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Introduction

The study of Cohen-Macaulay modules is one of the active subjects in commu-
tative algebra and representation theory. This thesis deals with a particularly
useful case: the maximal Cohen-Macaulay modules over a ring of simple hyper-
surface singularity. As is remarked in Yoshino [1990], the classification problem
of Cohen-Macaulay modules over a given Cohen-Macaulay ring has two aspects:
the first is the algebraic or representation-theoretic side, in which the theory de-
veloped by Maurice Auslander and Idun Reiten serves as a powerful tool; the
second is a geometric side, where many have made great contribution, including
Horst Knörrer, Ragnar-Olaf Buchweitz, David Eisenbud, etc. This thesis focuses
on the algebraic aspect, to give a clear presentation of the stable category of max-
imal Cohen-Macaulay modules over a simple singularity using Auslander-Reiten
sequences.

The first chapter starts from the basics of commutative algebra and introduces
the concept of maximal Cohen-Macaulay modules over Cohen-Macaulay rings in
Section 1.1. In Section 1.2, the focus is on maximal Cohen-Macauly modules over
a ring of hypersurface, where a very important tool, matrix factorisation, is im-
ported from Eisenbud [1980], and we show the correspondence between maximal
Cohen-Macaulay modules and matrix factorisations, known as Eisenbud’s ma-
trix factorisation theorem, see (1.6). This equivalence of categories is extensively
and sometimes even implicitly used throughout the thesis when we consider some
maximal Cohen-Macaulay module or some matrix factorisation.

The second chapter is devoted to the introduction to Auslander-Reiten theory,
which aims to represent a certain category by a quiver carrying the data of some
generators and relations. In Section 2.1, we give a detailed explanation of the
properties of Auslander-Reiten sequences, or almost split sequences, in partic-
ular the relation with irreducible morphisms. We also mention the existence of
Auslander-Reiten sequences in the category of maximal Cohen-Macaulay modules
over an isolated singularity, a famous result from Auslander and Unger [2006]. In
Section 2.2, we discuss the data in the Auslander-Reiten quiver of the category of
maximal Cohen-Macaulay modules over some Henselian Cohen-Macaulay local
ring. In particular, we show that the number of arrows between two vertices in
the quiver can be determined by inspecting certain Auslander-Reiten sequences.
In addition, we mention the local finiteness of the Auslander-Reiten quiver of an
isolated singularity, as well as a version of Brauer-Thrall theorem for the category
maximal Cohen-Macaulay modules, known as Dieterich-Yoshino’s theorem from
Dieterich [1987] and Yoshino [1987].

The third chapter brings the context to our main focus: the simple singularities.
In Section 3.1, we follow the method of Buchweitz et al. [1987] to give a proof of
the claim that if an analytic hypersurface admits only finitely many isomorphism
classes of indecomposable maximal Cohen-Macaulay modules, then it is a simple
singularity. We also present a proof from Herzog [1978] that looses the hypersur-
face assumption, to show that it suffices to assume that the ring is Gorenstein.
In Section 3.2, we introduce Knörrer’s periodicity and give a thorough proof of
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it, see (3.14). This famous result from Knörrer [1987] allows us to reduce the
dimension of the ring by two when proving that it admits only a finite number of
isomorphism classes of indecomposable maximal Cohen-Macaulay modules. Once
we finish the discussion of 1-dimensional and 2-dimensional cases later, we shall
be able to conclude that any hypersurface is MCM-finite, if and only if it is a
simple singularity, or equivalently if it is classified by the Dynkin types An for
n ≥ 1, Dn for n ≥ 4, E6, E7 and E8.

The last chapter aims to give a concrete presentation of the (stable) category of
maximal Cohen-Macaulay modules over a simple singularity. In other words, we
determine the (stable) Auslander-Reiten quiver of the category. By Knörrer’s pe-
riodicity (3.14), it suffices to look into the 1-dimensional and 2-dimensional cases.
In Section 4.1, we consider the 2-dimensional case, where we use the isomorphism
between the Auslander-Reiten quiver and the McKay graph of Klein groups to re-
duce the problem to a classical result from Klein [1893]. This isomorphism is often
referred to as the algebraic McKay correspondence, discovered in Auslander [1986]
and Auslander and Reiten [1987]. In Section 4.2, we consider the 1-dimensional
case, and we apply the techniques of matrix factorisations and Auslander-Reiten
sequences to determine the vertices and arrows in the Auslander-Reiten quiver,
as is so in Yoshino [1990]. Finally, we adopt the notation of orbit quivers used
in Iyama [2018] to present the result in a simpler form, and we illustrate how
the quotients of the extended quivers by some automorphisms correspond to the
Auslander-Reiten determined before.

Although this thesis mainly uses the technique from commutative algebra, it is
worth mentioning that in recent years the theory is put into the context of modern
representation theory in the language of homological algebra, see for example the
triangulated equivalences in Kajiura et al. [2007], and this point of view also plays
a major role in the survey Iyama [2018].
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1. Cohen-Macaulay modules

1.1 Cohen-Macaulay rings and modules
Throughout the thesis any ring R is assumed to be commutative and unital. Any
module M over a ring R is assumed to be unital and finitely generated.

We denote by mod(R) the category of finitely generated R-modules, considered
as a subcategory of Mod(R), the category of all R-modules that are possibly not
finitely-generated.

A ring R is local, if it admits a unique maximal ideal mR. Recall that:

Any projective module over a local ring is free.

See Matsumura [1989], Thm. 2.5.

For a ring R, its (Krull) dimension is denoted by dim(R). For an R-module M ,
its dimension is defined as dim(M) := dim(R/Ann(M)), where

Ann(M) := {r ∈ R | rm = 0,∀m ∈ M}

is the annihilator of M , considered as an ideal of R.

Let R be a local noetherian ring with maximal ideal mR. We denote by κR :=
R/mR the residue field of R. Then mR/m

2
R is a κR-vector space. R is regular , if

dim(R) = [mR/m
2
R : κR].

Jean-Pierre Serre has shown that:

A notherian local ring R is regular, if and only if R is of finite global
dimension, i.e.

gl.dim(R) := sup{proj.dim(M) | M ∈ Mod(R)} < ∞.

Moreover, in this case, dim(R) = gl.dim(R) < ∞.

See Matsumura [1989], Thm. 19.2.

We also know that:

Every regular local ring is a unique factorisation domain.

See Auslander and Buchsbaum [1959].

Let R be a ring, I an ideal of R, and M ∈ mod(R), such that IM ⊊ M . The
I-depth of M is defined as

depthI(M) := min{i : ExtiR(R/I,M) ̸= 0}.
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If R is moreover local, then the mR-depth of M is simply called the depth of M .
In other words,

depth(M) := min{i : ExtiR(κR,M) ̸= 0}.

According to David Rees, we can reformulate the definition in a more elementary
way. Let M be a finitely generated R-module for a local ring R, then x ∈ mR

is M -regular, if M ·x−→ M is injective; otherwise x is a zero divisor of M . A
sequence {x1, · · · , xn} of elements in mR is a regular sequence1 of M , if xi+1 is
M/(x1, · · · , xi)M -regular, for any i = 0, · · · , n− 1. Then:

The depth of M equals the maximum length of regular sequences of M in
mR.

See Bruns and Herzog [1998], Thm. 1.2.5.

The most basic property of depth is the following:

Let M be a nonzero finitely generated module over a noetherian local ring
R, then

depth(M) ≤ dim(M). (1.1)

See Bruns and Herzog [1998], Thm 1.2.12.

Let R be a noetherian local ring, and 0 → M → N → P → 0 be a short
exact sequence of nonzero R-modules. Then

• depth(N) ≥ min{depth(M), depth(P )};
• depth(P ) ≥ min{depth(N), depth(M) − 1};
• depth(M) ≥ min{depth(N), depth(P ) + 1}.

The statements are proven immediately once we consider the long exact sequence
by applying the functor HomR(κR,−).

Auslander-Buchsbaum formula. The Auslander-Buchsbaum formula allows
to calculate the projective dimension of a module by its depth:

Let R be a noetherian local ring with maximal ideal mR, and M be a finitely
generated R-module. If proj.dimR(M) < +∞, then

proj.dimR(M) + depth(M) = depth(R). (1.2)

See Auslander and Buchsbaum [1957].
1For an arbitrary ring R, the definition of an M -regular sequence also requires

M/(x1, · · · , xn)M ̸= 0. Thanks to Nakayama lemma this amounts to M ̸= 0 when R is
local, though.
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Let R be an integral domain. The rank of an R-module M , denoted by rankR(M),
is the maximal number of elements of M that are linearly independent over
R. Here a subset T of M is R-linearly independent, if the natural morphism
R(T ) → M is injective.

Let K be the field of fractions of R. Then rankR(M) = dimK(M ⊗R K).

Suppose M is a free R-module, then M ≃ R(n), and rankR(M) = n.

Let 0 → M1 → M2 → M3 → 0 be an exact sequence of R-modules, then

rankR(M1) + rankR(M3) = rankR(M2).

In fact, since the field of fractions K is flat, we can apply − ⊗RK to the original
exact sequence, and the result follows from the rank-nullity theorem in linear
algebra.

Let M be a module over some ring R. Given a chain of its R-submodules of the
form

M0 ⊊M1 ⊊ · · · ⊊Mn−1 ⊊Mn = M,

we say this chain has length n.

The length of M , denoted by l(M), is defined as the largest length of any chain
of R-submodules of M , or +∞, if no such largest length exists.

We have the following results:

• If N is an R-submodule of M ,

l(M) = l(N) + l(M/N).

• If 0 → M1 → M2 → · · · → Mn → 0 is an exact sequence of R-modules
of finite length, then

n∑︂
i=1

(−1)il(Mi) = 0.

See Matsumura [1989], p.12.

A local ring R is Henselian, if any commutative R-algebra which is finitely gen-
erated as an R-module is a direct product of local R-algebras.

For any Henselian local ring R and M ∈ mod(R), M is indecomposable if
and only if EndR(M) is a local algebra. This imples that mod(R) is Krull-
Schmidt, i.e. any R-module can be written uniquely as a finite direct sum
of indecomposable R-modules.

See Yoshino [1990], (1.18).

An important example is given by an analytic algebra over a valued field K, i.e.
a finite algebra over a convergent power series ring K{x1, · · · , xn}. Recall that
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K is equipped with a valuation v : K → [0,+∞) ⊂ R satisfying

• v(x) = 0 ⇔ x = 0;

• v(xy) = v(x)v(y), v(x+ y) ≤ v(x) + v(y), ∀x, y ∈ K.

Also recall that a formal power series f = ∑︁
i1···in ai1···inx

i1
1 · · ·xinn over K in vari-

ables {x1, · · · , xn} is convergent, if ∃r1, · · · , rn, N ∈ (0,+∞) such that

v(ai1···in)ri11 · · · rinn ≤ N, ∀i1, · · · , in.

Any local analytic algebra over a valued field K is a Henselian ring.

See Nagata [1962], Thm. 45.5.

Maximal Cohen-Macaulay module. Let R be a noetherian local ring. A
finitely generated R-module M is maximal Cohen-Macaulay (MCM)2, if

depth(M) = dim(R).

The ring R is a Cohen-Macaulay ring, if it is a MCM module over itself, i.e. if
depth(R) = dim(R).

The category of MCM R-modules is denoted by MCM(R), which is naturally a
subcategory of mod(R).

We clearly have:

Any regular local ring is a CM ring.

In fact, for a regular local ring R, we can pick a minimal set {x1, · · · , xn} of
generators for mR, where n = dim(R). Recall that R is a UFD, and then it is
easy to show that x1, · · · , xn is a regular sequence of R, and hence depthR =
dim(R).

The following homological characterisation of MCM modules are useful:

For a finitely generated R-module M , the followings are equivalent:
• M is an MCM R-module;
• ExtiR(κR,M) = 0 for any i < dim(R).

Given M ∈ MCM(R), we know by definition dim(R) = depth(M). By definition
of depth, we know that for any i < depth(M) = dim(R), ExtiR(κR,M) = 0.
Conversely, we know from (1.1) that depth(M) ≤ dim(M) = dim(R/Ann(M)) ≤
dim(R). Meanwhile, depth(M) = min{i : ExtiR(κR,M) ̸= 0} ≥ dim(R). Hence
depth(R) = dim(R).

An easy corollary is:
2There are also Cohen-Macaulay modules that are not maximal, which are out of topic in

the thesis.
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For any short exact sequence 0 → L → M → N → 0 of R-modules, if L
and N are MCM, then so is M ; if M and N are MCM, then so is L.

In fact, just consider the long exact sequence

· · · → ExtiR(κR, L) → ExtiR(κR,M) → ExtiR(κR, N) → · · ·

where i < dim(R).

For a CM local ring R, given an exact sequence of R-modules

0 → M
αn−→ Fn−1

αn−1−−−→ Fn−2 → · · · → F1
α1−→ F0

where each Fi is free and n ≥ dim(R), then M is a MCM R-module.

First notice that for free modules Fi, proj.dim(Fi) = 0, and thus by (1.2) we get
depth(Fi) = depth(R) = dim(R), ∀i. Now consider the short exact sequence

0 → M
αn−→ Fn−1 → Coker(αn) → 0,

from which we get depth(M) ≥ min{dim(R), depth(Coker(αn)) + 1}. Similarly
consider

0 → Coker(αn) → Fn−2 → Coker(αn−1) → 0,

to get depth(Coker(αn)) ≥ min{dim(R), depth(Coker(αn−1)) + 1}. Combining
them, we get

depth(M) ≥ min{dim(R), depth(Coker(αn)) + 1}
≥ min{dim(R),min{dim(R), depth(Coker(αn−1)) + 1} + 1}
≥ min{dim(R),min{dim(R) + 1, depth(Coker(αn−1)) + 2}}
= min{dim(R), depth(Coker(αn−1)) + 2}.

Then it is not hard to continue until we get

depth(M) ≥ min{dim(R), depth(Coker(α1)) + n}
≥ min{dim(R), depth(Coker(α1)) + dim(R)}
= dim(R).

In other words, for any R-module M of finite type and any n ≥ dim(R), the n-th
syzygy of M is a MCM R-module. We dismiss any free direct summand in it
and denote by syznR(M) the reduced n-th syzygy of M , and then syznR(M) is also
MCM.

The following results are well-known and useful:
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• If R is a regular local ring, then all MCM R-modules are free.
• If R is a 1-dimensional reduceda local ring, then an R-module is MCM

if and only if it is torsion-free, i.e. the natural homomorphism M →
HomR(HomR(M,R), R) is a monomorphism.

• If R is a 2-dimensional normal local domainb, then an R-module M
is MCM if and only if it is reflexive, i.e. the natural homomorphism
M → HomR(HomR(M,R), R) is an isomorphism.

ai.e. having no nonzero nilpotent elements.
bA ring is normal if its localisations at prime ideals are integrally closed domains.

See Yoshino [1990], (1.5).

A noetherian local ring R is Gorenstein, if

inj.dim(RR) < ∞.

A noetherian ring R is Gorenstein, if Rp is a Gorenstein local ring for any p ∈
Spec(R).

For a noetherian local ring R of dimension n, the followings are equivalent:
• R is Gorenstein, i.e. inj.dim(RR) < ∞;
• inj.dim(RR) = n;

• ExtiR(κR, R) =

⎧⎨⎩κR, i = n;
0, i ̸= n;

;

• ExtiR(κR, R) = 0 for some i > n;

• ExtiR(κR, R) =

⎧⎨⎩κR, i = n;
0, i < n.

See Matsumura [1989], Thm 18.1.

It follows directly that:

• Every regular local ring is Gorenstein.
• Every Gorenstein ring is Cohen-Macaulay.
• Every Gorenstein ring R admits a canonical module ωR that is iso-

morphic to R itself.

Given a regular local ring R, we know that

gl.dim(R) = sup{inj.dim(M) | M ∈ Mod(R)} < ∞.

In particular, inj.dim(RR) < ∞, i.e. R is Gorenstein. The other statements are
rather obvious. We remark that for any CM ring R, ωR ∈ mod(R) is a canonical
module of R if ωR ∈ MCM(R) and

ExtiR(κR, ωR) =

⎧⎨⎩κR if i = dim(R);
0 otherwise.
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For an arbitrary CM ring, if a canonical module exists, then it is unique up to
isomorphism. Moreover we have:

Let R be a CM ring with canonical module ωR, and M ∈ MCM(R). Then
HomR(M,ωR) ∈ MCM(R) as well and M ≃ HomR(HomR(M,ωR), ωR).
Moreover, ExtiR(M,ωR) = 0 for i ≥ 1. In particular, HomR(−, ωR) is an
exact auto-functor on MCM(R).

See Yoshino [1990], (1.13).

1.2 MCM modules over a hypersurface
In this section we are interested in the MCM modules over a hypersurface sin-
gularity R. In other words, R = S/(f) is a fixed CM local ring, where S is a
regular local ring, and f ∈ mS. If f = 0, we know that all MCM R-modules are
actually free. So from now on we assume f ̸= 0. In this thesis, we are particularly
interested in an analytic hypersurface, which is a hypersurface R = S/(f) where
S is a regular analytic algebra over certain field K. We shall simply call it a
hypersurface if no confusion is caused.

GivenM ∈ MCM(R), and it has a structure of S-module naturally. By Auslander-
Buchsbaum formula (1.2), proj.dimS(M) = depth(S) − depth(M) = dim(S) −
dim(R) = 1. Thus M has a free S-resolution of the form

0 → S(n1) ϕ−→ S(n2) π−→ M → 0.

Moreover, rankS(M) = 0. In fact, suppose S ι−→ M is an S-linear morphism, then
0 ̸= (f) ⊂ Ker(ι), hence ι cannot be injective. Applying the additivity of rank,
we get n1 = n2 =: n. So M has a free S-resolution of the form

0 → S(n) ϕ−→ S(n) π−→ M → 0. (1.3)

Consider the submodule fS(n) ≤ S(n). Since fM = 0, we get fS(n) ⊂ Ker(π) =
Im(ϕ) = ϕ(S(n)). Thus ∀x ∈ S(n), ∃!y ∈ S(n), such that fx = ϕ(y). We then
define ψ : S(n) → S(n) by ψ(x) = y. Clearly ψ is a linear endomorphism, and

ϕ ◦ ψ = f1S(n) .

So ϕ ◦ ψ ◦ ϕ = f1S(n) ◦ ϕ = ϕ ◦ f1S(n) , which implies, since ϕ is monomorphic,
that

ψ ◦ ϕ = f1S(n) .

By fixing a base for S(n), the maps ϕ, ψ can be regarded as matrices, i.e. ϕ, ψ ∈
Sn×n.
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Matrix factorisation. A pair of matrices (ϕ, ψ) ∈ Sn×n × Sn×n satisfying
ϕ ◦ ψ = ψ ◦ ϕ = f1S(n) is called a matrix factorisation of f , where n ∈ N.

A morphism of matrix factorisations (ϕ1, ψ1) → (ϕ2, ψ2) is a pair of matrices
(α, β) ∈ Sn2×n1 × Sn2×n1 , such that α ◦ ϕ1 = ϕ2 ◦ β, i.e. the following diagram
commutes:

S(n1) S(n1)

S(n2) S(n2)

ϕ1

β α

ϕ2

Note that in this case, we can show that β◦ψ1 = ψ2◦α holds as well. In fact,

fβ ◦ ψ1 = ψ2 ◦ ϕ2 ◦ β ◦ ψ1

= ψ2 ◦ α ◦ ϕ1 ◦ ψ1

= fψ2 ◦ α.

In other words, actually the following bigger diagram commutes as well:

S(n1) S(n1) S(n1)

S(n2) S(n2) S(n2)

ψ1

α

ϕ1

β α

ψ2 ϕ2

It is easy to check that, (α, β) is an isomorphism if and only if α and β are both
isomorphisms. We often identify isomorphic matrix factorisations.

We denote by MFS(f) the category of matrix factorisations of f . It is clearly
additive, because there is a natural direct sum defined by (ϕ1, ψ1) ⊕ (ϕ2, ψ2) :=
(ϕ1 ⊕ ϕ2, ψ1 ⊕ ψ2).

A matrix factorisation (ϕ, ψ) of f is reduced, if ϕ, ψ ∈ (S \ S×)n×n. The trivial
factorisations (1, f) and (f, 1) are clearly not reduced.

Let (ϕ, ψ) ∈ MFS(f), then ϕ, ψ : S(n) → S(n) are obviously monomorphic. For
example, if ψ(x) = 0 for some x ∈ S(n), then fx = ϕ(ψ(x)) = 0 as well. Notice
that S is a regular local ring, hence a UFD, so f ̸= 0 is not a zero divisor, and
therefore x = 0.

Up to now we have mainly been considering any M ∈ MCM(R) as an S-module.
We now show a famous result regarding the free R-resolutions of M , discovered
by David Eisenbud:

Every MCM module M over a hypersurface R has a 2-periodic free R-
resolution.

Let (ϕ, ψ) ∈ MFS(f). Denote by ϕ̄, ψ̄ ∈ Rn×n the matrices ϕ, ψ modulo (f),
respectively. We now claim that there is an exact sequence of R-modules of the
following form:

· · · → R(n) ϕ̄−→ R(n) ψ̄−→ R(n) ϕ̄−→ R(n) → · · · (1.4)
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and this gives an R-free resolution of M :

Φ(ϕ, ψ) : · · · → R(n) ϕ̄−→ R(n) ψ̄−→ R(n) ϕ̄−→ R(n) π̄−→ M → 0, (1.5)

where π̄ denotes the map π : S(n) → M modulo (f).

In fact, (1.4) is a complex by definition of (ϕ, ψ) ∈ MFS(f). Suppose x̄ ∈ R(n)

such that ϕ̄(x̄) = 0, then ϕ(x) ∈ fS(n) = ϕ(ψ(S(n))). Since ϕ is monomorphic,
x ∈ ψ(S(n)), i.e. x̄ ∈ Im(ψ̄). Then it is clear that (1.4) is exact. Now (1.5) is
exact simply by combining (1.4) and (1.3).

For (ϕ, ψ) ∈ MFS(f), we put Coker(ϕ, ψ) := Coker(ϕ), considered as an R-module.
For (α, β) : (ϕ, ψ) → (ϕ′, ψ′), β induces a morphism Coker(ϕ, ψ) → Coker(ϕ′, ψ′),
denoted by Coker(α, β). Then it is clear that Coker : MFS(f) → mod(R) is an
additive exact functor.

Moreover, by the periodicity of 1.5 for M := Coker(ϕ, ψ), we can cut the long
exact sequence short:

· · · R(n) R(n) R(n) · · · R(n) Coker(ϕ, ψ) 0

0 Coker(ϕ, ψ) 0

ϕ̄ ψ̄

π̄

ϕ̄ ϕ̄ π̄

In other words, Coker(ϕ, ψ) is the 2i-th syzygy of itself, ∀i ≥ 1. Hence Coker(ϕ, ψ)
is an MCM R-module. Thus we have shown that Coker : MFS(f) → MCM(R) is
an additive exact functor.

We let I be the ideal of MFS(f) generated by the morphisms factoring through
direct sums of (1, f), and J be the ideal generated by the morphisms factor-
ing through direct sums of (1, f) and (f, 1). Notice that Coker(1, f) = 0 and
Coker(f, 1) = R.

Now we are ready to state and prove the main theorem by David Eisenbud on
matrix factorisations:

Eisenbud’s matrix factorisation theorem. If R = S/(f) is a hyper-
surface, then Coker induces an equivalence of categories:

MFS(f)/I ≃ MCM(R), (1.6)

which induces another equivalence

MFS(f)/J ≃ MCM(R), (1.7)

where MCM(R) := MCM(R)/F is the stable category of MCM(R), and F
denotes the ideal of MCM(R) generated by the morphisms factoring through
free R-modules.

As we have already shown, the cokernel induces a functor again denoted by
Coker : MFS(f)/I → MCM(R). Conversely, we define a functor F : MCM(R) →
MFS(f)/I as follows: given M ∈ MCM(R), we have shown that we can get
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a matrix factorisation F (M) = (ϕ, ψ). This will be a well-defined object in
MFS(f)/I, if we take such a ϕ that the resolution 1.3 is minimal, see Yoshino
[1990], (7.4). Given a morphism g : M1 → M2 in MCM(R), by projectivity we
have α, β : S(n1) → S(n2) making the following diagram commute:

0 S(n1) S(n1) M1 0

0 S(n2) S(n2) M2 0

ϕ1

β α g

ϕ2

Then (α, β) gives a morphism, denoted by F (g) : F (M1) → F (M2). To show
that this is well-defined, assume (α′, β′) is another pair of matrices making the
same diagram commute, then ϕ2 ◦ (β − β′) = (α− α′) ◦ ϕ1. So ∃µ : S(n1) → S(n2)

such that α− α′ = ϕ2 ◦ µ and β − β′ = µ ◦ ϕ1. Thus

(α, β) − (α′, β′) = (ϕ2, 1) ◦ (µ, µ ◦ ϕ1) : (ϕ1, ψ1) → (ϕ2, ψ2),

where (µ, µ ◦ ϕ1) : (ϕ1, ψ1) → (1n2 , f ◦ 1n2) and (ϕ2, 1) : (1n2 , f ◦ 1n2) → (ϕ2, ψ2).
Therefore, (α, β) − (α′, β′) = 0 ∈ MFS(f)/I, and hence F (g) is uniquely defined.
It is then easy to check that F : MCM(R) → MFS(f)/I is a functor. In addition,
it is straightforward to check that F is a quasi-inverse to Coker : MFS(f)/I →
MCM(R). So 1.6 and consequently 1.7 hold.

Given any (ϕ, ψ) ∈ MFS(f). According to Yoshino [1990], p. 58, if the matrix
ϕ has a unit entry, then up to isomorphism, (ϕ, ψ) will have (1, f) as a direct
summand; likewise if ψ has a unit entry, then up to isomorphism, (ϕ, ψ) will have
(f, 1) as a direct summand. This implies that any (ϕ, ψ) can be written as

(ϕ, ψ) = (ϕ0, ψ0) ⊕ (f, 1)(p) ⊕ (1, f)(q), (1.8)

where p, q ∈ N and (ϕ0, ψ0) is reduced.

An easy observation is:

If (ϕ, ψ) ∈ MFS(f) is reduced, then Coker(ϕ, ψ) has no free direct summand.

In fact, if M := Coker(ϕ, ψ) has a direct summand R, then in (1.3), ∃ϕ′ such
that ϕ = ϕ′ ⊕ f , hence (ϕ, ψ) is isomorphic to (ϕ′, ψ′) ⊕ (f, 1) for some ψ′, a
contradiction!

We can further show that the decomposition (1.8) is unique up to isomorphism.
To do so, suppose (ϕ, ψ) = (ϕ′

0, ψ
′
0) ⊕ (f, 1)(p′) ⊕ (1, f)(q′) is another such decom-

position. Letting M := Coker(ϕ, ψ), M0 := Coker(ϕ0, ψ0), M ′
0 := Coker(ϕ′

0, ψ
′
0),

by (1.6) we get M ≃ M0 ⊕ R(p) ≃ M ′
0 ⊕ R(p′). As we have just shown, neither

M0 nor M ′
0 has any free direct summand, so p = p′ and M0 ≃ M ′

0. By comparing
the size of matrices, we get q = q′ as well. That (ϕ0, ψ0) ≃ (ϕ′

0, ψ
′
0) follows from

M0 ≃ M ′
0 and the proof of (1.6).

Another important result3 is:
3From (1.9) we also get that in general the matrix factorisations (ϕ, ψ) and (ψ, ϕ) are not

isomorphic.
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Let M = Coker(ϕ, ψ) be an indecomposable MCM R-module which is not
free, where (ϕ, ψ) ∈ MFS(f) is reduced. Then its first reduced syzygy
syz1

RM is also indecomposable and not free, moreover,

syz1
RM ≃ Coker(ψ, ϕ). (1.9)

Since M is indecomposable, clearly (ϕ, ψ) is also indecomposable. Now it is
obvious to see that (ψ, ϕ) is another indecomposable reduced matrix factorisation
of f , and hence Coker(ψ, ϕ) is indecomposable and not free. Now we can extract
from (1.4) a short exact sequence as follows:

0 → Coker(ψ, ϕ) → R(n) → Coker(ϕ, ψ) → 0,

from which we have syz1
RM ≃ Coker(ψ, ϕ) since Coker(ψ, ϕ) is shown to be inde-

composable and not free.

Given another MCM R-module N = Coker(ϕ′, ψ′) for some matrix factorisation
(ϕ′, ψ′), if there exists g ∈ HomR(N, syz1

R(M)), by Eisenbud’s matrix factorisation
theorem, there is a morphism of matrix factorisations (α, β) : (ϕ′, ψ′) → (ψ, ϕ),
such that Coker(α, β) = g. By definition this implies β ◦ ψ′ = ϕ ◦ α. Notice
that (︄

ϕ β
0 ϕ′

)︄(︄
ψ −α
0 ψ′

)︄
=
(︄
ϕψ −ϕα + βψ′

0 ϕ′ψ′

)︄
= f1,

so (
(︄
ϕ β
0 ϕ′

)︄
,

(︄
ψ −α
0 ψ′

)︄
) ∈ MFS(f) as well. Denote by L := Coker(

(︄
ϕ β
0 ϕ′

)︄
), and

we have a short exact sequence

0 → M
j−→ L

q−→ N → 0,

where j = Coker(
(︄

1
0

)︄
,

(︄
1
0

)︄
) and q = Coker(

(︂
0 1

)︂
,
(︂
0 1

)︂
).

Any extension in Ext1
R(N,M) can be obtained this way, since the middle element

in such a short exact sequence is also an MCM R-module as we have shown
before.

15



16



2. Auslander-Reiten theory

2.1 Almost split sequences and irreducible mor-
phisms

Fix a Henselian CM local ring (R,mR) with residue field κR for the whole sec-
tion. We continue to denote by MCM(R) the category of all finitely generated
MCM R-modules, a full subcategory of mod(R). Recall that M ∈ MCM(R) is
indecomposable if and only if EndR(M) is a local ring.

For any indecomposable M ∈ MCM(R), we define S(M) to be the set of all
non-split exact sequences s in MCM(R) of the form

s : 0 → Ns → Es → M → 0,

where Ns is indecomposable. By definition any s ∈ S(M) gives a non-trivial
element in Ext1

R(M,Ns).

First we observe that:

If the indecomposable M ∈ MCM(R) is not free, then S(M) ̸= ∅.

In fact, since M is not free, there exists a non-split epimorphism E ↠ M for
some free R-module E. Let N = Ker(E → M), we get a non-split short exact
sequence of the form

s : 0 → N → E → M → 0.

Now we decompose N into indecomposable direct summands N = ⨁︁
iNi, and let

Ei := E⨁︁
j ̸=i

Nj
. Then for any i,

si : 0 → Ni → Ei → M → 0

is a short exact sequence, since Ei/Ni ≃ E⨁︁
j
Nj

= E
N

≃ M . Now we claim that,
since s is not split, ∃i such that si is not split either1.

In fact, if each si splits, then for each i, the inclusion ιi : Ni ↪→ Ei in si admits
a left inverse ri : Ei → Ni. Then we have a map r : E ↠ Ei

ri−→ Ni ↪→ N by
composing ri with the quotient map E → Ei and the inclusion Ni → N . Denote
by ι : N ↪→ E the inclusion in s, and we can easily see that

r ◦ ι = N
ι−→ E ↠ Ei

ri−→ Ni ↪→ N = 1N .

This can be checked by looking at each Ni. Therefore, s splits as well, a contra-
diction!

Now we would like to inspect the ordering structure on S(M). For any s, t ∈
S(M), where M ∈ MCM(R) is indecomposable, we write s ≥ t if there exists
f ∈ HomR(Ns, Nt) such that Ext1

R(M, f)(s) = t. By definition this means there
exists a commutative diagram in the following form:

1This indeed follows from Yoshino [1990], (1.22).
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0 Ns Es M 0

0 Nt Et M 0

f 1

Moreover if such an f is an isomorphism, we write s ≃ t.

Notice that ≥ is clearly reflexive and transitive on S(M), and hence so is ≃. Also,
≃ is clearly symmetric on S(M), thus ≃ is an equivalence relation on S(M). We
shall prove that:

For any indecomposable M ∈ MCM(R), ≥ is a partial order on S(M)/ ≃.

It suffices to show that ≥ is anti-symmetric on S(M) modulo ≃. Suppose s, t ∈
S(M) satisfy s ≥ t and t ≥ s. Then there exist R-linear map f : Ns → Nt

and g : Nt → Ns such that Ext1
R(M, f)(s) = t and Ext1

R(M, g)(t) = s. Letting
h := g◦f : Ns → Ns, we see that Ext1

R(M,h)(s) = s. We claim that h ∈ EndR(Ns)
is an isomorphism.

To prove that, consider the R-subalgebra

R[h] := {a0 + a1h+ · · · + anh
n | n ∈ N, a0, · · · , an ∈ R}

of EndR(N). Since R is noetherian, Hilbert’s basis theorem implies that R[h] is
finitely generated as an R-module. Since R is Henselian, R[h] is a direct product
of local R-algebras. If R[h] is not local, then it contains non-trivial idempotents2

including e := (1, 0, · · · , 0). Then e(1−e) = e−e2 = 0 implies that both e and 1−e
are zero divisor in R[h] and hence in EndR(N). Thus neither e nor 1−e is a unit in
EndR(N), so e, 1 − e ∈ radEndR(N), which implies 1 = e+ (1 − e) ∈ radEndR(N),
a contradiction! Therefore, R[h] is local.

Observe that there is a natural map ϕ : EndR(N) → Ext1
R(M,N), given by

α ↦→ Ext1
R(M,α)(s). We still denote by ϕ its restriction on R[h]. Since s does

not split, ϕ(1) = Ext1
R(M, 1)(s) = s ̸= 0, i.e. 1 /∈ Ker(ϕ). On the other hand,

ϕ(1 − h) = Ext1
R(M, 1)(s) − Ext1

R(M,h)(s) = s− s = 0, so 1 − h ∈ Ker(ϕ). Thus
Ker(ϕ) is a proper ideal of R[h], hence Ker(ϕ) ⊂ rad(R[h]). This implies that
1 − h is not a unit, and thus h is a unit for R[h] is local, which completes the
proof.

Now we prove another important property of S(M):

Let M ∈ MCM(R) be indecomposable and let s : 0 → Ns
ιs−→ Es

πs−→ M → 0
and t : 0 → Nt

ιt−→ Et
πt−→ M → 0 be any two elements in S(M). Then

there is an element u ∈ S(M) with s ≥ u and t ≥ u.

Consider the following short exact sequence:

0 → Ker(πs, πt) → Es ⊕ Et
(πs,πt)−−−−→ M → 0.

2i.e. idempotents that are not equal to 0 or 1.
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Recall that since neither πs nor πt is a split epimorphism, the sequence is not
split. Actually, if (πs, πt) were split, there would be some α : M → Es and some
β : M → Et satisfying πs ◦α+ πt ◦ β = 1M . Since EndR(M) is local, either πs ◦α
or πt ◦β would be an automorphism of M , which means either s or t splits.

For simplicity we let N := Ker(πs, πt), E := Es ⊕ Et, and ϕ := (πs, πt). De-
compose N into indecomposable direct summands N = ⨁︁

iNi and denote by
Ei := E/

⨁︁
j ̸=iNj, we get short exact sequences of the form

ui : 0 → Ni → Ei → M → 0.

And we know from Yoshino [1990], (1.22) that there exists some i such that
ui ∈ S(M). Denote by u this non-split short exact sequence, and we claim that
s ≥ u and t ≥ u. In fact, consider the following diagram:

s : 0 Ns Es M 0

0 N E M 0

u : 0 Ni Ei M 0

ιs

µ

πs

1
(πs,πt)

1
πi

where µ : Ns → N is given by z ↦→ (ιs(z), 0). Then it is easy to check that the
diagram commutes and hence s ≥ u. Similarly we can show t ≥ u.

An easy corollary is that any minimal element in S(M) is also minimum.

In fact, if s ∈ S(M) is minimal, then for any t ∈ S(M), we have s ̸≥ t. Now by
what we have just proved, ∃u ∈ S(M) with s ≥ u and t ≥ u. But s ≥ u forces
s ≃ u. Thus t ≥ s.

Auslander-Reiten sequence. From now on, we say s ∈ S(M) is an almost
split sequence, or an Auslander-Reiten sequence ending in M if s is the minimum
element in S(M). Clearly, the Auslander-Reiten sequence ending in any inde-
composable M ∈ MCM(R) is unique up to ≃ if it exists. In this case, we denote
by τ(M) := Ns, called the Auslander-Reiten translation of M .

The following equivalent definition shows why an Auslander-Reiten sequence is
"almost split".

Let M ∈ MCM(R) be indecomposable and let s : 0 → Ns
ιs−→ Es

πs−→ M → 0
be in S(M). Then s is the Auslander-Reiten sequence ending in M if and
only if for any L ∈ MCM(R) and any p ∈ HomR(L,M) that is not a split
epimorphism, there exists f ∈ HomR(L,Es) such that p = πs ◦ f .

For the "if" part, we need only show that s is minimal. Let t : 0 → Nt
ιt−→ Et

πt−→
M → 0 be an element of S(M) with s ≥ t. Since πt is not a split epimorphism,
∃f : Et → Es such that πt = πs ◦f . Then clearly Ext1

R(M, f |Nt)(t) = s, i.e. t ≥ s.
So s ≃ t, and hence s is minimal.
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For the "only if" part, let p : L → M be a R-homomorphism that is not a split
epimorphism, and then the exact sequence

u : 0 → Ker(πs, p) → Es ⊕ L
(πs,p)−−−→ M → 0

does not split. Since ιs(Ns) ⊂ Ker(πs, p), the following diagram commutes:

s : 0 Ns Es M 0

u : 0 Ker(πs, p) Es ⊕ L M 0

ιs

ιs

πs

1

(πs,p)

In other words, Ext1
R(M, ιs)(s) = u. Now we decompose Q := Ker(πs, p) into

indecomposable direct summands Q = ⨁︁
iQi, and let Ei := Es⊕L⨁︁

j ̸=i
Qj

, so that ∀i,
ui : 0 → Qi → Ei → M → 0 is a short exact sequence. We have seen that
there exists some i such that t := ui does not split. So t ∈ S(M) and s ≥ t,
since Ext1

R(M,Q) = ∑︁
i Ext1

R(M,Qi). Meanwhile, s being the Auslander-Reiten
sequence ending in M , it is minimal in S(M), so s ≃ t. In particular, there exist
g ∈ HomR(Q,Ns) and f ′ ∈ HomR(Es ⊕ L,Es) such that the following diagram
commutes:

0 Q Es ⊕ L M 0

0 Ns Es M 0

g

(πs,p)

f ′ 1

ιs πs

Now we denote by f the composition L ↪→ Es ⊕ L
f ′
−→ Es of f ′ with the natural

inclusion. Then it is clear that p = πs ◦ f .

Irreducible morphism. Let M,N ∈ MCM(R) and f ∈ HomR(M,N). f is an
irreducible morphism if

• f is neither a split monomorphism nor a split epimorphism; and

• whenever f = h ◦ g is a factorisation in MCM(R), then either g is a split
monomorphism or h is a split epimorphism.

Let M ∈ MCM(R) be indecomposable and s : 0 → N → E
p−→ M → 0

be the Auslander-Reiten sequence ending in M . Then p is an irreducible
morphism.

Clearly, p is a non-split epimorphism. Assume that p = (E g−→ X
h−→ M) for some

X ∈ MCM(R), where h is not a split epimorphism, then we have a commutative
diagram with exact rows:

0 N E M 0

0 Q G M 0

j|N

p

j 1
(p,h)
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where G := E ⊕X, Q := Ker(p, h) and j =
(︄

0
g

)︄
. Since p and h are non-split, we

know that (p, h) is non-split as well. Decompose Q = ⨁︁
iQi into indecomposable

direct summands, and denote by Gi := G/
⨁︁

j ̸=iQj. We know from Yoshino
[1990], (1.22) that there exists i such that si : 0 → Qi → Gi → M → 0 is a
non-split short exact sequence, hence si ∈ S(M). Combining the diagram above
with the one below:

0 Q G M 0

0 Qi Gi M 0

q|Q

(p,h)

q 1

where q is the natural projection, we obtain s ≥ si. This implies s ≃ si for s is
minimal. Then q ◦ j is an isomorphism. Writing q = (q1, q2) : E ⊕ X → Gi, we

see that (q1, q2)
(︄

0
g

)︄
= q2 ◦ g : E → Gi is an isomorphism. In particular,

1E = (q2 ◦ g)−1(q2 ◦ g) = [(q2 ◦ g)−1 ◦ q2] ◦ g,

which implies g is a split monomorphism.

As a corollary, we get:

Let M , L ∈ MCM(R) be indecomposable and assume there exists an
Auslander-Reiten sequence s : 0 → N → E

p−→ M → 0 ending in M .
Then the following are equivalent:

• there is an irreducible morphism L → M ;
• L is isomorphic to a direct summand of E.

First let f : L → M be an irreducible morphism. In particular, f is not a split
epimorphism, and then there exists g : L → E such that f = p◦ g, for s is almost
split. Since p is not a split epimorphism, we get g is a split monomorphism, i.e.
L is isomorphic to a direct summand of E.

Conversely, suppose that E ≃ L ⊕ L′ and let p = (α, β) : L ⊕ L′ → M . We
claim that α : L → M is an irreducible morphism. If α is an isomorphism, then
p is isomorphic to the canonical retraction L ⊕ L′ ↠ L, a contradiction! So α is
a non-isomorphism between indecomposable modules, hence α is neither a split
monomorphism nor a split epimorphism. Now assume that α = (L h−→ X

k−→ M)
for some X ∈ MCM(R), where k is not a split epimorphism. Then the following
diagram clearly commutes:

L⊕ L′ M

X ⊕ L′

p

h⊕1L′ (k,β)

since
(︂
k β

)︂(︄h 0
0 1

)︄
=
(︂
k ◦ h β

)︂
=
(︂
α β

)︂
= p. If (k, β) is a split epimorphism,
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there exists µ : M → X and ν : M → L′ such that
(︂
k β

)︂(︄µ
ν

)︄
= k ◦ µ+ β ◦ ν = 1M .

Given that M is indecomposable, EndR(M) is local, and that k is not a split
epimorphism, we get k ◦ µ ∈ radEndR(M), and thus β ◦ ν is an isomorphism. So

p ◦
(︄

0
ν

)︄
= β ◦ ν is also an isomorphism, and thus p is a split epimorphism as

β, a contradiction! Therefore, (k, β) can not be a split epimorphism, and thus
h⊕1L′ is a split monomorphism for p is an irreducible morphism. In other words,

∃
(︄
λ11 λ12
λ21 λ22

)︄
: X ⊕ L′ → L⊕ L′ such that

(︄
λ11 λ12
λ21 λ22

)︄(︄
h 0
0 1

)︄
=
(︄

1 0
0 1

)︄
,

which gives λ11 ◦ h = 1, i.e. h is a split monomorphism.

In other words, any irreducible morphism g : L → M is obtained by g = p ◦ h for
some split monomorphism h : L → E.

Recall that MCM(R) admits a duality, and thus we define dually the follow-
ing.

For any indecomposable N ∈ MCM(R), let S′(N) denote the set of all non-split
exact sequences s in MCM(R) of the form

s : 0 → N → Ps → Ms → 0,

where Ms is indecomposable. By definition any s ∈ S′(N) gives a non-trivial
element in Ext1

R(Ms, N).

If R has the canonical module ωR, we denote by (−)∗ := HomR(−, ωR) the canon-
ical exact auto-functor on MCM(R), and then for any non-split short exact se-
quence s : 0 → N → E → M → 0 in MCM(R), s ∈ S′(N) if and only if
s ∈ S(M), if and only if s∗ ∈ S(N∗).

We list below the dual version of the statements regarding S(M) we have proved
in the section.

Fix an indecomposable N ∈ MCM(R).
• If N ̸≃ ωR, then S′(N) ̸= ∅.
• For any s, t ∈ S′(N), write s ≥′ t if there exists f ∈ HomR(Mt,Ms)

such that Ext1
R(f,N)(s) = t; write s ≃′ t if such an f is an isomor-

phism. Then ≥′ is a partial order on S′(N) modulo ≃′.
• For any s, t ∈ S′(N), there exists u ∈ S′(N) such that s ≥′ u and
t ≥′ u. Therefore, any minimal element in S′(N) is minimum.

We call s ∈ S′(N) an almost split sequence, or an Auslander-Reiten sequence
starting from N if s is the minimum element in S′(N). Clearly, the Auslander-
Reiten sequence starting from any indecomposable N ∈ MCM(R) is unique up to
≃′ if it exists. In this case, we denote by τ−1(N) := Ms.
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The following are the dual to the statements concerning the Auslander-Reiten
sequence ending in some indecomposable M ∈ MCM(R) proven before.

Fix an indecomposable N ∈ MCM(R).
• Any s : 0 → N

αs−→ Ps
βs−→ Ms → 0 in S′(N) is the Auslander-Reiten

sequence starting from N , if and only if for any L ∈ MCM(R) and
any r ∈ HomR(N,L) that is not a split monomorphism, there exists
f ∈ HomR(Ps, L) such that r = f ◦ αs.

• If s : 0 → N
αs−→ Ps

βs−→ Ms → 0 is the Auslander-Reiten sequence
starting from N , then αs is an irreducible morphism.

• Let L ∈ MCM(R) be indecomposable, and s : 0 → N
αs−→ Ps

βs−→
Ms → 0 is the Auslander-Reiten sequence starting from N . Then
there exists an irreducible morphism N → L, if and only if L is
isomorphic to a direct summand of Ps. In other words, any irreducible
morphism g : N → L is obtained by g = h ◦ αs for some split
epimorphism h : Ps → L.

The mutually dual definitions of Auslander-Reiten sequences are coherent in the
following sense:

Let s : 0 → N → E → M → 0 be a non-split short exact sequence in
MCM(R), where N,M are indecomposable. Then s is the Auslander-Reiten
sequence ending in M , if and only if it is the Auslander-Reiten sequence
starting from N .

Suppose s is the Auslander-Reiten sequence ending in M , and we would like to
show that s is minimal with respect to ≥′. Let t ∈ S′(N) with s ≥′ t. By
definition, there exists f : Mt → M such that Ext1

R(f,N)(s) = t. In other words,
there exists a commutative diagram of the form

s : 0 N E M 0

t : 0 N Pt Mt 0

ι π

αt

1
βt

g f

Assume that f is not an isomorphism, then it is not even a split epimorphism for
M and Mt are both indecomposable. Since s is the almost split sequence ending
in M , there exists θ : Mt → E such that π ◦ θ = f . Notice that π ◦ (g − θ ◦ βt),
in other words, Im(g − θ ◦ βt) ⊂ Ker(π) = Im(ι), which implies that ∃ϕ : Pt → N
such that ι ◦ ϕ = g − θ ◦ βt. Then ι ◦ ϕ ◦ αt = (g − θ ◦ βt) ◦ αt = g ◦ αt = ι,
so ϕ ◦ αt = 1N for ι is a monomorphism. This contradicts the fact that t does
not split! Thus, f must be an isomorphism, hence s ≃′ t. Therefore, we have
shown that s is also the Auslander-Reiten sequence starting from N . The other
direction is analogous.

The category MCM(R) is said to admit Auslander-Reiten sequences, if for any
indecomposable M ∈ MCM(R) which is not free, there exists an Auslander-Reiten
sequence ending in M .
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Recall that if R has the canonical module ωR, then the canonical dual is an
exact anti-equivalence of MCM(R), i.e. an equivalence MCM(R) → MCM(R)op.
Thus in this case, MCM(R) admits Auslander-Reiten sequences if and only if for
any indecomposable N ∈ MCM(R) that is not isomorphic to ωR, there exists an
Auslander-Reiten sequence starting from N .

Isolated singularity. Given any Henselian CM local ring R with canonical
module ωR, we say that R is an isolated singularity, if for any prime ideal p of R
which is not maximal, the localisation Rp is a regular local ring. The following
results are well-known:

• If dim(R) = 1, R is an isolated singularity if and only if it is reduced.
• If dim(R) = 2, R is an isolated singularity if and only if it is a normal

integral domain.

See Yoshino [1990], p. 16.

Auslander transpose. As before let R be a Henselian CM local ring with
canonical module ωR. Given any M ∈ mod(R), there is a free presentation of the
form

F1
f−→ F0 → M → 0.

We denote by Tr(M) = Coker(HomR(F0, R) −◦f−−→ HomR(F1, R)), called the Aus-
lander transpose of M , which depends on the choice of the free presentation.
Nevertheless, by horseshoe lemma it is easy to see that Tr(M) is unique up to
free direct summand.

The following well-known theorem by M. Auslander gives an equivalent condition
for MCM(R) to admit Auslander-Reiten sequences.

As before let R be a Henselian CM local ring with canonical module ωR.
Then MCM(R) admits Auslander-Reiten sequences, if and only if R is an
isolated singularity.

See Auslander and Unger [2006], p. 200.

Moreover, in the case of an isolated singularity, the Auslander-Reiten translation
can be given by the Auslander transpose:

If R is an isolated singularity and M ∈ MCM(R) is not free, we have

τ(M) = HomR(syzdim(R)
R Tr(M), ωR), (2.1)

See Yoshino [1990], (3.11).

2.2 Auslander-Reiten quivers
Fix a Henselian CM local ringR with maximal ideal mR, and we assume that
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• the residual field κR := R/mR is algebraically closed; and

• R has a canonical module ωR.

Radical morphism. Given M,N ∈ MCM(R), we consider the radical mor-
phisms3 between them, defined by

radR(M,N) := {f ∈ HomR(M,N) | ∀g ∈ HomR(N,M), 1 − gf is invertible}.

For n ≥ 2, we also define

radnR(M,N) := {f ∈ HomR(M,N)} | f = fn · · · f1, fi are radical morphisms}.

And for coherence, we set rad0
R(M,N) := HomR(M,N) and rad1

R(M,N) :=
radR(M,N).

Above all, we would like to show that:

radnR is a 2-sided ideal of the category MCM(R) for any n ∈ N. In other
words,

• ∀M ∈ MCM(R), 0M ∈ radnR(M,M);
• ∀M,N ∈ MCM(R), if f, g ∈ radnR(M,N), λ, µ ∈ κR, then λf + µg ∈

radnR(M,N);
• if f ∈ radnR(M,N), ϕ ∈ HomR(N,N ′), ψ ∈ HomR(M ′,M) for
M,N,M ′, N ′ ∈ MCM(R), then ϕ ◦ f ∈ radnR(M,N ′) and f ◦ ψ ∈
radnR(M ′, N).

Clearly when n = 0, rad0
R = HomR is a 2-sided ideal of MCM(R).

Now consider the case n = 1. Then 0M ∈ radR(M,M), ∀M ∈ MCM(R). Let
f ∈ radR(M,N), ϕ ∈ HomR(N,N ′), and g ∈ HomR(N ′,M), then 1 − g ◦ ϕ ◦ f is
invertible by definition, so ϕ ◦ f ∈ radR(M,N ′). If moreover ψ ∈ HomR(M ′,M)
and g′ ∈ HomR(N,M ′), then by definition ∃h ∈ EndR(M) such that (1 − ψ ◦ g′ ◦
f) ◦ h = 1 = h ◦ (1 − ψ ◦ g′ ◦ f). Now

(1 + g′ ◦ f ◦ h ◦ ψ) ◦ (1 − g′ ◦ f ◦ ψ)
=1 − g′ ◦ f ◦ ψ + g′ ◦ f ◦ h ◦ ψ − g′ ◦ f ◦ h ◦ ψ ◦ g′ ◦ f ◦ ψ
=1 − g′ ◦ f ◦ ψ + g′ ◦ f ◦ h ◦ ψ − g′ ◦ f ◦ (h− 1) ◦ ψ
=1 − g′ ◦ f ◦ ψ + g′ ◦ f ◦ h ◦ ψ − g′ ◦ f ◦ h ◦ ψ + g′ ◦ f ◦ ψ
=1,

and similarly (1−g′ ◦f ◦ψ)◦ (1+g′ ◦f ◦h◦ψ) = 1, so f ◦ψ ∈ radR(M ′, N).

Notice that radR(M,N) is clearly closed under scalar multiplication, so it remains
to show that given f, g ∈ radR(M,N), f − g ∈ radR(M,N) as well. Given any
h ∈ HomR(N,M), by definition there exists α ∈ EndR(M) such that α ◦ (1 − h ◦
f) = 1 = (1 − h ◦ f) ◦ α. Then by definition there exists β ∈ EndR(M) as well,

3In fact, the radical can be defined as a 2-sided ideal of any preadditive category.
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such that β ◦ (1 − (−α ◦ h) ◦ g) = 1 = (1 − (−α ◦ h) ◦ g) ◦ β. Now

β ◦ α ◦ (1 − h ◦ (f − g)) = β ◦ α ◦ (1 − h ◦ f + h ◦ g)
= β ◦ α ◦ (1 − h ◦ f) + β ◦ α ◦ h ◦ g
= β + β ◦ α ◦ h ◦ g
= β ◦ (1 + α ◦ h ◦ g)
= 1.

On the other hand, we have shown that g ◦ α ∈ radR(M,N), so ∃γ ∈ EndR(M)
such that (1 − (−h) ◦ (g ◦ α)) ◦ γ = 1 = γ ◦ (1 − (−h) ◦ (g ◦ α)). Then

(1 − h ◦ (f − g)) ◦ α ◦ γ
=(1 − h ◦ f) ◦ α ◦ γ + h ◦ g ◦ α ◦ γ
=γ + h ◦ g ◦ α ◦ γ
=(1 + h ◦ g ◦ α) ◦ γ
=1.

Therefore, 1 − h ◦ (f − g) is invertible, and hence f − g ∈ radR(M,N). So radR
is a 2-sided ideal of MCM(R).

For n ≥ 1, if f ∈ radn+1
R (M,N), we have a decomposition f = fn+1 ◦ · · · ◦ f1,

where fi ∈ radR(Xi−1, Xi), X0 = M , Xn+1 = N . Since radR is an ideal, f2 ◦
f1 ∈ radR(X0, X2), and thus f = fn+1 ◦ · · · ◦ (f2 ◦ f1) ∈ radnR(M,N). Hence
radnR(M,N) ⊃ radn+1

R (M,N), ∀n ∈ N. By induction, we can show that radnR is a
2-sided ideal of MCM(R) for n ≥ 2.

If we decompose M,N into indecomposable direct summands M = ⨁︁
iMi and

N = ⨁︁
j Nj, then any morphism f : M → N is also decomposed as f = (fij),

where fij = πNj ◦ f ◦ ιMi : Mi → Nj, πj denotes the canonical projection onto the
j-th direct summand, and ιi denotes the natural embedding from the i-th direct
summand. Since radR is a 2-sided ideal, we get:

f ∈ radR(M,N) ⇔ fij ∈ radR(Mi, Nj), ∀i, j.

The ⇒ direction directly follows from the definition, and so does the ⇐ direction
when we write f = ∑︁

i

∑︁
j ι
N
j ◦ fij ◦ πMi .

When M,N are both indecomposable, clearly radR(M,N) consists of all non-
isomorphisms from M to N . Therefore, given any M,N ∈ MCM(R), f ∈
radR(M,N) if and only if fij is not an isomorphism for any i, j. In particu-
lar, when M = N is indecomposable, radR(M,M) = radEndR(M) is just the
Jacobson radical of the endomorphism ring.

Given 2 indecomposable modules M,N ∈ MCM(R), we now show that:

Any morphism f ∈ HomR(M,N) is irreducible, if and only if f ∈
radR(M,N) \ rad2

R(M,N).
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First assume f is irreducible, then f ∈ radR(M,N) by definition. Suppose that
f ∈ rad2

R(M,N), then f = β ◦ α, where α ∈ radR(M,M ′) and β ∈ radR(M ′, N).
We decompose M ′ = ⨁︁

iMi into indecomposable direct summands, and then
α = (M αi−→ Mi) and β = (Mi

βi−→ N) are also decomposed. Now α is a split
monomorphism or β is a split epimorphism. Assume that there exists ϕ = (Mi

ϕi−→
M) such that ϕ ◦ α = 1, then 1 = ∑︁

i ϕi ◦ αi. We have shown that every αi is a
radical morphism, so ϕi◦αi ∈ radR(M,M) = radEndR(M) for each i, and thus 1 ∈
radEndR(M), a contradiction! So α is not a split monomorphism. Similarly we can
show that β is not a split epimorphism. Thus f ∈ radR(M,N)\rad2

R(M,N).

Conversely, assume f ∈ radR(M,N) \ rad2
R(M,N). By definition f is not an iso-

morphism. Now that M,N are indecomposable, we easily get f is neither a split
monomorphism nor a split epimorphism. If f = g ◦ h, where h ∈ HomR(M,X)
and g ∈ Hom(X,N), we decompose X = ⨁︁

iXi into indecomposable direct sum-
mands, then h = (M hi−→ Xi) and g = (Xi

gi−→ N) are decomposed as well, such
that f = ∑︁

i gi ◦ hi. Since f /∈ rad2
R(M,N), there exists i such that either gi or hi

is invertible. Therefore, h is a split monomorphism or g is a split epimorphism,
and thus f is irreducible.

For indecomposable modules M,N ∈ MCM(R), we now define the R-module of
irreducible morphisms from M to N as

Irr(M,N) := radR(M,N)/rad2
R(M,N).

Given f ∈ radR(M,N) and r ∈ mR, clearly f ◦ (M r·−→ M) ∈ rad2
R(M,N).

Therefore, Irr(M,N) is a κR-vector space. It is always finite-dimensional, since
radR(M,N) is finitely generated over R. For brevity, we denote by

i(M,N) := dimκR
Irr(M,N).

Auslander-Reiten quiver. The Auslander-Reiten quiver of MCM(R) is de-
fined as follows. Its vertices are the isomorphism classes of indecomposable MCM
modules, and the number of arrows from [M ] to [N ] equals i(M,N). In addition,
if there is an Auslander-Reiten sequence 0 → τ(M) → E → M → 0, we usually
connect [M ] and [τ(M)] by a dotted line. When it does not cause ambiguity, we
refer to the Auslander-Reiten quiver of MCM(R) simply by the Auslander-Reiten
quiver of R, and it is usually denoted by Γ(R).

By definition we can determine the Auslander-Reiten quiver of a regular local
ring R. In this case, the only indecomposable MCM R-module is R itself up to
isomorphism. By HomR(R,R) ≃ R, we get radR(R,R) ≃ mR and rad2

R(R,R) ≃
m2
R. Therefore, Irr(R,R) ≃ mR/m

2
R, and i(R,R) = dimκR

mR/m
2
R = dim(R). Since

Ext1
R(R,R) = 0, there are no Auslander-Reiten sequences in this case. Therefore,

the Auslander-Reiten quiver of R consists of d loops at a single vertex [R], as
shown below, where d := dim(R).

[R] (d)
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The following results help to determine the number of arrows between two vertices
in an Auslander-Reiten quiver.

Let M,N ∈ MCM(R) be indecomposable modules.
• Given an Auslander-Reiten sequence ending in M as follows:

0 → τ(M) ι−→ E
π−→ M → 0,

then i(N,M) equals the number of copies of N appeared, up to iso-
morphism, in the decomposition of E into indecomposable direct sum-
mands.

• Dually, given an Auslander-Reiten sequence starting from N as fol-
lows:

0 → N → P → τ−1(N) → 0,

then i(N,M) equals the number of copies of M appeared, up to iso-
morphism, in the decomposition of P into indecomposable direct sum-
mands.

By the duality established in the last section, we need only prove the first state-
ment. Consider the R-module HomR(N,E)/radR(N,E). Given f ∈ HomR(N,E)
and r ∈ mR, clearly the composition map f ◦(N r·−→ N) ∈ radR(N,E). This shows
that HomR(N,E)/radR(N,E) is a κR-vector space. Since N is indecomposable,
we may also view it as the space of split monomorphisms from N into E. No-
tice that, since N is finitely generated over R, if we decompose E = ⨁︁

iEi into
indecomposable direct summands, then

HomR(N,E)
radR(N,E) ≃

⨁︂
i

HomR(N,Ei)
radR(N,Ei)

.

For any i, if Ei is not isomorphic to N , clearly HomR(N,Ei)/radR(N,Ei) = 0.
On the other hand, HomR(N,N)/radR(N,N) = EndR(N)/radEndR(N). Since N
is indecomposable, EndR(N)/radEndR(N) is a division ring containing the alge-
braically closed field κR in the centre, which is meanwhile finite-dimensional over
κR. If ∃α ∈ EndR(N)

radEndR(N) \ κR, then the commutative ring κR[α] = ⨁︁∞
t=0 κRα

t is an
intermediate integral domain that is finite-dimensional over the field κR, which
implies that κR[α] ⊋ κR is a field, a contradiction! Hence

HomR(N,N)
radR(N,N) = EndR(N)

radEndR(N) ≃ κR.

Therefore, if there are n copies of N appeared, up to isomorphism, in the decom-
position of E into indecomposable direct summands, then

dimκR

HomR(N,E)
radR(N,E) = n.

We want to establish an isomorphism between HomR(N,E)
radR(N,E) and Irr(N,M), two vector

spaces over κR. So consider the map ϕ : HomR(N,E)/radR(N,E) π◦−−−→ Irr(N,M).
Since the Auslander-Reiten sequence is almost split, ϕ is a well-defined epimor-
phism. To show that ϕ is also a monomorphism, let h ∈ HomR(N,E) be a
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morphism with π ◦ h ∈ rad2(N,M). By definition, there exists α ∈ radR(N,X)
and β ∈ radR(X,M) such that π◦h = β◦α. Since β is not a split epimorphism, it
factors through E. In other words, ∃γ ∈ HomR(X,E) such that β = π ◦ γ. Thus
we get π ◦ (h− γ ◦ α) = 0, which means Im(h− γ ◦ α) ⊂ Ker(π) = τ(M) = Im(ι).
In other words, ∃g ∈ HomR(N, τ(M)) such that h − γ ◦ α = ι ◦ g. Since α is
not a split monomorphism, nor is γ ◦ α, so γ ◦ α ∈ radR(N,E). If ι ◦ g had a
left inverse, then so did g, but g : N → τ(M) is a morphism of indecomposable
modules, so g would be an isomorphism, which would mean that ι were a split
monomorphism, a contradiction! Hence ι ◦ g ∈ radR(N,E) as well. Therefore,
h = γ ◦ α + ι ◦ g ∈ radR(N,E), and we can conclude that ϕ is also a monomor-
phism.

We then get the following straightforward corollaries.

Let 0 → N → E → M → 0 be an Auslander-Reiten sequence in MCM(R).
• For any indecomposable L ∈ MCM(R), i(L,M) = i(N,L).
• If we decompose E = ⨁︁r

i=1 E
ni
i into mutually non-isomorphic inde-

composable direct summands Ei’s, then the Auslander-Reiten quiver
of R is locally in the following form:

[E1]

[N ] ... [M ]

[Er]

(n1)(n1)

(nr) (nr)

In particular, we have shown that if there is an Auslander-Reiten sequence end-
ing in (resp. starting from) M , then there are only finitely many arrows in
Γ(R) ending in (resp. starting from) [M ]. This gives an important property of
Auslander-Reiten quivers as follows.

If R is an isolated singularity, then its Auslander-Reiten quiver Γ(R) is a
locally finite graph, i.e. each vertex in Γ(R) has only finitely many adjacent
arrows.

Let [M ] be a vertex in Γ(R). If M is neither isomorphic to R nor isomorphic to
the canonical module ωR, we have shown that there exists an Auslander-Reiten
sequence ending in M , as well as one starting from it. Hence [M ] only has finitely
many adjacent arrows. It is left to show that the number of arrows ending in [R]
and the number of arrows starting from [ωR] are also finite, which follows from
Yoshino [1990], p. 33, (4.21).

Dieterich-Yoshino’s theorem. Let K be a perfect valued field, R a local
analytic K-algebra with maximal ideal mR, which assumed to be a CM ring.
Denote by Γ := Γ(R) the Auslander-Reiten quiver for the category of MCM R-
modules. An important result by Dieterich [1987] and Yoshino [1987] provides a
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version of Brauer-Thrall theorem for MCM modules:

Let Γ◦ be a finite connected component of Γ. Assume that R has only an
isolated singularity, then Γ = Γ◦ is a finite graph. In particular, R only has
finitely many isomorphism classes of indecomposable MCM modules.

See Yoshino [1990], p.45, (6.2).
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3. Simple singularities

3.1 MCM-finite hypersurfaces
Simple singularity. Let R = S/(f) be a hypersurface, and denote by

c(f) = {IS < SS | f ∈ I2}.

If c(f) is finite, R is a simple singularity.

Notice that by definition I ∈ c(f) entails I ⊂ mS.

In this section, we would like to show that for any analytic hypersurface R =
S/(f), if R admits only finitely many isomorphism classes of indecomposable
MCM modules, or in short if R is MCM-finite, then it is a simple hypersurface
singularity. See Buchweitz et al. [1987] for a brief version of the proof.

We fix an analytic hypersurface R = S/(f), where S ≃ K{z0, · · · , zn} is a regular
analytic algebra over an algebraically closed field K of characteristic 0, and let M
be an MCM R-module without free direct summands, (ϕ, ψ) be a reduced matrix
factorisation of f corresponding to M , i.e. M = Coker(ϕ, ψ), where ϕ, ψ : S(r) →
S(r). Then we get an induced map ∆ϕ : S(r) ⊗S S

(r)′ → S, given by

∆ϕ(f ⊗ g) = g(ϕ(f)), ∀f ∈ S(r),∀g ∈ S(r)′
.

Clearly, I(ϕ) := Im(∆ϕ) is an ideal of S. If we fix an S-basis e1, · · · , er of S(r),
then there is a natural dual basis on S(r)′ = HomS(S(r), S), denoted by e′

1, · · · , e′
r,

satisfying e′
i(ej) = δij, ∀1 ≤ i, j ≤ r. In this case, ϕ is represented by an (r × r)-

matrix over S, say ϕ = (ϕij)1≤i,j≤r, and we observe that

I(ϕ) = ⟨∆ϕ(ei, e∗
j) | 1 ≤ i, j ≤ r⟩ = ⟨ϕji | 1 ≤ i, j ≤ r⟩. (3.1)

Since (ϕ, ψ) is reduced, Im(ϕ) ⊂ mSS
(r). In other words,

⟨(ϕ1i, · · · , ϕri)T | 1 ≤ i ≤ r⟩ ⊂ mSS
(r),

from which we can deduce I(ϕ) ⊂ mS.

Similarly one can define another ideal I(ψ) := Im(∆ψ) of S, and we denote by
I(M) := I(ϕ) + I(ψ) the ideal of S associated to M .

We first claim that I(M) does not depend on the choice of the matrix fac-
torisation. In other words, I(M) only depends on the isomorphism class of
M = Coker(ϕ, ψ) as an R-module. This is immediate once we write

I(M) = I(ϕ) + I(ψ) = ⟨ϕji, ψji | 1 ≤ i, j ≤ r⟩, (3.2)

since any two matrix factorisations corresponding to M are isomorphic. In fact,
if M = Coker(ϕ, ψ) = Coker(ϕ′, ψ′), by (3.2) we get I(ϕ) = I(ϕ′) and I(ψ) =
I(ψ′).
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Another instant observation is

I(M ⊕N) = I(M) + I(N).

Indeed, if M = Coker(ϕ, ψ), N = Coker(ϕ′, ψ′), then by Eisenbud’s matrix fac-
torisation theorem we get

M ⊕N = Coker((ϕ, ψ) ⊕ (ϕ′, ψ′))

= Coker(ϕ⊕ ϕ′, ψ ⊕ ψ′) = Coker(
(︄
ϕ 0
0 ϕ′

)︄
,

(︄
ψ 0
0 ψ′

)︄
),

and the observation follows from (3.2).

As a result, if R is MCM-finite, then the set {I(M) | M ∈ MCM(R)} is fi-
nite.

For any MCM R-module M , we can take a corresponding matrix factorisation
(ϕ, ψ) of f , satisfying ϕ ◦ ψ = f1S(n) . In other words, f ∈ I(ϕ)I(ψ) ⊂ I(M)2,
and hence

I(M) ∈ c(f).

Therefore, I can be considered as a map from the set of isomorphism classes
of MCM R-modules without free direct summands to c(f). We claim that
the map I is surjective.

Given any I ∈ c(f), by definition we have f ∈ I2. Take a generating set
{x1, · · · , xr} of I, then f has the following expression:

f =
r∑︂
i=1

xiyi, yi ∈ I.

We define two linear maps on the exterior algebra ⋀︁• S(r). First, we fix a basis
e1, · · · , er for the free S-module S(r), and then we define the maps on the following
natural basis of ⋀︁t S(r) for 1 ≤ t ≤ r:

ei1 ∧ · · · ∧ eit , 1 ≤ i1 < · · · < it ≤ r.

The maps, denoted by δ− and δ+, are defined by

δ−(ei1 ∧ · · · ∧ eit) =
t∑︂

j=1
(−1)j−1xij (ei1 ∧ · · · ∧ êij ∧ · · · ∧ eit),

δ+(ei1 ∧ · · · ∧ eit) =
r∑︂
j=1

yj(ej ∧ ei1 ∧ · · · ∧ eit).
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We claim that δ− and δ+ are both differential maps on ⋀︁• S(r), with degree −1
and +1 respectively. In fact, ∀ω ∈ ⋀︁• S(r), we have

δ2
+(ω) = δ+(

r∑︂
j=1

yj(ej ∧ ω)) =
r∑︂
j=1

yjδ+(ej ∧ ω)

=
r∑︂
j=1

yj
r∑︂

j′=1
yj′(ej′ ∧ ej ∧ ω)

=
r∑︂

j′=1
yj′

r∑︂
j=1

yj(ej ∧ ej′ ∧ ω) = −δ2
+(ω),

so δ2
+ = 0. Meanwhile,

δ2
−(ei1 ∧ · · · ∧ eit) =

t∑︂
j=1

(−1)j−1xijδ−(ei1 ∧ · · · ∧ êij ∧ · · · ∧ eit)

=
t∑︂

j=1
(−1)j−1xij

∑︂
1≤j′<j≤t

(−1)j′−1xij′ (ei1 ∧ · · · ∧ êij′ ∧ · · · ∧ êij ∧ · · · ∧ eit)

+
t∑︂

j=1
(−1)j−1xij

∑︂
j<j′≤t

(−1)j′
xij′ (ei1 ∧ · · · ∧ êij ∧ · · · ∧ êij′ ∧ · · · ∧ eit)

= 0,

and thus δ2
− = 0.

Now let δ := δ+ + δ−, then δ2 = δ+ ◦ δ− + δ− ◦ δ+. We then apply the right side
to an arbitrary element in the basis:

δ+ ◦ δ−(ei1 ∧ · · · ∧ eit) =
t∑︂

j=1
(−1)j−1xijδ+(ei1 ∧ · · · ∧ êij ∧ · · · ∧ eit)

=
t∑︂

j=1
(−1)j−1xij

r∑︂
j′=1

yj′(ej′ ∧ ei1 ∧ · · · ∧ êij ∧ · · · ∧ eit)

=
t∑︂

j=1
(−1)j−1xij [(−1)j−1yij (ei1 ∧ · · · ∧ eit)

+
∑︂
j′∈J ′

yj′(ej′ ∧ ei1 ∧ · · · ∧ êij ∧ · · · ∧ eit)]

=
∑︂
j∈J

xjyj(ei1 ∧ · · · ∧ eit)

+
t∑︂

j=1

∑︂
j′∈J ′

(−1)j−1xijyj′(ej′ ∧ ei1 ∧ · · · ∧ êij ∧ · · · ∧ eit),
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and meanwhile

δ− ◦ δ+(ei1 ∧ · · · ∧ eit) =
r∑︂
j=1

yjδ−(ej ∧ ei1 ∧ · · · ∧ eit)

=
∑︂
j∈J ′

yjδ−(ej ∧ ei1 ∧ · · · ∧ eit)

=
∑︂
j∈J ′

yj[xj(ei1 ∧ · · · ∧ eit) − ej ∧ δ−(ei1 ∧ · · · ∧ eit)]

=
∑︂
j∈J ′

xjyj(ei1 ∧ · · · ∧ eit)

−
∑︂
j∈J ′

t∑︂
j′=1

(−1)j′−1xij′yj(ej ∧ ei1 ∧ · · · ∧ êij′ ∧ · · · ∧ eit),

where J = {i1, · · · , it} and J ′ = {1, · · · , r} \ J . Therefore,

δ2(ei1 ∧ · · · ∧ eit) =
r∑︂
j=1

xjyj(ei1 ∧ · · · ∧ eit),

and hence

δ2 = f 1⋀︁•
S(r) .

In other words, (δ, δ) gives a matrix factorisation of f , and moreover by (3.1) we
get

I(δ) = ⟨x1, · · · , xr, y1, · · · , yr⟩ = I.

Since I ∈ c(f), I ⊂ mS, and hence Im(δ) ⊂ mS
⋀︁• S(r), so (δ, δ) is reduced and

corresponds to an MCM R-module M = Coker(δ, δ) without free direct summands
according to Eisenbud’s matrix factorisation theorem. Obviously, I(M) = I(δ) =
I. So we have proven that Im(I) = c(f).

An easy corollary of the surjectivity of I is:

If a hypersurface R = S/(f) is MCM-finite, then it is a simple singularity.

In fact, if R is MCM-finite, then there are only finitely many isomorphism classes
of MCM R-modules without free direct summands, so the image of I should also
be a finite set, i.e. c(f) is finite.

Herzog’s theorem. In the remaining part of the section, we would like to
demonstrate that the hypersurface assumption is superfluous. We shall see that,
according to Herzog [1978], it suffices to assume that R is a Gorenstein ring.

We begin by showing a "quasi-converse" of Eisenbud’s 2-periodicity:

Let R = S/I be a Gorenstein ring, where S is a regular local ring and
I ⊂ m2

S is an ideal of S. If any M ∈ MCM(R) admits an almost periodic
free resolution, then I is a principal ideal.
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As a remark, a free resolution of M of the form

· · · → Fn+1
ϕn+1−−−→ Fn → · · · → F1

ϕ1−→ F0 → M → 0

is almost periodic, if ∃n, h ≥ 1, such that ϕµ+h = ϕµ, ∀µ ≥ n.

According Tate [1957], Thm. 6, to show that I is a principal ideal, it suffices
to prove that there is an upper bound for the Betti numbers of κR. Recall that
given a minimal free resolution of κR of the form

· · · → Fn+1 → Fn → · · · → F1 → F0 = R → κR → 0,

the n-th Betti number of κR is βn(κR) = rank(Fn).

If we let M := Ker(Fd−1 → Fd−2), where d = dim(R), then such a free resolution
can be cut short:

0 → M → Fd−1 → Fd−2 → · · · → F0 = R → κR → 0.

Then M ∈ MCM(R). By our assumption, every indecomposable direct summands
of M admits an almost periodic free resolution, so the Betti numbers of every
indecomposable direct summand of M have an upper bound, hence it follows that
{βn(κR) | 1 ≤ n < ∞} has an upper bound as well.

We can now prove the following result from Herzog [1978], Satz 1.2:

Let R = S/I be a Gorenstein ring, where S is a regular local ring and
I ⊂ m2

S is an ideal of S. If R is MCM-finite, then I is principal, hence R is
a hypersurface.

We need only show that any M ∈ MCM(R) admits a free resolution that is almost
periodic. Without loss of generality we assume that M is indecomposable. The
minimal free cover of M gives an exact sequence

0 → F1
ι−→ F0

π−→ M → 0,

and by definition (Eisenbud [1995], p. 472), ι ⊗ 1 : F1 ⊗ κR → F0 ⊗ κR is the
0 map, so π ⊗ 1 : F0 ⊗ κR → M ⊗ κR is an isomorphism. We then claim that
F1 ∈ MCM(R) is also indecomposable.

Suppose to the contrary that F1 = N ⊕ N ′ for N,N ′ ̸= 0, and let ι = (ι1, ι2) :
N ⊕ N ′ → F0. Since R is Gorenstein, we can take the dual of the sequence by
the canonical module ωR ≃ R, and we obtain another exact sequence:

0 → M∗ → F ∗
0

(ι∗1,ι∗2)t

−−−−→ N∗ ⊕N ′∗ → 0,

where (−)∗ := HomR(−, ωR). Since R is Gorenstein, F ∗
0 becomes a free cover of

N∗ ⊕ N ′∗. If neither N nor N ′ is free, then M∗ contains syz1N∗ ⊕ syz1N ′∗ as a
direct summand. But M∗∗ ≃ M , so M can not be indecomposable. So assume
without loss of generality that N is free, then ι∗1 must be a split epimorphism and
hence ι1 is a split monomorphism. In particular, ι1 ⊗ 1 : N ⊗ κR → F0 ⊗ κR is
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a monomorphism. Since π ◦ ι1 = 0, π ⊗ 1 : F0 ⊗ κR → M ⊗ κR cannot be an
isomorphism. We have thus proven that N is indecomposable.

Now define an endomorphism F on the finite set of isomorphism classes of inde-
composable MCM R-modules, by setting F(M) = F1. The finiteness of the do-
main of F implies that there are positive integers n, h such that Fµ+h(M) = Fµ(M)
whenever µ ≥ n. In other words, the free resolutions of M are almost periodic.
This proves Herzog’s theorem.

As an easy corollary, we get:

Let R = S/I be a Gorenstein ring, where S is a regular local ring and
I ⊂ m2

S an ideal of S. If R is MCM-finite, then it is a simple singularity.

3.2 Knörrer’s periodicity
We intend to show the converse of Buchweitz-Gruel-Schreyer’s theorem in Section
3.1, i.e. any simple singularity is MCM-finite. The key step is the periodicity
statement proved in Knörrer [1987].

Let K be an algebraically closed valued field of characteristic 0, and S a regular
analytic K-algebra. As all of the following statements and demonstrations work
for any such S, without loss of generality we may assume S := K{z0, · · · , zn}
to be the power series ring over K in n + 1 variables1. Any simple singularity
R = S/(f) can be classified into the following types:

Let S = K{z0, · · · , zn}, where K is an algebraically closed valued field of
characteristic 0. If R = S/(f) is a simple singularity, then after a suitable
change of variables, f is equal to one of the following polynomials:

Ak : f = zk+1
0 + z2

1 + · · · + z2
n, k ≥ 1;

Dk : f = zk−1
0 + z0z

2
1 + z2

2 + · · · + z2
n, k ≥ 4;

E6 : f = z3
0 + z4

1 + z2
2 + · · · + z2

n;
E7 : f = z3

0 + z0z
3
1 + z2

2 + · · · + z2
n;

E8 : f = z3
0 + z5

1 + z2
2 + · · · + z2

n.

See Yoshino [1990], (8.8).

We then define S1 := S{y} and R1 := S1/(f+y2), where y is a new variable. Note
that R1 has the same type (A, D, E) as R, and dim(R1) = dim(R)+1 = n+1. Also
notice that R = R1/(y), so any R-module can be regarded as an R1-module.

A famous result regarding MCM-finite CM local rings is:

If a Henselian CM local ring R is MCM-finite, then it is an isolated singu-
larity.

1Recall that when the valuation on K is taken trivial, S = K[[z0, · · · , zn]].

36



See Auslander and Unger [2006], p. 234.

Since we are only interested in the MCM-finiteness of the ring R, we adopt the
assumption that R is an isolated singularity.

First we need a lemma from Knörrer [1987], (1.3):

If X := (ϕ : Sr ⇄ Sr : ψ) ∈ MFS(f) and TX ≃ X, then X ≃ (ϕ0, ϕ0) ∈
MFS(f) for some ϕ0 : Sr → Sr. Here T : MFS(f) → MFS(f) denotes the
involutive transformation (ϕ, ψ) ↦→ (ψ, ϕ).

We introduce the idea of proof from Knörrer [1987], which will be useful later.
Without loss of generality we assume that X is indecomposable, and let (α, β) :
(ϕ, ψ) → (ψ, ϕ) be an isomorphism of matrix factorisations. Then (β ◦ α, α ◦ β)
is an automorphism of X. As X is indecomposable, according to Swan [1968]
(2.19) and Eisenbud’s matrix factorisation theorem, we have

End(X)/rad(End(X)) ≃ K.

So we may assume that (β ◦ α, α ◦ β) = (1, 1) + (ρ1, ρ2), where (ρ1, ρ2) ∈
rad(End(X)). Since β ◦ α = 1 + ρ1 and α ◦ β = 1 + ρ2, we get

α + ρ2 ◦ α = α ◦ β ◦ α = α + α ◦ ρ1,

i.e. α ◦ ρ1 = ρ2 ◦ α. Similarly we get β ◦ ρ2 = ρ1 ◦ β.

Now we choose a (convergent) power series P (x) for (1 + x)− 1
2 2 and let

α′ : = α ◦ (1 + ρ1)− 1
2 = (1 + ρ2)− 1

2 ◦ α,
β′ : = β ◦ (1 + ρ2)− 1

2 = (1 + ρ1)− 1
2 ◦ β.

It is easy to check that (α′, β′) is also a morphism from X to TX in MFS(f), and
we have

α′ ◦ β′ = (1 + ρ2)− 1
2 ◦ α ◦ β ◦ (1 + ρ2)− 1

2

= (1 + ρ2)− 1
2 ◦ (1 + ρ2) ◦ (1 + ρ2)− 1

2 = 1,

and similarly β′ ◦ α′ = 1. So (α′, β′) is an isomorphism since r = rank(α′ ◦ β′) ≤
min{rank(α′), rank(β′)}. Thus ∃γ ∈ AutS(Sr) with γ2 = α′. See for example
Gantmacher [1989], XI. Thm. 3. For any such γ, we let ϕ0 := γ ◦ ψ ◦ γ. Now
that

γ ◦ ψ ◦ γ = γ−1 ◦ α′ ◦ ψ ◦ γ = γ−1 ◦ ϕ ◦ β′ ◦ α′ ◦ γ−1 = γ−1 ◦ ϕ ◦ γ−1,

we can show that ϕ0 is the demanded morphism. In fact,

ϕ2
0 = γ ◦ ψ ◦ γ ◦ γ−1 ◦ ϕ ◦ γ−1 = f · 1,

and (γ, γ−1) gives an isomorphism from X = (ϕ, ψ) to (ϕ0, ϕ0).
2For example, near x = 0 the binomial series P (x) =

∑︁∞
t=0
(︁− 1

2
t

)︁
xt = 1 − 1

2x+ 3
8x

2 − 5
16x

3 +
· · · = (1 + x)− 1

2 has a radius of convergence 1.
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The group Z/2Z acts on R1 by σ : (z, y) ↦→ (z,−y), and we let R1[σ] := R1⊕R1 ·σ
be the twisted group ring, where the multiplication is given by:

(r1 + r2 · σ) (r′
1 + r′

2 · σ) = r1r
′
1 + r2σ(r′

2) + (r1r
′
2 + r2σ(r′

1)) · σ.

An R1[σ]-module M is an R1-module with an action of the involution σ, such
that

σ(rm) = σ(r)σ(m), ∀r ∈ R1, ∀m ∈ M.

This simply follows from the axiom

[(r1 + r2 · σ)(r′
1 + r′

2 · σ)] ·m = (r1 + r2 · σ)[(r′
1 + r′

2 · σ) ·m].

We denote by MCMσ(R1) the category of R1[σ]-modules that are MCM R1-
modules.

Actually, R1 itself admits 2 actions of σ: ϕ ↦→ ϕσ and ϕ ↦→ −ϕσ, and we denote
by R+

1 and R−
1 the corresponding R1[σ]-modules, respectively. In other words,

R+
1 = R1 · 1+σ

2 ⊂ R1[σ], and R−
1 = R1 · 1−σ

2 ⊂ R1[σ]. Then clearly R1[σ] = R+
1 ⊕R−

1
as R1[σ]-module. Moreover, R+

1 and R−
1 are the only 2 indecomposable projective

MCM R1[σ]-modules.

For M ∈ MCMσ(R1), we denote by Mσ (resp. Mσ) the set of σ-invariant (resp.
σ-antiinvariant) elements of M . Clearly Mσ and Mσ are both MCM modules
over Rσ

1 .

Meanwhile, take any ϕ̄ ∈ Rσ
1 . By definition this means ϕ(z, y)−ϕ(z,−y) ∈ (f(z)+

y2), so ϕ = ϕ(z, y2), and thus Rσ
1 ≃ S{y2}/(f + y2) ≃ S{−f} = K{z,−f(z)} ≃

K{z} = S. Therefore, Mσ and Mσ are free S-modules of equal rank.

Based on these discussions, we can define a functor A : MCMσ(R1) → MFS(f).
Given M ∈ MCMσ(R1), we can define two S-linear maps

ϕ : Mσ y·−→ Mσ, ψ : Mσ −y·−−→ Mσ.

Notice that ϕ ◦ ψ = ψ ◦ ϕ = −y21 = f1, so (ϕ, ψ) ∈ MFS(f) is a matrix
factorisation of f , which we shall denote by A(M). The construction is clearly
functorial. Moreover, we claim that:

A : MCMσ(R1) → MFS(f) is an equivalence of categories.

We show that by explicitly constructing a quasi-inverse to A. Let (ϕ : M1 →
M2, ψ : M2 → M1) be a matrix factorisation of f , and M := M1 ⊕ M2 be
considered as S-module. Then M has a structure of an R1[σ]-module, given
by

y(m1,m2) = (−ψ(m2), ϕ(m1)),
σ(m1,m2) = (m1,−m2), ∀(m1,m2) ∈ M1 ⊕M2.
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As before, to check that this indeed defines an R1[σ]-module structure, it suffices
to check

σ(y) · σ(m1,m2) = σ(y(m1,m2)).

Moreover, since M is free over S, proj.dimS(M) = 0. By Auslander-Buchsbaum
formula, depth(M) = depth(R1) = dim(R1), and hence M is an MCM R1-module,
and M1 ∈ MCMσ(R1). This clearly defines a functor MFS(f) → MCMσ(R1).

We now show that it is a quasi-inverse to A. Take M ∈ MCMσ(R1). A(M) gives a
matrix factorisation Mσ ⇄Mσ, and then Mσ⊕Mσ ≃ M . Conversely take matrix
factorisation M1 ⇄ M2 of f . This functor gives M := M1 ⊕ M2 ∈ MCMσ(R1),
and then Mσ ≃ M1, Mσ ≃ M2 by the multiplication rule given above. So after
applying A, the matrix factorisation is isomorphic to the original one. From now
on we shall denote by A−1 this quasi-inverse functor.

We make some remarks on the property of A that will be useful soon. First we
have A(R+

1 ) = (1, f), and ∀M ∈ MCMσ(R1), A(M ⊗S R
−
1 ) ≃ T ◦ A(M), where

T : MFS(f) → MFS(f) is the involutive transformation (ϕ, ψ) ↦→ (ψ, ϕ). In fact,
this follows from (M ⊗S R

−
1 )σ ≃ Mσ and (M ⊗S R

−
1 )σ ≃ Mσ.

Moreover, we take a closer look at the composition Coker ◦ A : MCMσ(R1) →
MCM(R). Given M ∈ MCMσ(R1),

Coker ◦ A(M) = Coker(ϕ : Mσ → Mσ) = Mσ/yMσ

≃ Mσ ⊕Mσ

yMσ ⊕Mσ
≃ M/R1M

σ.

As a result, for any M ∈ MCMσ(R1), since M ≃ M ⊗R+
1 , we have

Coker ◦ A(M) ⊕ Coker ◦ A(M ⊗R−
1 ) ≃ Mσ/yMσ ⊕Mσ/yMσ ≃ M/yM, (3.3)

where the 2nd isomorphism is given by ([m−], [m+]) ↦→ [m− +m+].

Note that according to Auslander and Unger [2006] p. 200, cf. Section 2.1, since
R is an isolated singularity, MCM(R) and MCMσ(R1) both admit almost split
sequences. As a result, the Auslander-Reiten quiver of MCM(R) is isomorphic
to the full subquiver of the Auslander-Reiten quiver of MCMσ(R1) obtained by
deleting the vertex corresponding to R+

1 .

Now we wish to compare the modules in MCMσ(R1) and MCM(R1). Denote by
U : MCMσ(R1) → MCM(R1) the forgetful functor, and we claim that U admits a
left adjoint

E : MCM(R1) → MCMσ(R1),
M ↦→ M ⊗R1 R1[σ].

In other words, we would like to show that there is a natural isomorphism

HomR1[σ](M ⊗R1 R1[σ], N) ≃ HomR1(M,N),

on M ∈ MCM(R1) and N ∈ MCMσ(R1), which is obvious, since M ⊗R1 R1[σ] is
characterised by the universal property of a pushout, as shown below:
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R1 R1[σ]

M M ⊗R1 R1[σ]

N

Given any M ∈ MCM(R1), notice that depth(M/yM) = depth(M) − 1, so
M/yM ∈ MCM(R). Thus we can also define a restriction functor r : MCM(R1) →
MCM(R) by M ↦→ M/yM .

On the other hand, we define similar functors on the level of matrix factorisations.
Given any (Φ : F1 ⇄ F2 : Ψ) ∈ MFS1(f + y2), we have morphisms ϕ : F1/yF1 ⇄
F2/yF2 : ψ induced by Φ and Ψ. It is easy to see that this gives a restriction
functor R : MF(f + y2) → MF(f).

Conversely, for any (ϕ : F1 ⇄ F2 : ψ) ∈ MFS(f), we let G(ϕ, ψ) := (Φ,Φ),
where

Φ =
(︄
y · 1 ψ
ϕ −y · 1

)︄
: (F1 ⊕ F2) ⊗S S1 → (F1 ⊕ F2) ⊗S S1.

Since Φ2 = (y2 + f) · 1, G(ϕ, ψ) ∈ MFS1(f + y2). In the mean time, we associate

G(α, β) := (
(︄
α 0
0 β

)︄
,

(︄
α 0
0 β

)︄
) to any morphism (α, β) ∈ MFS(f). We check

that (︄
α 0
0 β

)︄
Φ = Φ

(︄
α 0
0 β

)︄
,

and this defines a functor G : MFS(f) → MFS1(f + y2).

To sum up, we have the following diagram:

MFS(f) MFS1(f + y2)

MCMσ(R1)

MCM(R) MCM(R1)

G

≃

Coker

R

Coker
A

U

r

E

To study the relations between these functors, first observe that

r ◦ Coker ≃ Coker ◦ R : MFS1(f + y2) → MCM(R). (3.4)

Then we claim that

Coker ◦ A ◦ E ≃ r : MCM(R1) → MCM(R). (3.5)
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In fact, by (3.3), ∀M ∈ MCM(R1),

Coker ◦ A ◦ E(M) ≃ Coker ◦ A(M ⊗R1 R1[σ])
≃ Coker ◦ A(M ⊗R1 R

+
1 ) ⊕ Coker ◦ A(M ⊗R1 R

−
1 )

≃ M/yM ≃ r(M).

Another relation we are interested in is between Coker ◦ G and U ◦ A−1 from
MFS(f) to MCM(R1). Let (ϕ : Sr ⇄ Sr : ψ) ∈ MFS(f), then the S-module
U◦A−1(ϕ, ψ) = Sr ⊕Sr is equipped with a structure of R1-module given by

y(m1,m2) = (−ψ(m2), ϕ(m1)), ∀(m1,m2) ∈ Sr ⊕ Sr.

On the other hand, Coker◦G(ϕ, ψ) = (Sr1 ⊕Sr1)/Im(Φ), where Φ =
(︄
y · 1 ψ
ϕ −y · 1

)︄
.

Since S1 ≃ S⊕yS, Im(Φ) is generated by 4 kinds of elements Φ(s ·eij), i, j = 1, 2,
where eij is the standard matrix with a single entry 1 at the position (i, j) and s
traverses Sr. Simple calculation gives

Coker ◦ G(ϕ, ψ) ≃ Sr ⊕ Sr ⊕ Sr ⊕ Sr/I,

I = ⟨(0, s, ϕ(s), 0), (−fs, 0, 0, ϕ(s)),(ψ(s), 0, 0,−s), (0, ψ(s), fs, 0) | s ∈ Sr⟩.

We similarly define the R1-module structure on the R-module Coker ◦ G(ϕ, ψ)
by

y(s1, s2, s3, s4) = (−fs2, s1,−fs4, s3), ∀(s1, s2, s3, s4) ∈ Sr ⊕ Sr ⊕ Sr ⊕ Sr.

Now we claim that

Coker ◦ G ≃ U ◦ A−1 : MFS(f) → MCM(R1). (3.6)

This is yielded by the R1-isomorphism α : Coker ◦G(ϕ, ψ) → U ◦A−1(ϕ, ψ) given
by (s1, s2, s3, s4) ↦→ (s3 − ψ(s2), s1 + ϕ(s4)). We can simply check

α(y(s1, s2, s3, s4)) ⊂ yα(s1, s2, s3, s4).

The involution σ acts on MFS1(f + y2) by (ϕ, ψ) ↦→ (ϕ ◦ σ, ψ ◦ σ), and clearly for
all (ϕ, ψ) ∈ MFS1(f + y2) we have σ∗(Coker(ϕ, ψ)) ◦ σ ≃ Coker ◦ σ(ϕ, ψ), where
σ∗ : MCM(R1) → MCM(R1) denotes the pullback by σ, characterised by the
commutative diagram:

MFS1(f + y2) MFS1(f + y2)

MCM(R1) MCM(R1)

σ

Coker Coker

σ∗

Given M = Coker(ϕ, ψ) ∈ MCM(R1), σ∗(M) = Coker(ϕσ, ψσ) = M ⊗R1 R1σ.
Also notice that T acts on MFS(f) and MFS1(f + y2) as well, and T ◦R = R ◦T .
Moreover we have

G ◦ T ≃ T ◦ G = G : MFS(f) → MFS1(f + y2).
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In fact, for any (ϕ, ψ) ∈ MFS(f), an isomorphism between G◦T (ϕ, ψ) and G(ϕ, ψ)
is given by

(
(︄

0 i
−i 0

)︄
,

(︄
0 −i
i 0

)︄
).

In fact, the adjunction (E,U) worths a closer look. We claim that:

E ◦ U ≃ 1 ⊕ (− ⊗R−
1 ) : MCMσ(R1) → MCMσ(R1); (3.7)

U ◦ E ≃ 1 ⊕ σ∗ : MCM(R1) → MCM(R1). (3.8)

To show (3.7), first notice that as R1-module, for any M ∈ MCMσ(R1),

E ◦ U(M) = M ⊗R1 R1[σ]
≃ M ⊗R1 R1 ⊕ M ⊗R1 R1 · σ
≃ M ⊕ σ∗(M),

and the action of σ is given by (m1,m2) ↦→ (m2,m1). Then the map

M ⊕ (M ⊗R−
1 ) → M ⊕ σ∗(M)

(x, y) ↦→ (x+ y, σ(x) − σ(y))

defines an R1[σ]-isomorphism. The construction is clearly functorial.

For (3.8), it is even simpler. Just notice that

U ◦ E = U ◦ (− ⊗R1 R1[σ])
≃ U ◦ 1 ⊕ U ◦ (− ⊗R1 R1 · σ)
≃ 1 ⊕ σ∗.

Similarly, on the level of matrix factorisations, we have

R ◦ G ≃ 1 ⊕ T : MFS(f) → MFS(f). (3.9)

Indeed, for any (ϕ, ψ) ∈ MFS(f), R ◦ G(ϕ, ψ) = (
(︄

0 ψ
ϕ 0

)︄
,

(︄
0 ψ
ϕ 0

)︄
), and an

isomorphism to (ϕ, ψ) ⊕ (ψ, ϕ) is given by (1,
(︄

0 1
1 0

)︄
).

Moreover, for any non-trivial indecomposable (Φ,Ψ) ∈ MFS1(f + y2),

G ◦ R(Φ,Ψ) ≃ (Φ,Ψ) ⊕ σ(Φ,Ψ). (3.10)

In fact, by Eisenbud’s matrix factorisation theorem, it suffices to check

Coker ◦ G ◦ R(Φ,Ψ) ≃ Coker(Φ,Ψ) ⊕ Coker(σ(Φ,Ψ)).

On one hand, Coker ◦ G ◦ R(Φ,Ψ) ≃ U ◦ A−1 ◦ R(Φ,Ψ) by (3.6); on the other
hand,

Coker(Φ,Ψ) ⊕ Coker(σ(Φ,Ψ)) ≃ Coker(σ(Φ,Ψ)) ⊕ σ∗(Coker(Φ,Ψ))
≃ (1 ⊕ σ∗) ◦ Coker(Φ,Ψ)
≃ U ◦ E ◦ Coker(Φ,Ψ)
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by (3.8). Now it suffices to show that

A ◦ E ◦ Coker(Φ,Ψ) ≃ R(Φ,Ψ),

and by Eisenbud’s matrix factorisation theorem again it suffices to check

Coker ◦ A ◦ E ◦ Coker(Φ,Ψ) ≃ Coker ◦ R(Φ,Ψ).

But we know from (3.5) and (3.4) that

Coker ◦ A ◦ E ◦ Coker(Φ,Ψ) ≃ r ◦ Coker(Φ,Ψ)
≃ Coker ◦ R(Φ,Ψ),

which completes the proof.

Let Y := (Φ,Ψ) ∈ MFS1(f + y2). We have:
• ∃X ∈ MFS(f) with Y ≃ G(X), if and only if σ(Y ) ≃ Y ;
• if Y is non-trivial and indecomposable, then TY ≃ σ(Y ).

For the first point, clearly σ(G(X)) ≃ G(X) for any X ∈ MFS(f). Indeed,
(σ, 1) : G(X) → σ ◦ G(X) is an isomorphism. Conversely suppose σ(Y ) ≃
Y . Without loss of generality we may assume that Y is indecomposable. By
Eisenbud’s matrix factorisation theorem, it suffices to show that ∃X ∈ MFS(f),
Coker(Y ) = Coker ◦ G(X). Now by (3.6), it suffices to show that ∃X ∈ MFS(f),
Coker(Y ) = U ◦ A−1(X). Since A is an equivalence, it suffices to show that
Coker(Y ) = U(M) for some M ∈ MCMσ(R1), or in other words, that M :=
Coker(Y ) admits a structure of R1[σ]-module.

Given an R1-isomorphism α : M
∼−→ σ∗(M), we consider its pullback α∗ :

σ∗(M) ∼−→ M . Since M is indecomposable, according to Swan [1968], (2.19),
we can assume again that α∗ ◦ α = 1 + ρ for some ρ ∈ rad(End(M)). Now we
choose again a convergent power series P (x) = (1 + x)− 1

2 and let

α′ := α ◦ (1 + ρ)− 1
2 ,

which induces again α′∗ = (1 + ρ)− 1
2 ◦ α∗, and we have

α′∗ ◦ α′ = α ◦ (1 + ρ)− 1
2 ◦ (1 + ρ)− 1

2 ◦ α∗ = 1.

So α′ defines an R1[σ]-module structure on M .

For the second point, let M := Coker(Y ) be free of rank r over S. By fixing an
S-basis on M , the multiplication by y is given by some A ∈ GL(r, S), such that
A2 = −f · 1. It is not hard to see that (y · 1 + A, y · 1 − A) ∈ MFS(f) is also
a matrix factorisation for M . By Eisenbud’s matrix factorisation theorem, this
implies that Y and (y · 1 +A, y · 1 −A) are isomorphic up to trivial summands, so
without loss of generality we may assume Y = (y · 1 +A, y · 1 −A) is non-trivial
and indecomposable. Then the claim follows instantly:

T (Y ) = (y · 1 − A, y · 1 + A) ≃ (A− y · 1,−A− y · 1) = σ(Y ).
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• If X ∈ MFS(f) is non-trivial and indecomposable, then G(X) is inde-
composable if and only ifX ̸≃ TX. IfX ≃ TX, then G(X) ≃ Y ⊕TY
for some indecomposable Y ∈ MFS1(f + y2) such that Y ̸≃ TY .

• Similarly, if Y ∈ MFS1(f + y2) is indecomposable, then R(Y ) is inde-
composable if and only if Y ̸≃ TY . If Y ≃ TY , i.e. Y ∈ Im(G), then
R(Y ) ≃ X ⊕ TX for some indecomposable X ∈ MFS(f) such that
X ̸≃ TX.

In fact, as we have shown before, if X ≃ TX, then we may assume that X =

(ϕ0, ϕ0) with ϕ2
0 = f · 1. Then G(X) = (

(︄
y · 1 ϕ0
ϕ0 −y

)︄
,

(︄
y · 1 ϕ0
ϕ0 −y

)︄
) is isomorphic

to
(ϕ0 + iy · 1, ϕ0 − iy · 1) ⊕ (ϕ0 − iy · 1, ϕ0 + iy · 1),

with an isomorphim given by (
(︄

1 i
i 1

)︄
,

(︄
i 1
1 i

)︄
).

Conversely if G(X) ≃ Y ⊕ Y ′ where Y ′ is a non-trivial indecomposable direct
summand, then R◦G(X) ≃ R(Y )⊕R(Y ′). But by (3.9), R◦G(X) ≃ X⊕TX, so
R(Y ) ≃ X or R(Y ) ≃ TX. According to what we have just shown above,

T ◦ R(Y ) ≃ R(TY ) ≃ R(σY ) ≃ R(Y ),

hence we get X ≃ TX.

To proceed with the proof we claim that, for a non-trivial indecomposable Y ∈
MFS1(f + y2), R(Y ) is indecomposable if and only if Y ̸≃ TY .

In fact, if Y ≃ TY ≃ σ(Y ), then we have already shown that Y is in the image
of G, so R(Y ) decomposes as (3.9) suggests. Conversely let R(Y ) ≃ X ⊕ X ′

for X non-trivial and indecomposable, and we have G ◦ R(Y ) ≃ G(X) ⊕ G(X ′).
Meanwhile G ◦R(Y ) ≃ Y ⊕ σ(Y ) ≃ Y ⊕ TY by (3.10), and we get G(X) ≃ Y or
G(X) ≃ TY . But T ◦ G(X) = G(X), so Y ≃ TY . This proves the claim.

Now let X ∈ MFS(f) be a non-trivial indecomposable matrix factorisation such
that X ≃ TX. We decompose G(X) ≃ Y ⊕ TY as above, where Y := (ϕ0 +
iy · 1, ϕ0 − iy · 1). Now R ◦ G(X) ≃ X ⊕ TX has only 2 indecomposable sum-
mands by (3.9), which forces Y to be indecomposable. In fact, if Y decomposes
into more than 2 indecomposable summands, then G(X) would have at least 4
indecomposable summands, and so does R ◦ G(X). Suppose that Y ≃ TY , then
as we have just shown, R(Y ) and R(TY ) would both decompose, and R ◦ G(X)
would have at least 4 indecomposable summands. Hence Y ̸≃ TY .

For the second point, we can determine the number of indecomposable summands
in G ◦ R(Y ), and the proof is similar to the first point.

As we have previously mentioned, the number of indecomposable objects in
MCM(R) and MCMσ(R1) only differs by 1. Meanwhile, (3.7) and (3.8) imply3

that MCMσ(R1) has only finitely many pairwise non-isomorphic indecomposable
3One also needs to apply Krull-Schmidt theorem.
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objects, if and only if so does MCM(R1). Therefore, we get the following corol-
lary:

R is MCM-finite, if and only if R1 is MCM-finite.

Regarding the morphisms, we observe that

Let α : M → N be a morphism in MCM(R1), such that r(α) : r(M) → r(N)
factors through a projective MCM R-module, then α factors through a
projective MCM R1-module.

In fact, by (3.5), Coker ◦ A ◦ E(α) factors through a projective object, and by
Eisenbud’s matrix factorisation theorem so does A◦E(α) and consequently E(α).
Now by (3.8), the morphism

α ⊕ σ ◦ α ◦ σ : M ⊕ σ∗(M) → N ⊕ σ∗(N)

factors through a projective object as well, which implies that α factors through
a projective MCM R1-module.

According to Reiten and Riedtmann [1985] Thm. 3.8, (3.7) and (3.8) actually
imply that:

If 0 → M → E → M ′ → 0 is an almost split sequence in MCMσ(R1) (resp.
MCM(R1)), then the induced sequence 0 → U(M) → U(E) → U(M ′) → 0
(resp. 0 → E(M) → E(E) → E(M ′) → 0) is a direct sum of almost split
sequences in MCM(R1) (resp. MCMσ(R1)).

These results allow us to approach Knörrer’s periodicity. Let S2 := S1{x} =
S{x, y} and R2 := S2/(f + x2 + y2), and we want to compare the MCM’s over
R and over R2. For simplicity we change the variables: u := x+ iy, v := x− iy,
and define a functor H : MFS(f) → MFS2(f + uv) by

H(ϕ, ψ) = (
(︄
u ψ
ϕ −v

)︄
,

(︄
v ψ
ϕ −u

)︄
), H(α, β) = (α⊕ β, α⊕ β),

on objects and morphisms, respectively.

By Eisenbud’s matrix factorisation theorem, H induces a functor from MCM(R)
to MCM(R2) as well. In the rest of the section we focus on this functor.

To avoid confusion, from now on we denote by G1 : MFS(f) ⇄ MFS1(f+y2) : R1,
and G2 : MFS1(f + y2) ⇄ MFS2(f + y2 + x2) : R2. These functors are all defined
before in the notation of G and R.

We now claim that:

G2 ◦ G1 ≃ H ⊕ T ◦ H : MFS(f) → MFS2(f + y2 + x2), (3.11)
R1 ◦ R2 ◦ H ≃ 1 ⊕ T : MFS(f) → MFS(f), (3.12)

T ◦ H ≃ H ◦ T : MFS(f) → MFS2(f + y2 + x2). (3.13)
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All of the 3 isomorphisms are proven by straightforward calculations. We only

check (3.12) here. Given (ϕ, ψ) ∈ MFS(f), R1◦R2◦H(ϕ, ψ) = (
(︄

0 ψ
ϕ 0

)︄
,

(︄
0 ψ
ϕ 0

)︄
)

is isomorphic to (ϕ, ψ) ⊕ T (ϕ, ψ) by the isomorphism (1,
(︄

0 1
1 0

)︄
).

We can then show the following result:

H induces a bijection between the isomorphism classes of non-trivial inde-
composable matrix factorisations of f and f + y2 + x2.

Let X ∈ MFS(f) be non-trivial and indecomposable, then we have shown before
that G2 ◦ G1 decomposes into precisely 2 non-isomorphic indecomposable sum-
mands, and thus H(X) is indecomposable by (3.11). Now suppose X ′ ̸≃ X is
another matrix factorisation of f such that H(X) ≃ H(X ′). Then (3.12) implies
X ′ ≃ TX. So G1(X) is indecomposable and consequently G2 ◦ G1(X) decom-
poses into 2 non-isomorphic summands. So by (3.11), we get H(X) ̸≃ T ◦ H(X).
However by (3.13), T ◦H(X) ≃ H◦T (X) ≃ H(X ′) ≃ H(X), a contradiction!

To complete the proof, take any non-trivial indecomposable Y ∈ MFS2(f+y2+x2),
and we need to show that Y is a direct summand of H(X) for some X ∈ MFS(f).
But this is a immediate consequence of (3.11), (3.13) and (3.10):

H ◦ R1 ◦ R2(Y ) ⊕ H ◦ T ◦ R1 ◦ R2(Y ) ≃ H ◦ R1 ◦ R2(Y ) ⊕ T ◦ H ◦ R1 ◦ R2(Y )
≃ G2 ◦ G1 ◦ R1 ◦ R2(Y )
≃ G2 ◦ R2(Y ) ⊕ G2 ◦ σ ◦ R2(Y )
≃ Y ⊕ σ(Y ) ⊕ G2 ◦ σ ◦ R2(Y ).

We now state the Knörrer’s periodicity result that we are to prove in this sec-
tion:

Knörrer’s periodicity. H : MFS(f) → MFS2(f + uv) induces an equiv-
alence

MCM(R) ≃ MCM(R2). (3.14)

For the proof, we still have to show that for any 2 matrix factorisations X = (ϕ :
F1 ⇄ F2 : ψ), X ′ = (ϕ′ : F ′

1 ⇄ F ′
2 : ψ′) ∈ MFS(f), H induces an isomorphism

Hom(X,X ′) → Hom(H(X),H(X ′)). By (3.12), this map is clearly injective. So
we are left to show the surjectivity.

Let (α, β) : H(X) → H(X ′) be a morphism in MFS2(f + uv), then

R1 ◦ R2(α, β) =: (ᾱ, β̄) : R1 ◦ R2 ◦H(X) → R1 ◦ R2 ◦H(X ′)

is a morphism in MFS(f), where R1 ◦ R2 ◦ H(X) = (
(︄

0 ψ
ϕ 0

)︄
,

(︄
0 ψ
ϕ 0

)︄
) and

R1 ◦ R2 ◦H(X ′) = (
(︄

0 ψ′

ϕ′ 0

)︄
,

(︄
0 ψ′

ϕ′ 0

)︄
).
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Then we claim that

• the morphisms (ᾱ21, β̄12) : X → TX ′ and (ᾱ12, β̄21) : TX → X ′ factor
through projectives;

• the morphisms (ᾱ11, β̄22), (β̄11, ᾱ22) : X → X ′ only differ by a mor-
phism that factors through projectives.

These are proven by direct calculation. Since (α, β) is a morphism of matrix
factorisations, we have(︄

β11 β12
β21 β22

)︄(︄
u ψ
ϕ −v

)︄
=
(︄
u ψ′

ϕ′ −v

)︄(︄
α11 α12
α21 α22

)︄
, (3.15)

from which we get

ϕ′ ◦ α11 − vα21 = uβ21 + β22 ◦ ϕ;
uα12 + ψ′ ◦ α22 = β11 ◦ ψ − vβ12.

Notice that α11, β11, α22, β22 are all dependent on u, v, so we can compare the
coefficients of u, v on both sides of the equations and get

β̄12 = ψ′ ◦ γ12 + δ12 ◦ ψ,
β̄21 = ϕ′ ◦ γ21 + δ21 ◦ ϕ,

where γ12, γ21, δ12, δ21 are certain maps. Clearly ψ′ ◦ γ12 induces

Coker(X) = Coker(ϕ : F1 → F2) 0−→ Coker(TX ′) = Coker(ψ′ : F ′
2 → F ′

1).

On the other hand ψ ◦ ϕ = f · 1 = 0 over R = S/(f), so δ12 ◦ ψ : Coker(ϕ) →
Coker(ψ′) factors through the free R-module R ⊗P F1. This shows that the map
Coker(X) → Coker(TX ′) induced by β̄12 factors through projectives. Similarly
one can show that the one induced by β̄21 factors through projectives as well.
Thus the first point follows.

For the second point, we again observe from (3.15) that

ϕ′ ◦ α12 − vα22 = β21 ◦ ψ − vβ22.

Then we similarly get

ᾱ22 − β̄22 = ϕ′ ◦ γ22 + δ22 ◦ ψ,

where γ22 and δ22 are certain maps. We then show that the morphism induced by
ᾱ22 − β̄22 factors through projectives as in the proof of the first point.

Therefore, any morphism from (α, β) : H(X) → H(X ′) can be altered by some
morphism in H(Hom(X,X ′)) such that R1 ◦R2(α, β) factors through projectives.
Now the Knörrer’s periodicity (3.14) follows easily.

An immediate corollary of Knörrer’s periodicity (3.14) is that:
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The stable Auslander-Reiten quiver of MCM(R) and MCM(R2) are isomor-
phic, i.e.

Γ(R) ≃ Γ(R2).

Recall that the stable Auslander-Reiten quiver is obtained by deleting the vertex
of indecomposable free module and all arrows adjacent in the original Auslander-
Reiten quiver.

Moreover, to relate the Auslander-Reiten quiver of MCM(R) and MCM(R2), we
have:

The number of arrows ending in (or starting from) the vertex of free module
is doubled when passing from MCM(R) to MCM(R2).

See Solberg [1989], Prop. 4.6.

In conclusion, with Knörrer’s periodicity, we can claim that simple singularities
are MCM-finite, provided that we show it in 1-dimensional and 2-dimensional
cases, which are well-known to be true and will be discussed in the next chapter.
Combining that with Buchweitz-Greul-Schreyer’s result, we get:

Any hypersurface is MCM-finite if and only if it is a simple singularity.
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4. Auslander-Reiten quiver of
simple singularities

4.1 Even-dimensional simple singularities
In this chapter we decide the (stable) Auslander-Reiten quiver of the category
of MCM modules over any simple singularity. We refer to it for brevity as the
(stable) Auslander-Reiten quiver of the simple singularity as long as no confusion
is caused.

For even-dimensional simple singularities, the stable Auslander-Reiten quivers are
rather easy to decide. We now briefly develop the isomorphism of the Auslander-
Reiten quiver with the McKay graph in this case, discovered in Auslander [1986]
and Auslander and Reiten [1987].

Let K be an algebraically closed field of characteristic 0 and G ≤ GL2(K) be a
finite subgroup. Given a 2-dimensional K-vector space V , we can pick a K-basis
{x, y}, on which G naturally acts:

∀g =
(︄
g11 g12
g21 g22

)︄
∈ G, g.(x, y) =

(︄
g11 g12
g21 g22

)︄(︄
x
y

)︄
=
(︄
g11x+ g12y
g21x+ g22y

)︄
.

Then we can extend the action of G to the ring S := K{x, y}:

∀f(x, y) ∈ S,∀g ∈ G, g.f(x, y) = f(g.(x, y)).

Now let R := {s ∈ S | g.s = s,∀g ∈ G} be the invariant subring of S, and denote
by S[G] := ∑︁

g∈G Sg the skew group ring, considered as an S-module with the
multiplication

s1g1 · s2g2 := s1 g1.s2 g1g2, si ∈ S, gi ∈ G.

An S[G]-module M is exactly an S-module acted by G such that

g.sm = g.s g.m, s ∈ S,m ∈ M, g ∈ G.

In addition, f : M → N is an S[G]-homomorphism if and only if it is simultane-
ously an S-homomorphism and a G-homomorphism, i.e. it satisfies

f(g.sm) = g.f(sm) = g.sf(m), g ∈ G, s ∈ S,m ∈ M.

When M,N ∈ mod(S[G]), HomS(M,N) is also an S[G]-module, with the G-
action

(g.f)(m) = g.f(g−1.m), g ∈ G,m ∈ M, f ∈ HomS(M,N).

Moreover, any f ∈ HomS(M,N) is G-invariant if and only if it is an S[G]-
homomorphism. In fact, if f is an S[G]-homomorphism, ∀g ∈ G, ∀m ∈ M ,

g.f(m) = g.f(g−1.m) = f(gg−1.m) = f(m),
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i.e. f is G-invariant. Conversely, if f is G-invariant, ∀g ∈ G, ∀s ∈ S,

f(g.sm) = g.f(g−1g.sm) = g.f(sm) = g.sf(m),

thus f is an S[G]-homomorphism.

So we get
HomS[G](M,N) = HomS(M,N)G,

where HomS(M,N)G = {f ∈ HomS(M,N) | g.f = f, ∀g ∈ G} denotes the
G-invariant submodule as before.

Now we claim that:

(−)G : mod(S[G]) → mod(R) is an exact functor.

In general, taking G-invariant is a left exact functor. Given any short exact
sequence in mod(S[G]) of the form

0 → M
ι−→ N

π−→ P → 0,

there are induced maps MG → NG and NG → PG, denoted by ιG and πG,
respectively. Clearly, Ker(ιG) ⊂ Ker(ι) = 0. For any m ∈ MG, πG ◦ ιG(m) =
π ◦ ι(m) = 0, so Im(ι) ⊂ Ker(π). Now let n ∈ NG and suppose π(n) = 0, then
n ∈ Ker(π) = Im(ι), so n = ι(m′) for some m′ ∈ M . ∀g ∈ G, n = g.n = g.ι(m′) =
ι(g.m′), so m′ = g.m′. Therefore, taking G-invariant is left exact.

Now we would like to show that πG : NG → PG is an epimorphism, for which
we need to use the assumption that G is a finite group. In this case, it is an
elementary result from group theory that

NG = Im(n ↦→ 1
|G|

∑︂
g∈G

g.n).

Denote by ϕG,N : N → NG the surjective map n ↦→ 1
|G|
∑︁
g∈G g.n, and we get

πG ◦ ϕG,N = ϕG,P ◦ π. Since ϕG,N , ϕG,P and π are all surjective, so is πG. Thus
we have shown that (−)G is an exact functor.

On the level of derived functors, we have

ExtiS[G](M,N) = ExtiS(M,N)G, i ≥ 0.

See Yoshino [1990], p. 86.

Therefore, an S[G]-module is projective if and only if it is projective over S.

Let KG be the group ring in the usual sense. The assignment W ↦→ S⊗KW and
f ↦→ 1S ⊗K f defines a functor F : mod(KG) → mod(S[G]), where the action of
S[G] is given by

(sg)(t⊗ w) = sg.t⊗ g.w, (sg)(1S ⊗ f) = s⊗ g.f, s, t ∈ S, g ∈ G,w ∈ W.
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Consider the full subcategory of mod(S[G]) consisting of all projectives, denoted
by proj.S[G]. Given any KG-module W , F (W ) = S ⊗K W is clearly free over S,
and hence projective over S[G]. Therefore F gives rise to a functor mod(KG) →
proj.S[G], also denoted by F . Moreover we have:

The functor F : mod(KG) → proj.S[G] admits a left adjoint F ′ = κS⊗S− :
proj.S[G] → mod(KG). Moreover, F gives a one-to-one correspondence
between the isomorphism classes of objects.

Here κS = S/mS denotes the residue field as before, where mS = (x, y)S is the
unique maximal ideal of S. It is clear that F ′ ◦ F = 1mod(KG). We now consider
F ◦ F ′ on the objects. Let M ∈ proj.S[G], then M is free over S, and we get
F ◦ F ′(M) = S ⊗K (M/mSM). We claim that π : M → M/mSM is the minimal
projective cover of M/mSM ∈ mod(S[G])!

In fact, take any proper submodule N ⊊ M , we need to show that π(N) ̸=
M/mSM . Suppose the opposite, i.e. π(N) = M/mSM , and then M = N +
mSM . Then one of the variants of Nakayama’s lemma implies that M = N , a
contradiction! So π is the minimal projective cover.

Meanwhile, the natural map S⊗KM/mSM → M/mSM is also a projective cover
of M/mSM ∈ mod(S[G]), so it must factor through M , i.e. there must be a
surjective map S ⊗K M/mSM → M . Since M is projective, this surjective map
splits, i.e. M is a direct summand of S ⊗K M/mSM . Since rank(M/mSM) =
rank(M) − 1, we consequently get M ≃ S ⊗K M/mSM . The rest of the proof is
straightforward.

Therefore, in another word, there is a one-to-one correspondence between the
irreducible representations of G over K and the indecomposable projective S[G]-
modules.

McKay graph. Let V0, · · · , Vd be the isomorphism classes of irreducible rep-
resentations of G. The McKay graph Mc(V,G) is an oriented graph of vertices
V0, · · · , Vd, where, for any 0 ≤ i, j ≤ d, there are multi(V ⊗K Vj) arrows. Here
multi(−) := dimKHomKG(Vi,−).

Let P0, · · · , Pd be the isomorphism classes of indecomposable projective S[G]-
modules with F (Vi) = S ⊗K Vi = Pi, 0 ≤ i ≤ d. For any projective S[G]-module
P , let νi(P ) be the number of copies of Pi appearing in the direct decomposition
of P , 0 ≤ i ≤ d. Then these integers can be used to calculate the multiplicities
in the McKay graph:

multi(V ⊗K Vj) = νi(F (V ⊗K Vj)), 0 ≤ i, j ≤ d.

In fact, V ⊗K Vj = ⨁︁
i V

multi(V⊗KVj)
i by definition. It follows that F (V ⊗K Vj) =⨁︁

i P
(multi(V⊗KVj))
i .

Denote by addR(S) the full subcategory of mod(R) consisting of R-modules that
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are isomorphic to direct R-summands of free S-modules. We now show a famous
result by Auslander:

As subcategories of mod(R),

addR(S) = MCM(R).

In particular, indecomposable MCM R-modules are identified with the in-
decomposable R-summands of S. Hence R is MCM-finite.

First notice that R = SG is a 2-dimensional normal domain, hence MCM(R)
consists of reflexive R-modules. Since S is reflexive over R, clearly addR(S) ⊂
MCM(R). Now let M ∈ MCM(R). The inclusion map R ↪→ S is a split R-
monomorphism, with a retraction given by

ϕ : S → R, s ↦→ 1
|G|

∑︂
g∈G

g.s.

Applying HomR(HomR(M,R),−), we get a split monomorphism

M ≃ HomR(HomR(M,R), R) → HomR(HomR(M,R), S).

Now that HomR(HomR(M,R), S) is reflexive as an S-module, it is even free over S!
This famous result by Serre follows from the fact that S is a 2-dimensional regular
local ring. Instead of citing the original proof, we can prove it even faster: since S
is regular, gl.dim(S) = 2. For brevity we denote by M∗ := HomR(M,R). Now we
take a free presentation of HomS(HomR(M∗, S), S) of the following form:

F1 → F0 → HomS(HomR(M∗, S), S) → 0,

and dualise it to get an exact sequence

0 → HomR(M∗, S) → HomS(F0, S) ϕ−→ HomS(F1, S) → Coker(ϕ) → 0.

Now that proj.dim(Coker(ϕ)) ≤ 2 and the dual of F0 and F1 are both free, we
get that HomR(M∗, S) is free. Therefore, M is a direct summand of a free S-
module, i.e. M ∈ addR(S). This shows that addR(S) = MCM(R). The rest of
the statement simply follows from Krull-Schmidt theorem.

An element σ ∈ GL2(K) is a pseudo-reflection if rank(σ − 1) ≤ 1. M. Auslander
discovered the following striking relation between MCM R-modules and S[G]-
modules:

Assume that G has no non-trivial pseudo-reflection, then there is an equiv-
alence of categories

H : proj.S[G] ∼−→ MCM(R), M ↦→ MG, f ↦→ f |MG .

First notice that given M ∈ proj.S[G], MG is a direct summand of M as an
R-module. Since M is also projective over S, it is a free S-module, hence MG ∈
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addR(S), and it is easy to see that the functor H is well-defined. See Auslander
[1986], p. 515 for the proof of the result.

Combining the results above, we get that:

The composition H ◦F gives a one-to-one correspondence between the iso-
morphism classes of irreducible representations of G and the isomorphism
classes of MCM R-modules.

Now we would like to construct Auslander-Reiten sequences. Let V0 = K be the
trivial simple KG-module. We denote by

τ(Vi) =
2⋀︂
V ⊗K Vi , 0 ≤ i ≤ d,

and also τ(Pi) = F (τ(Vi)). Let L0, · · · , Ld be the indecomposable MCM R-
modules, where Li = H(Pi). So L0 = H ◦ F (V0) = R. We denote by τ(Li) =
H(τ(Pi)) for 0 ≤ i ≤ d. Then it is clear that τ(Vi) ≃ τ(Vj), if and only if
τ(Pi) ≃ τ(Pj), if and only if τ(Li) ≃ τ(Lj), if and only if i = j. Moreover, we
have

τ(L0) ≃ ωR.

See Yoshino [1990], p.92.

Consider the Koszul complex associated to S → K:

0 → S ⊗K

2⋀︂
V → S ⊗K V → S → K → 0,

and this is also exact as S[G]-modules. Tensoring Vi, we obtain

0 → S ⊗K (
2⋀︂
V ⊗K Vi) → S ⊗K (V ⊗K Vi) → S ⊗K Vi → Vi → 0,

which gives the minimal projective S[G]-resolution of Vi which we rewrite as:

0 → τ(Pi) → F (V ⊗K Vi) → Pi → Vi → 0.

Now we apply H to get

0 → τ(Li) → H ◦ F (V ⊗K Vi) → Li → V G
i → 0,

where V G
i =

⎧⎨⎩K, if i = 0;
0, otherwise.

This is because each Vi is a simple KG-module.

For brevity we denote by Ei := H ◦ F (V ⊗K Vi), and we get the sequences

0 → τ(L0) → E0
π0−→ L0 → K → 0, (4.1)

0 → τ(Li) → Ei
πi−→ Li → 0, 0 < i ≤ d. (4.2)

We now show that:
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• Given L ∈ MCM(R) and f ∈ HomR(L,Li) which is not a split epi-
morphism, then there exists g ∈ HomR(L,Ei) with f = πi ◦ g, where
0 ≤ i ≤ d.

• In particular, for i ̸= 0, (4.2) is the Auslander-Reiten sequence ending
in Li.

Since f is not a split epimorphism, we have Im(f) ⊂ Im(πi), and hence we get
Im(H−1(f)) ⊂ Im(H−1(πi)), where H−1(πi) : F (V ⊗K Vi) → Pi and H−1(f) :
H−1(L) → Pi. So there is g′ ∈ HomS[G](H−1(L), F (V ⊗KVi)), such that H−1(f) =
H−1(πi) ◦ g′, for H−1(L) is projective over S[G]. Now we let g = H(g′) : L → Ei,
and we get f = πi ◦ g.

Finally we can decide the Auslander-Reiten quiver of R:

As before assume that G ≤ GL2(K) has no non-trivial pseudo-reflection,
thenR = SG is MCM-finite, and its Auslander-Reiten quiver Γ(R) coincides
with the McKay graph Mc(V,G), where V = ⟨x, y⟩, S = K{x, y}.

Clearly the vertices of Γ(R) are L0, · · · , Ld. If i ̸= 0, i(Lj, Li) is the number
of copies of Lj appearing in the direct decomposition of Ei. When i = 0, the
previous statement still applies, though the sequence is longer. So the same
property holds. Therefore, i(Lj, Li) = νj(F (V ⊗K Vi)) = multj(V ⊗K Vi). So
there is an isomorphism Γ(r) → Mc(V,G) given by [Li] ↦→ [Vi].

Klein groups. Now the Auslander-Reiten quiver of any 2-dimensional simple
singularity is reduced to some classic result in Klein [1893]. Let ζk be the k-th
primitive root of unity in K. Felix Klein classified all finite subgroups of SL(2, K)
as conjugates to the following Klein groups:

• Ak: cyclic group of order k + 1:

Ck = ⟨
(︄
ζk+1 0

0 ζ−1
k+1

)︄
⟩;

• Dk: binary dihedral group of order 4(k − 2):

Dk = ⟨
(︄

0 ζ4
ζ4 0

)︄
, C2k−5⟩;

• E6: binary tetrahedral group of order 24:

T = ⟨ 1√
2

(︄
ζ8 ζ3

8
ζ8 ζ7

8

)︄
, D4⟩;

• E7: binary octahedral group of order 48:

O = ⟨
(︄
ζ3

8 0
0 ζ5

8

)︄
, T ⟩;
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• E8: binary icosahedral group of order 120:

I = ⟨ 1√
5

(︄
ζ4

5 − ζ5 ζ2
5 − ζ3

5
ζ2

5 − ζ3
5 ζ5 − ζ4

5

)︄
,

1√
5

(︄
ζ2

5 − ζ4
5 ζ4

5 − 1
1 − ζ5 ζ3

5 − ζ5

)︄
⟩.

He also proved that the invariant subrings by these groups are simple singularities,
i.e. SG ≃ K{x, y, z}/(f) where f is one of the following polynomials respectively
in each case:

• Ak : x2 + yk+1 + z2, k ≥ 1;

• Dk : x2y + yk−1 + z2, k ≥ 4;

• E6 : x3 + y4 + z2;

• E7 : x3 + xy3 + z2;

• E8 : x3 + y5 + z2.

We now exhibit the McKay graphs of these rings, where the number attached
to a vertex indicates the degree of the corresponding irreducible representation.
When we consider them as Auslander-Reiten quivers, the numbers are the ranks
of the corresponding MCM modules.

Ak : [R]

1 1 · · · 1 1
[R] 1

Dk : 2 · · · 2

1 1
[R]

E6 : 2

1 2 3 2 1
E7 : 2

[R] 2 3 4 3 2 1

E8 : 3

[R] 2 3 4 5 6 4 2

In conclusion, we have determined the Auslander-Reiten quiver of any simple
singularity of dimension 2 using McKay graphs, and by Knörrer’s periodicity, the
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stable Auslander-Reiten quiver of any even-dimensional simple singularity is the
same as in the 2-dimensional case. For the Auslander-Reiten quiver itself, the
only change appears in the number of arrows adjacent to [R].

4.2 Odd-dimensional simple singularities
By Knörrer’s periodicity for simplicity we need only consider the 1-dimensional
case. Recall that the types of singularities we consider are:

• Ak : x2 + yk+1, k ≥ 1;

• Dk : x2y + yk−1, k ≥ 4;

• E6 : x3 + y4;

• E7 : x3 + xy3;

• E8 : x3 + y5.

As always let S = K{x, y}, R = S/(f) where f belongs to one of the types
above.

First we show a useful statement.

Let R be a 1-dimensional analytic reduced local hypersurface ring. Then
the Auslander-Reiten translation τ is given by

τ(M) ≃ syz1
RM, ∀M ∈ MCM(R), (4.3)

and τ 2 = 1. Furthermore, if we can decompose mR = ⨁︁
iMi into in-

decomposable modules Mi, then the natural inclusions Mi → R are the
only irreducible morphisms from an indecomposable MCM R-module to
R. Dually, the irreducible morphisms from R to an indecomposable MCM
R-module are of the form R → τ(Mi).

First recall that R = S/(f) for some regular local ring S, and 0 ̸= f ∈ mS. Thus
R is a 1-dimensional Gorenstein ring, and in particular ωR ≃ R.

Take a free resolution of M of the form

· · · → F1 → F0 → M → 0.

Then we have an exact sequence of the form

0 → HomR(M,R) → HomR(F0, R) → HomR(F1, R) → Tr(M) → 0,

and hence by (2.1), we get a short exact sequence

0 → HomR(M,R) → HomR(F0, R) → HomR(τ(M), R) → 0.

Taking the self-duality, we get another short exact sequence

0 → τ(M) → F0 → M → 0,
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which shows that τ(M) ≃ syz1
R(M). In addition, recall that M has a 2-periodic

free resolution, see (1.5). Therefore, syz2
R(M) ≃ M , i.e. τ 2 = 1.

Now consider any irreducible morphism α : X → R, where X ∈ MCM(R) is
indecomposable. Since α does not split, 1 /∈ Im(α), thus Im(α) ⊂ mR. In other
words, α is decomposed as X → mR ↪→ R. Since the inclusion mR ↪→ R is not
an epimorphism, we get that X → mR is a split monomorphism, i.e. X ≃ Mi for
some i. Dually, any irreducible morphism from R end in M∗

i := HomR(Mi, R).
Since R is an isolated singularity, there is an Auslander-Reiten sequence of the
form

0 → Mi → N ⊕R → M∗
i → 0,

where N is an MCM R-module. Therefore τ(M∗
i ) ≃ syz1

R(M) ≃ Mi as we
have just shown, and hence τ(Mi) = τ 2(M∗

i ) = M∗
i , which completes the proof.

Now we shall calculate the stable Auslander-Reiten quivers by matrix factorisa-
tions and Auslander-Reiten sequences. The method is based on Yoshino [1990],
Ch. 9.

4.2.1 Type Ak for even k

In this case f = x2 + yk+1, k = 2, 4, 6, · · · . Letting

ϕj :=
(︄

x yj

yk+1−j −x

)︄
, 0 ≤ j ≤ k + 1,

we see that ϕ2
j =

(︄
x2 + yk+1 0

0 yk+1 + x2

)︄
= f1, i.e. (ϕj, ϕj) ∈ MFS(f). Denote

by Mj := Coker(ϕj, ϕj) = (x, yj)R, and clearly M0 ≃ R and Mj ≃ Mk+1−j.
Now we would like to show that the MCM R-modules Mj (0 ≤ j ≤ k

2 ) are all
indecomposable. For j = 0 it is clear. Notice that f is irreducible since k is even,
therefore, if for some 1 ≤ j ≤ k

2 we have Mj ≃ A ⊕ B, then A and B would be
generated by 1 element, and thus isomorphic to M0 ≃ R, which means Mj has
a free direct summand, a contradiction to the fact that ϕj ∈ GL2(S) has no unit
entry!

Now it follows from (1.9) and (4.3) that

τ(Mj) = Mj, ∀1 ≤ j ≤ k

2 .

Let ϵj :=
(︄

0 yj−1

−yk−j 0

)︄
, and we see that

ϵj ◦ ϕj =
(︄

yk −xyj−1

−xyk−j −yk
)︄

= −ϕj ◦ ϵj,

so (ϵj,−ϵj) gives an element in EndR(M). Now that(︄
ϕj ϵj
0 ϕj

)︄2

=
(︄
ϕ2
j ϕjϵj + ϵjϕj

0 ϕ2
j

)︄
= f1,
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we get that (
(︄
ϕj ϵj
0 ϕj

)︄
,

(︄
ϕj ϵj
0 ϕj

)︄
) ∈ MFS(f). Clearly

Coker(
(︄
ϕj ϵj
0 ϕj

)︄
,

(︄
ϕj ϵj
0 ϕj

)︄
) ≃ Mj−1 ⊕Mj+1.

Hence the Auslander-Reiten sequence ending in Mj is

0 → Mj → Mj−1 ⊕Mj+1 → Mj → 0.

Notice that when j = k
2 , M k

2 +1 ≃ M k
2
, and consequently we can draw a part of

the Auslander-Reiten quiver for R:

Type Ak for even k ≥ 2:

[R] [M1] [M2] · · · [Mk/2]

Now we would like to show that the graph above is a connected component of
Γ(R), for which it suffices to show that no other MCM module is connected to
[R] by arrows. But this is obvious from the statement we have shown at the
beginning of this section, since mR = (x, y)R ≃ M1.

Finally, we can conclude that Γ(R) is equal to its connected component we have
drawn above by Dieterich-Yoshino’s theorem, mentioned in Section 2.2.

4.2.2 Type Ak for odd k

In this case f = x2 + yk+1 = (y(k+1)/2 + ix)(y(k+1)/2 − ix), k = 1, 3, 5, · · · . Above
all, N± := R/(y(k+1)/2 ± ix) are MCM R-modules, which are given by the ma-
trix factorisations (y(k+1)/2 + ix, y(k+1)/2 − ix) and (y(k+1)/2 − ix, y(k+1)/2 + ix),
respectively.

Now consider the same 2 × 2 matrices on S = K{x, y} as in the previous
case:

ϕj =
(︄

x yj

yk+1−j −x

)︄
, 0 ≤ j ≤ k + 1.

Then (ϕj, ϕj) ∈ MFS(f) for each j, and we let Mj := Coker(ϕj, ϕj) ≃ (x, yj)R.
Obviously M0 ≃ R, Mj ≃ Mk+1−j and M(k+1)/2 ≃ N+ ⊕N−. We would again like
to show that N± and Mj (0 ≤ j ≤ k−1

2 ) are all indecomposable. For N± and M0,
it is clear since they are generated by a single element. For some 1 ≤ j ≤ k−1

2 ,
if we have Mj ≃ A ⊕ B, then A and B must be generated by 1 element and
non-free. Thus they are isomorphic to N+ or N−. However, I(Mj) = (x, yj) is
not equal1 to any of I(N+), I(N−) and I(N+) + I(N−), a contradiction!

Now it follows again from (1.9) and (4.3) that

τ(Mj) = Mj, τ(N±) = N∓.

1Recall the definition of the ideal associated to a module in Section 3.1.
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We then find the Auslander-Reiten sequence ending in these MCM R-modules
in the same way as in the previous case. First consider the endomorphism on
N+ given by multiplication by y

k−1
2 , which gives the Auslander-Reiten sequence

ending in N+:

0 → N− → Coker
(︄
y(k+1)/2 − ix y(k−1)/2

0 y(k+1)/2 + ix

)︄
→ N+ → 0,

where the middle term is clearly isomorphic to M k−1
2

.

Similarly the Auslander-Reiten sequence ending in N− is

0 → N+ → M k−1
2

→ N− → 0.

The Auslander-Reiten sequence ending in Mj does not change at all:

0 → Mj → Mj−1 ⊕Mj+1 → Mj → 0, (1 ≤ j ≤ k − 1
2 ),

which is given by
(︄
ϕj ϵj
0 ϕj

)︄
, where ϵ =

(︄
0 yj−1

−yk−j 0

)︄
.

So we have obtained a part of Γ(R):

Type Ak for odd k ≥ 1:
[N+]

[R] [M1] [M2] · · · [M k−1
2

]

[N−]

We use the same argument to show that this is indeed a connected component of
Γ(R). In fact, when k = 1, mR ≃ N+ ⊕N−; and when k ≥ 3, mR ≃ M1. Finally,
we apply Dieterich-Yoshino’s theorem again to get that this is actually the whole
quiver.

4.2.3 Type Dk for odd k

Now R = K{x, y}/(x2y + yk−1), where k ≥ 5 is odd, and clearly we have matrix
factorisations of f = x2y + yk−1 given by (α, β) := (y, x2 + yk−2) and (β, α). Let
A := Coker(α, β) and B := Coker(β, α).

For 0 ≤ j ≤ k − 3, we can find other matrix factorisations of f given by (ϕj, ψj)
and (ξj, ηj), where

ϕj =
(︄

x yj

yk−j−2 −x

)︄
, ψj =

(︄
xy yj+1

yk−j−1 −xy

)︄
,

ξj =
(︄

x yj

yk−j−1 −xy

)︄
, ηj =

(︄
xy yj

yk−j−1 −x

)︄
.
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Letting Mj := Coker(ϕj, ψj), Nj := Coker(ψj, ϕj), Xj := Coker(ξj, ηj) and Yj :=
Coker(ηj, ξj), we see that

B ≃ M0, X0 ≃ R ≃ Y0, N0 ≃ A⊕R, X k−1
2

≃ Y k−1
2
,

Mj ≃ Mk−j−2, Nj ≃ Nk−j−2, Xj ≃ Yk−j−1, Yj ≃ Xk−j−1, ∀1 ≤ j ≤ k − 3.

For 1 ≤ j ≤ k − 3, notice that Mj, Nj, Xj, Yj are indecomposable MCM R-
modules. In fact, Mj ≃ (xy, yj+1)R and Yj ≃ (x, yj)R.

We thus obtain the Auslander-Reiten sequences, given by extensions below:
(︄
α x
0 β

)︄
:0 → A → X1 → B → 0,(︄

β x
0 α

)︄
:0 → B → Y1 → A → 0,(︄

ϕj ϵj
0 ψj

)︄
:0 → Mj → Xj ⊕ Yj+1 → Nj → 0,(︄

ψj ϵj
0 ϕj

)︄
:0 → Nj → Xj+1 ⊕ Yj → Mj → 0,(︄

ξj ϵj−1
0 ηj

)︄
:0 → Xj → Mj−1 ⊕Nj → Yj → 0,(︄

ηj ϵj
0 ξj

)︄
:0 → Yj → Mj ⊕Nj−1 → Xj → 0,

where ϵj =
(︄

0 yj

−yk−j−2 0

)︄
. Hence we get a connect component of the Auslander-

Reiten quiver of R as follows:

Type Dk for odd k ≥ 5:
[A]

[Y1] [M1] [Y2] · · · [M k−3
2

]

[B] [X k−1
2

]

[X1] [N1] [X2] · · · [N k−3
2

]

[R]

This is indeed the whole quiver by Dieterich-Yoshino’s theorem.
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4.2.4 Type Dk for even k

Let R = K{x, y}/(f) for f = x2y + yk−1 and k ≥ 4 an even integer. We have
seen in the type of Ak that the only change happens in the way we factorise f .
The modules A,B,Mj, Nj, Xj, Yj still well-defined, we furthermore let

C± := Coker(y(x± iy
k−2

2 ), x∓ iy
k−2

2 ), D± := Coker(x∓ iy
k−2

2 , y(x± iy
k−2

2 )).

We again have

B ≃ M0, X0 ≃ R ≃ Y0, N0 ≃ A⊕R, X k−1
2

≃ Y k−1
2
,

Mj ≃ Mk−j−2, Nj ≃ Nk−j−2, Xj ≃ Yk−j−1, Yj ≃ Xk−j−1, ∀1 ≤ j ≤ k − 3.

And moreover

M k−2
2

≃ D+ ⊕D−, N k−2
2

≃ C+ ⊕ C−.

The Auslander-Reiten sequences are obtained by the same extensions as when k
is odd, and the Auslander-Reiten quiver turns out just slightly modified:

Type Dk for even k ≥ 4:
[A] [C+]

[Y1] [M1] [Y2] · · · [Y k−2
2

]

[D+]

[B]

[C−]

[X1] [N1] [X2] · · · [X k−2
2

]

[R] [D−]
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4.2.5 Type E6

In this case R = K{x, y}/(f) with f = x3 + y4. The matrix factorisations of f
are rather simple to calculate, as shown below row by row:

ϕ1 =
(︄
x y
y3 −x2

)︄
, ψ1 =

(︄
x2 y
y3 −x

)︄
,

ϕ2 =
(︄
x y2

y2 −x2

)︄
, ψ2 =

(︄
x2 y2

y2 −x

)︄
,

α =

⎛⎜⎝y
3 x2 xy2

xy −y2 x2

x2 −xy −y3

⎞⎟⎠ , β =

⎛⎜⎝y 0 x
x −y2 0
0 x −y

⎞⎟⎠ .
And we define the MCM R-modules as A := Coker(α, β), B := Coker(β, α), and
Mi := Coker(ϕi, ψi), Ni := Coker(ψi, ϕi) for i = 1, 2, and there are following
isomorphisms to ideals of R:

N1 ≃ mR, M1 ≃ (x2, y)R, N2 ≃ (x2, y2)R ≃ M2, B ≃ (x2, xy, y2)R.
Further we can determine the action of τ since rank(A) = 2:

τ(M1) = N1, τ(N1) = M)1, τ(M2) = M2, τ(A) = B, τ(B) = A.

We thus have the following Auslander-Reiten sequences:⎛⎜⎝ϕ1

(︄
0 1

−xy2 0

)︄
0 ψ1

⎞⎟⎠ : 0 → M1 → A → N1 → 0,

⎛⎜⎝ψ1

(︄
0 x

−y2 0

)︄
0 ϕ1

⎞⎟⎠ : 0 → N1 → B ⊕R → M1 → 0.

On the other hand, observe that

ξ =

⎛⎜⎝ϕ2

(︄
0 y

−xy 0

)︄
0 ψ2

⎞⎟⎠ , η =

⎛⎜⎝ψ2

(︄
0 xy
y 0

)︄
0 ϕ2

⎞⎟⎠
also gives an indecomposable matrix factorisation of f , and we let

X := Coker(ξ, η) ≃ Coker(η, ξ)
to get the Auslander-Reiten sequence

0 → M2 → X → M2 → 0.
Thus we can easily get the Auslander-Reiten quiver as follows:

Type E6:
[B] [M1]

[M2] [X] [R]

[A] [N1]
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4.2.6 Type E7

In this case f = x3 + xy3 can be factorised as follows:

α = (x), β = (x2 + y3);

γ =
(︄
x2 xy
xy2 −x2

)︄
, δ =

(︄
x y
y2 −x

)︄
;

ϕ1 =
(︄
x y
xy2 −x2

)︄
, ψ1 =

(︄
x2 y
xy2 −x

)︄
;

ϕ2 =
(︄
x y2

xy −x2

)︄
, ψ2 =

(︄
x2 y2

xy −x

)︄
;

ξ1 =

⎛⎜⎝xy
2 −x2 −x2y

xy y2 −x2

x2 xy xy2

⎞⎟⎠ , η1 =

⎛⎜⎝ y 0 x
−x xy 0
0 −x y

⎞⎟⎠ ;

ξ2 =

⎛⎜⎝ x2 −y2 −xy
xy x −y2

xy2 xy x2

⎞⎟⎠ , η2 =

⎛⎜⎝ x 0 y
−xy x2 0

0 −xy x

⎞⎟⎠ ;

ξ3 =

⎛⎜⎝γ
(︄
y 0
0 y

)︄
0 δ

⎞⎟⎠ , η3 =

⎛⎜⎝δ
(︄

−y 0
0 −y

)︄
0 γ

⎞⎟⎠ .

Now we define the MCM modules as A := Coker(α, β), B := Coker(β, α), C :=
Coker(γ, δ), D := Coker(δ, γ), and Mi := Coker(ϕi, ψi), Ni := Coker(ψi, ϕi), Xi :=
Coker(ξi, ηi), Yi := Coker(ηi, ξi) for i = 1, 2, so that we can obtain the Auslander-
Reiten quiver similarly as in previous type, shown below:

Type E7:
[A] [M2] [Y2] [Y3] [Y1] [M1]

[R]

[B] [N2] [X2] [X3] [X1] [N1]

[C] [D]

4.2.7 Type E8

Finally let R = K{x, y}/(f) for f = x3 + y5. The higher degree makes matrix
factorisation a bit harder, but the process to calculate the quiver does not change
at all. We exhibit below all indecomposable matrix factorisations of f from
Yoshino [1990], p. 82:
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ϕ1 =
(︄
x y
y4 −x2

)︄
, ψ1 =

(︄
x2 y
y4 −x

)︄
;

ϕ2 =
(︄
x y2

y3 −x2

)︄
, ψ2 =

(︄
x2 y2

y3 −x

)︄
;

α1 =

⎛⎜⎝y −x 0
0 y −x
x 0 y3

⎞⎟⎠ , β1 =

⎛⎜⎝ y4 xy3 x2

−x2 y4 xy
−xy −x2 y2

⎞⎟⎠ ;

α2 =

⎛⎜⎝y −x 0
0 y2 −x
x 0 y2

⎞⎟⎠ , β2 =

⎛⎜⎝ y4 xy2 x2

−x2 y3 xy
−xy2 −x2 y3

⎞⎟⎠ ;

γ1 =

⎛⎜⎜⎜⎝
y −x 0 y3

x 0 −y3 0
−y2 0 −x2 0

0 −y2 −xy −x2

⎞⎟⎟⎟⎠ , δ1 =

⎛⎜⎜⎜⎝
0 x2 −y3 0

−x2 xy 0 −y3

0 −y2 −x 0
y2 0 y −x

⎞⎟⎟⎟⎠ ;

γ2 =

⎛⎜⎜⎜⎝
x y2 0 y
y3 −x2 −xy2 0
0 0 x2 y2

0 0 y3 −x

⎞⎟⎟⎟⎠ , δ2 =

⎛⎜⎜⎜⎝
x2 y2 0 xy
y3 −x −y2 0
0 0 x y2

0 0 y3 −x2

⎞⎟⎟⎟⎠ ;

ξ1 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

y4 xy2 x2 0 0 xy
−x2 y3 xy −x 0 0
−xy2 −x2 y3 0 −xy 0

0 0 0 y −x 0
0 0 0 0 y2 −x
0 0 0 x 0 y2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

η1 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

y −x 0 0 0 −x
0 y2 −x xy 0 0
x 0 y2 0 xy 0
0 0 0 y4 xy2 x2

0 0 0 −x2 y3 xy
0 0 0 −xy2 −x2 y3

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
;

ξ2 =

⎛⎜⎜⎜⎜⎜⎜⎝
y4 x2 0 −xy2 0

−x2 xy 0 −y3 0
0 −y2 −x 0 y3

−xy2 y3 0 x2 0
−y3 0 −y2 xy −x2

⎞⎟⎟⎟⎟⎟⎟⎠ ,

η2 =

⎛⎜⎜⎜⎜⎜⎜⎝
y −x 0 0 0
x 0 0 y2 0

−y2 0 −x2 0 −y3

0 −y2 0 x 0
0 0 y2 y −x

⎞⎟⎟⎟⎟⎟⎟⎠ .

Denote by Mi := Coker(ϕi, ψi), Ni := Coker(ψi, ϕi), Ai := Coker(αi, βi), Bi :=
Coker(βi, αi), Ci := Coker(γi, δi), Di := Coker(δi, γi), Xi := Coker(ξi, ηi), Yi :=
Coker(ηi, ξi), where i = 1, 2, and then the Auslander-Reiten quiver can be drawn
as:
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Type E8:
[N2] [D2] [X1] [X2] [C1] [B1] [N1]

[R]

[M2] [C2] [Y1] [Y2] [D1] [A1] [M1]

[A2] [B2]

So far we have calculated the Auslander-Reiten quiver of any 1-dimensional sim-
ple singularity, and in particular we see that any 1-dimensional simple singular-
ity is MCM-finite, hence by Knörrer’s periodicity the same holds for any odd-
dimensional simple singularity.

Also by Knörrer’s periodicity, the stable Auslander-Reiten quiver of any odd-
dimensional simple singularity is isomorphic to the 1-dimensional case computed
above, and the Auslander-Reiten quiver changes only in terms of the number of
arrows going into and out of [R], the vertex of free module.

Iyama’s notation. Given a quiver ∆, we define the extended quiver of ∆ as
a new quiver Z∆, whose vertices are points in Z × ∆0 and whose arrows are
(l, a) : (l, s(a)) → (l, t(a)) and (l, a∗) : (l, t(a)) → (l + 1, s(a)) for each l ∈ Z and
a ∈ ∆1.

This notation is widely used in Dieterich and Wiedemann [1986], and equips the
following result presented in Iyama [2018], Prop. 2.24:

Let R be a simple singularity with dim(R) = d. Then the Auslander-Reiten
quiver of MCM(R) is Z∆/ϕ, where ∆ and ϕ are given as follows:

• if d is even, then ∆ is the Dynkin diagram of the same type as R, and
ϕ = τ is the automorphism corresponding to the Auslander-Reiten
translation;

• if d is odd, then
R A2k−1 A2k D2k D2k+1 E6 E7 E8
∆ Dk+1 A2k D2k A4k−1 E6 E7 E8

ϕ τ ◦ ι τ
1
2 τ 2 τ ◦ ι τ ◦ ι τ 2 τ 2

where ι is the involution of Z∆ induced by the non-trivial involution
of ∆, and τ

1
2 is the automorphism of ZA2k such that (τ 1

2 )2 = τ .

As a reminder, the Dynkin quivers concerned are listed below as well:
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Ak (k ≥ 1) • • · · · • •

•

Dk (k ≥ 4) • • • · · · •

•

E6 • • • • •

•

E7 • • • • • •

•

E8 • • • • • • •

We shall briefly remark on this concise version of the result. For even-dimensional
cases, we have seen in Section 4.1 that the stable Auslander-Reiten quiver equals
↔
∆, where ∆ is the Dynkin diagram of the same type as R. Meanwhile the au-
tomorphism τ on Z∆ corresponding to the Auslander-Reiten translation is given
by (l, v) → (l− 1, v) for any (l, v) ∈ Z× ∆0. Therefore, the orbit quiver Z∆/τ is
nothing but

↔
∆, obtained by adding an inverse arrow a∗ for any a ∈ ∆1.

For odd-dimensional cases, we first describe the involution ι. For Dk, where
k ≥ 4, notice that the quiver is axisymmetric:

k − 1 k

k − 2

...

1

Therefore there is a natural involution ι on Dk given by the 2-cycle (k − 1 k),
which swaps the vertices k − 1 and k while keeps the rest of the vertices fixed.
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For Ak where k is odd, the quiver is also symmetric, and we can similarly define
ι to be the reflection at the middle vertex of symmetry. For E6, ι is defined
as the reflection on the axis given by the 2 middle vertices. It is clear that the
involution ι on any quiver ∆ naturally induces an involution on Z∆, still denoted
by ι, which is given by ι(l, v) = (l, ι(v)), ∀(l, v) ∈ Z × ∆0.

For example, consider the type A5 which has stable Auslander-Reiten quiver
ZD4/(τ ◦ ι) according to Iyama’s statement. The quiver ZD4 has the following
form with solid arrows:

(0, 4) (0, 3) (1, 4) (1, 3)

(0, 2) (1, 2)

(0, 1) (1, 1)

τ◦ι

τ◦ι

τ◦ι

τ◦ι

where the dashed arrows illustrate the action of τ ◦ ι. Therefore we get a new
quiver of the form

• •

•

•

and one can verify that it coincides with the result calculated in Section 4.2.

Then we would like to specify the automorphism τ
1
2 of ZA2k. In fact, A2k is also

axisymmetric, which motivates us to define, for any l ∈ Z,

τ
1
2 (l, i) =

⎧⎨⎩(l, 2k + 1 − i), if 1 ≤ i ≤ k;
(l − 1, 2k + 1 − i), if k + 1 ≤ i ≤ 2k.

Here we number the vertices of A2k as follows:

2k 2k − 1 · · · k + 1 k · · · 2 1

For example, consider the type A4 which has stable Auslander-Reiten quiver ac-
cording to Iyama’s statement ZA4/τ

1
2 . We again draw the quiver as follows:
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(0, 4) (1, 4)

(0, 3) (1, 3)

(0, 2) (1, 2)

(0, 1) (1, 1)

where the dashed arrows denote the action of τ 1
2 . Therefore we get the following

quiver:

• •

and one can verify that this coincides with the our calculation in Section 4.2.

Finally the automorphism τ 2 is clearly given by τ 2(l, v) = (l − 2, v) for any
(l, v) ∈ Z × ∆0.

For example, consider the type E7 which has stable Auslander-Reiten quiver
ZE7/τ

2 according to Iyama’s statement. This quiver is drawn below:

(−1, 7) (0, 7) (1, 7)

(−1, 6) (0, 6) (1, 6)

(−1, 4) (−1, 5) (0, 4) (0, 5) (1, 4) (1, 5)

(−1, 3) (0, 3) (1, 3)

(−1, 2) (0, 2) (1, 2)

(−1, 1) (0, 1) (1, 1)

where the dashed arrows denote the action of τ 2. Therefore we get the following
quiver:
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•

• • • • • •

•

• • • • • •

and one can verify that this coincides with the result we have presented in Section
4.2.
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List of Symbols

N set of natural numbers including 0
mod(R) category of finitely generated modules over ring R
Mod(R) category of all modules over ring R
mR maximal ideal of local ring R
κR residue field of local ring R
dim(R) Krull dimension of ring R
dimR(M) Krull dimension of R-module M
Ann(M) annihilator of R-module M
[L : K] degree of field extension K ⊂ L
gl.dim(R) global dimension of ring R
proj.dim(MR) projective dimension of R-module M
inj.dim(MR) injective dimension of R-module M
depth(M) depth of R-module M
rankR(M) rank of module M over domain R
l(M) length of R-module M
K{x1, · · · , xn} convergent power series ring over valued field K
K[[x1, · · · , xn]] formal power series ring over field K
MCM(R) category of MCM R-modules
syznR(M) reduced n-th syzygy of R-module M
ωR canonical module over R
Sm×n m× n matrix ring over ring S
MFS(f) category of matrix factorisations of f ∈ mS

R× set of invertible elements in ring R
C stable category of category C
C/I quotient category of category C by its ideal I
rad(R) Jacobson radical of ring R
τ(M) Auslander-Reiten translation of M
M ′ dual of R-module M by R
M∗ dual of R-module M by ωR
Tr(M) Auslander transpose of M
radR(M,N) R-module of radical morphisms M → N
IrrR(M,N) R-module of irreducible morphisms M → N
i(M,N) dimension of IrrR(M,N) over κR
Γ(R) Auslander-Reiten quiver of MCM(R)
Γ(R) stable Auslander-Reiten quiver of MCM(R)
c(f) set of ideals I of S such that f ∈ I2

I(M) ideal associated to module M , see Section 3.1
βn(κR) n-th Betti number of κR
Ak, Dk, E6, E7, E8 ADE Dynkin quivers
Mc(V,G) McKay graph of group G
Z∆ extended quiver of quiver ∆
↔
∆ quiver obtained from ∆ by making all arrows invertible
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almost split sequence, 19
analytic algebra, 7
Auslander transpose, 24
Auslander-Buchsbaum formula,

6
Auslander-Reiten quiver, 27
Auslander-Reiten sequence, 19
Auslander-Reiten translation, 19

Betti number, 35

depth of module, 5
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dimension

of module, 5
global, 5
of ring, 5
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extended quiver, 65

Herzog’s theorem, 35

Klein group, 54
Knörrer’s periodicity, 46

length of module, 7

matrix factorisation, 12
reduced, 12

McKay graph, 51
module

canonical, 10
maximal Cohen-Macaulay

(MCM), 8
reflexive, 10
torsion-free, 10

morphism
irreducible, 20
radical, 25

pseudo-reflection, 52

rank of module, 7
regular sequence, 6
residue field, 5
ring

Cohen-Macaulay (CM), 8
Gorenstein, 10
Henselian, 7
local, 5
local Gorenstein, 10
normal, 10
reduced, 10
regular local, 5

simple singularity, 31
singularity

analytic hypersurface, 11
hypersurface, 11
isolated, 24
MCM-finite, 31
simple, 31
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