectors of the preinjectives are (m + 1,m), where
n, m ≥ 0.

Now let Λ be the Kronecker algebra and let Qn be the Λ-module corresponding to the
following representation

kn

(
I
0

)
//(

0
I

) // kn+1

10



and let Jn be the Λ-module corresponding to the representation

kn+1
(I, 0) //

(0, I)
// kn

where I is the n×n identity matrix. We now claim that Qn and Jm are indecomposable
for all n, m.

Proof. It will suffice to show this for Qn, since a similar argument will hold for Jm. So
assume Qn = V ⊕W , where 0 6= V,W are in modΛ. Passing to representations we get

kn

(
I
0

)
//(

0
I

) // kn+1 = V1

fα //
fβ

// V2 ⊕ W1

gα //
gβ

//W2

Since V and W are direct summands in Qn they are also subrepresentations of Qn, and
thus the dimensions of the corresponding vectorspaces should add up, i.e. n = dimk V1 +
dimk W1 and n + 1 = dimk V2 + dimk W2. Since V is a subrepresentation of Qn we have
the following commutative diagram

kn

(
I
0

)
//(

0
I

) // kn+1

V1

i1

OO

fα //
fβ

// V2

i2

OO

where i1, i2 are monomorphisms. Let dimk V1 = t, thus given a basis B for V1 it is sent
to a linearly independent set in kn, which in turn is sent to a set of t linearly independent
vectors in kn+1 by

(
0
I

)
. However, if we consider

(
I
0

)
, we get at least one new vector

linearly independent of the ones obtained earlier. Since the diagram above commutes and
V2 ⊆ kn+1 as vector spaces, we get that dimk V2 ≥ dimk V1 + 1. A similar argument for
the representation corresponding to W yields dimk W2 ≥ dimk W1 + 1. Resulting in a
contradiction, namely

n + 1 = dimk V2 + dimk W2 ≥ dimk V1 + 1 + dimk W1 + 1 = n + 2.

Now that we have established that Qn and Jm are indecomposable, we may use
Corollary 5.2. Since dim Q2t = dim(Tr D)tP2, dim Q2t+1 = dim(Tr D)tP1, dim J2s =
dim(D Tr )sI1 and dim J2s+1 = dim(D Tr )sI2, we obtain by Corollary 5.2 that Q2t+i '
(Tr D)tPi+1 and J2s+i ' (D Tr )sIi+1 for i = 0, 1. Moreover, these are all the preprojective
and preinjective indecomposable Λ-modules up to isomorphism. We summarize.

Proposition 6.1. Notation as above. Let X be an indecomposable Λ-module.

(i) X is preprojective if and only if X ' Qn for some non-negative integer n.

(ii) X is preprojective if and only if X ' Jm for some non-negative integer m.
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7 Regular indecomposables

We now turn our attention towards the regular Λ-modules, Λ still beeing the Kronecker
algebra, however we now have to assume k to be algebraically closed field. Let Ra,b be

the Λ-module corresponding to the representation k
a //
b
// k . We claim now that Ra,b is

indecomposable for (a, b) 6= (0, 0) and Ra,b ' Ra′,b′ if and only if (a, b) = (ta′, tb′) for some
t ∈ k r {0}

Proof. First observe if (a, b) = (0, 0) then Ra,b decomposes to the two simple Λ-modules,
i.e.

k
0 //
0
// k = k

// // 0 ⊕ 0 //// k

So let (a, b) 6= (0, 0) and assume that Ra,b = S⊕T for some 0 6= S, T in modΛ. If we pass
to representations we get that S is a subrepresentation of Ra,b since S is a direct summand
of Ra,b. Hence we have the following commutative diagram

k
a //
b
// k

V1

i1

OO

fα //
fβ

// V2

i2

OO

with ij monomorphisms for j = 1, 2 and V1

fα //
fβ

//V2 beeing the representation correspond-

ing to S. This yields V1, V2 = 0, k. However, we cannot have V1 = V2 = k, since this would
imply that T = 0. Since S 6= 0, we arrive at either S1 : k ////0 or S2 : 0 ////k , neverthe-
less the first one is not a subrepresentation and the second cannot be a direct summand
since it would imply that the first also was a direct summand of Ra,b when (a, b) 6= (0, 0),
this is because the above diagram needs to commute, hence Ra,b is indecomposable. Let
Ra,b and Ra′,b′ be indecomposable, and assume that we have the following commutative
diagram

k
a //
b
// k

k

x

OO

a′ //

b′
// k

y

OO

where x, y ∈ k. By the commutativity of the diagram we get ax = ya′ and bx = yb′,
thus (a, b) = (ta′, tb′) for t = x−1y, that is Ra,b ' Ra′,b′ if and only if (a, b) = (ta′, tb′) for
nonzero t ∈ k.

In light of this discussion, we introduce some notation for further use. Let Rλ be

the module corresponding to the representation k
λ //
1
//k for λ ∈ k. And let Rω be the

module corresponding to the representation k
1 //
0
//k . It is easy to see that Rλ ' Ra,b

when a, b 6= 0, just put λ = b−1a. We are now able to describe the dimension vectors of
the indecomposable Λ-modules. We present this in the following proposition:

Proposition 7.1. Let Λ be the Kronecker algebra. Let X be indecomposable and let
dim X = (s, t).
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(i) If s < t then s = t− 1 and X is preprojective.

(ii) If s > t then s = t + 1 and X is preinjective.

(iii) If X is regular, then s = t and Rλ ⊆ X submodule for some λ ∈ k ∪ {ω}.

Proof. (i) If s < t then the Coxeter transformation yields cs

(
s
t

)
=

(
s
t

)
− 2s

(
t− s
t− s

)
.

Hence cs dim X is negative, which by Proposition 5.1 (ii) gives that X is preprojective.
However, this means that X ' Qn by Proposition 6.1, and thus dim X = (s, s + 1).

(ii) If t < s, then applying the Coxeter transformation −s times gives X preinjective
and X ' Jm for some m, i.e. s = t + 1.

(iii) If X is regular then cn dim X is never negative for n ∈ Z. In view of (i) and (ii)

it follows that dim X = (s, s). Let V
A //
B
//V be the representation corresponding to X.

We assertain that either KerB = 0 or KerB 6= 0. Assume that Ker B = 0, that is, B is
invertible. Now consider B−1A, since k is algebraically closed there is nonzero eigenvector
v ∈ V and eigenvalue λ ∈ k such that (B−1A)v = λv, that is Av = λBv. Now consider
the following diagram

V
A //
B
// V

k

v

OO

λ //
1
// k

Bv

OO

A quick check will show that this diagram does commute. Furthermore, it will be an
embedding, thus Rλ is a subrepresentation of X, that is Rλ is a submodule of X.

Now assume KerB 6= 0, then there exists 0 6= v ∈ V such that Bv = 0. Moreover,
Av 6= 0, since X is assumed to be indecomposable. Else we would have I1 : k ////0
as subrepresentation, nevertheless this means that I1 a direct summand of X since I1 is
injective. Consider the following diagram

V
A //
B
// V

k

v

OO

1 //
0
// k

Av

OO

It follows that Rω is then a submodule of X.

There are some observations to be made here, we give them in form of the next propo-
sition:

Proposition 7.2. Notation as above. Let λ, µ ∈ k ∪ ω.

(i) EndΛ(Rλ) ' k.

(ii) HomΛ(Rλ, Rµ) = 0 when λ 6= µ.

(iii) Ext1Λ(Rλ, Rµ) = 0 for λ 6= µ.
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Proof. (i) and (ii) are straightforward to check. For (iii) we form the minimal projective
presentation of Rλ. 0 −→ P2 −→ P1 −→ Rλ −→ 0, where P1, P2 are as in Section 3.
Applying HomΛ( , Rµ) for µ 6= λ. This results in the following exact sequence

0 −→ HomΛ(Rλ, Rµ) −→ HomΛ(P1, Rµ) −→ HomΛ(P2, Rµ) −→
−→ Ext1Λ(Rλ, Rµ) −→ Ext1Λ(P1, Rµ) −→ Ext1Λ(P2, Rµ) −→ · · ·

From (ii) we get that the first term is zero, also Ext1Λ(Pi, Rµ) = 0 for i = 1, 2 since Pi is pro-
jective. Consequently, we are left with the short exact sequence 0 −→ HomΛ(P1, Rµ) −→
HomΛ(P2, Rµ) −→ Ext1Λ(Rλ, Rµ) −→ 0. Nevertheless, we see that dimk HomΛ(P1, Rµ) =
dimk HomΛ(P2, Rµ) = 1, this, in turn, implies that dimk Ext1Λ(Rλ, Rµ) = 0, that is
Ext1Λ(Rλ, Rµ) = 0.

We now generalize the representations Rλ and Rω to higher dimensions. For j ≥
1 define the following. Let Rλ,j be the Λ-module corresponding to the representation

kj
Jλ //
I
//kj , where

Jλ =


λ 1

. . . . . .
. . . 1

λ


i.e. a matrix consisting of one Jordan cell, and I is the identy matrix. Denote the module

corresponding to the representation kj
I //
J0

//kj by Rω,j . Here J0 = Jλ for λ = 0. The

remainder of the section is dedicated to proving that all the regular indecomposables are
of the form Rλ,j , where λ ∈ k ∪ {ω} and j ≥ 1. We give a formal statement in the next
proposition.

Proposition 7.3. If X is a regular indecomposable, then X ' Rλ,j for some λ ∈ k ∪ {ω}
and j ≥ 1.

Before we indulge in the proof of this proposition we need the following lemma.

Lemma. Let Λ be a hereditary algebra. Given R indecomposable regular and Q indecom-
posable preprojective, for R, Q in modΛ. Then there are no nonzero maps from R to
Q.

Proof. Let f : R −→ Q be nonzero. Then if Q is projective then we have Im f ⊆ Q
projective since Λ is hereditary. This means we have the following commutative diagram:

Im f
g

}}{{
{{

{{
{{

X
f // Im f

id

In other words fg = id. We now claim that X = Ker f ⊕ Im g. Let x ∈ Ker f ∩ Im g, i.e.
∃ y ∈ Im g such that g(y) = x and f(x) = 0. Combining these two yields, y = id(y) =
fg(y) = f(x) = 0, which in turn results in x = 0 since g is a homorphism. Also, observe
that x = gf(x) + (x − gf(x)) for all x ∈ X. Furthermore, for y ∈ Ker g we have that
0 = fg(y) = y, thus g is a monomorphism. This means that Im f is a direct summand of
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R, impossible since R is indecomposable. Now if Q is nonprojective, then there is some

projective P and m ∈ N such that (D Tr )mQ ' P . Then we have (D Tr )mR
(D Tr )mf−−−−−−→ P .

Thus (D Tr )mR has a projective direct summand. By applying Tr D functor m times we
get a contradiction against R being indecomposable.

Now we are properly equipped to prove Proposition 7.3.

Proof of Proposition 7.3. We prove this by induction on the dimension of X. Let X be
regular indecomposable, then we know by Proposition 7.1 (iii) that dim X = (m,m) for
some m ∈ N. We have allready shown that for m = 1, this is truely the case. Now
assume that for n < m the hypothesis holds and let dim X = (m,m). Remember that for
a regular indecomposable there is some λ ∈ k ∪ {ω} such that Rλ ⊂ X. This gives rise
to the short exact sequence 0 −→ Rλ −→ X −→ Y −→ 0, with dim Y = (m − 1,m − 1).
Let Y =

⊕
i∈I Yi where I is finite and Yi indecomposable. Then none of the Yi’s are

preprojective, this is due to the preceding lemma. Consequently, by a dimension count,
we cannot have Yi preinjective either. Thus Yi is regular for each i ∈ I, and by the
induction hypothesis we get that Yi ' Rµi,ji . We now show that µi = λ for all i. Note
that we have the short exact sequence 0 −→ Rµ −→ Rµ,j+1 −→ Rµ,j −→ 0. Let us now
apply HomΛ( , Rλ), λ 6= µ, on this sequence.

0 −→ HomΛ(Rµ,j , Rλ) −→ · · · −→ Ext1Λ(Rµ,j , Rλ) −→ Ext1Λ(Rµ,j+1, Rλ) −→ Ext1Λ(Rµ, Rλ)

By Proposition 7.2 we have that Ext1Λ(Rµ, Rλ) = 0. Now if Ext1Λ(Rµ,j , Rλ) = 0 we
would have Ext1Λ(Rµ,j+1, Rλ) = 0. However, this we are able to see by induction on j.
Observe that from the exact sequence 0 −→ Rµ −→ Rµ,2 −→ Rµ −→ 0, we get that
Ext1Λ(Rµ,2, Rλ) = 0. Continuing in this fashion we arrive at Ext1Λ(Rµ,j , Rλ) = 0 for λ 6= µ
and j ≥ 1. If we now apply HomΛ(Rµi,ji , ) on 0 −→ Rλ −→ X −→ Y −→ 0 we get

0 −→ HomΛ(Rµi,ji , Rλ) −→ HomΛ(Rµi,ji , X) −→ HomΛ(Rµi,ji , Y ) −→ Ext1Λ(Rµi,ji , Rλ)

Now, if λ 6= µi then the last term in the above sequence is zero. This then means that for all
g ∈ HomΛ(Rµi,ji , Y ) there is a f ∈ HomΛ(Rµi,ji , X) such that pf = g, when p : X −→ Y
is the map in the underlying sequence. Especially, this means that we have the following
commutative diagram:

X
p′ // Rµi,ji

id

Rµi,ji

f

aaDDDDDDDD

Where p′ = πip and πi : Y −→ Rµi,ji is the canonical projection. We now claim that
X = Im f ⊕ Ker p′. First we see that if x ∈ Im f ∩ Ker p′ then x = 0, this is beacuase
0 = p′(x) = p′f(y) = y for some y ∈ Rµi,ji such that f(y) = x. Secondly, for every
x ∈ X we have x = fp′(x) + (x − fp′(x)). Moreover, f is a monomorphism since for
f ∈ Ker f we have y = p′f(y) = 0. Thus Im f ' Rµi,ji , a contradiction to X being
indecomposable. This means that µi = λ for all i. We are now at the following situation,
0 −→ Rλ −→ X −→

⊕
Rλ,ji

−→ 0. Without loss of generality we may assume that
λ ∈ k, a similar argument will do in the case λ = ω. Passing to representations yields the
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commutative diagram

k
λ //
1

//

i
��

k

i
��

kj
A //
B

//

π

��

kj

π

��
kj−1

J ′ //
I
// kj−1

where I is the identy matrix and J ′ is the matrix consiting of the Jordan cells from all
of the Rλ,ji

and i is the inclusion map to, say, the first coordinate and π is the natural
projection such that πi = 0. Let us now consider the bottom arrows in the above digram.
Since the two maps at the end are isomorphisms we get that B also is an isomorphism.
Even more so, we see that

B =
(

1 b
0 I

)
with b a 1×(j − 1) vector and I the (j − 1) identity matrix. The inverse is then given by

B−1 =
(

1 −b
0 I

)
If we now turn our attention towards the top arrows in the diagram above, and by a similar
argument we arrive at

A =
(

λ c
0 J∗λ

)
where J∗λ is a (j − 1)×(j − 1) matrix consisting of Jordan cells with λ on the diagonal.
Now if we compute B−1A we get

B−1A =
(

λ d
0 J∗λ

)
The important thing to notice here is that det(xI − B−1A) = (x− λ)j . This then means
that B−1A is similar to a matrix, J , on the form

J =

Jλ1

. . .
Jλq


where Jλi

are Jordan cells with λ on the diagonal, for 1 ≥ i ≥ q. Observe that

kj
A //
B
//kj ' kj

B−1A //
I
//kj ' kj

J //
I
//kj

Let q ≥ 2 then X would decompose, and we would arrive at a contradiction. Thus q = 1
and X ' Rλ,j .
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