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Preface

The goal of the thesis is to present the intriguing theory of toric varieties in a way
that stresses both their geometric and combinatorial qualities and their mutual
inseparability.

The thesis is, in principle, a conjunction of selected sections from Cox et al.
[2011], Fulton [1993] and Oda [1985]. These works certainly have a non-trivial
intersection as they present the basics of the same theory. Nonetheless, the, often
stark, differences in approach, employed methods and style of expression certainly
do set them apart. I have often found myself struggling to understand a topic in
one of them, only to found it nearly trivial in another.

With that said, the statements (and some proofs thereof) are largely borrowed
from the first, and the most detailed, book by Cox et al. [2011]. This has two
reasons. One is consistency. The other is the sheer number of exercises and
purposefully excluded details in proofs making it into an ideal source material for
a work such as this.

I always tend to write with more emphasis on didactics and literariness than is
normal, and than is perhaps appropriate. This work of mine, being no exception
to the rule, teems with passages meant to elucidate or furnish intuition about
the discussed notion or to simply make it more linguistically aureate. These are
never intended as rigorous proofs and I kindly ask they be treated as such. Of
course, rigorous proofs are very much present and, unless explicitly specified, are
original. Up to a small number of exceptions, all those that are cited have been
augmented by inserting additional details omitted in the original text.
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1. Toric Varieties

As custom dictates, the first chapter assumes the introductory rôle. Neither the
story’s protagonist nor its antagonist, it serves to present key general results from
algebraic geometry employed heavily throughout the text, to define toric varieties
and to showcase their essential properties.

1.1 Background in Algebraic Geometry

We consider most definitions and results contained in this section, standard, as
they form contents of any introductory book on algebraic geometry. As such, they
will not be cited separately and often left unproven, save findings of particular
utility to presented theory. Contents of this section can be found in the same or
slightly altered form in Fulton [2008], Chapters 1, 2 & 6.

We limit ourselves in our efforts to the field of complex numbers. To much chagrin,
the ‘visually appealing’ real numbers are left to their fate for not being, quite
unlike their complex counterparts, algebraically closed. This fact introduces very
many technical difficulties and prevents usage of several fundamental theorems.
With that being said, in this and the following sections, all constructs are made
over the complex numbers.

1.1.1 Basic Notions and Hilbert’s Nullstellensatz

Algebraic geometry studies polynomials and the sets of their roots. Readers
should be already well-acquainted with the ensuing definition.

Definition 1.1.1 (Affine Algebraic Set). Given an ideal I ⊆ C[x1, . . . , xn], we
denote

V(I) := {P ∈ Cn | f(P ) = 0 ∀f ∈ I}.
We call it the affine algebraic set generated by I or, seldom, the set of common
zeroes of I. For each affine algebraic set V , we also define

I(V ) := {f ∈ C[x1, . . . , xn] | f(P ) = 0 ∀P ∈ V },

the set of polynomials that vanish on V . It is easily shown to be an ideal of
C[x1, . . . , xn] and is simply called the ideal of V .

Note that in general V(I(V )) = V but I(V(I)) ̸= I. Take for instance I = (xk
1)

for any k > 1. We get

V(I) = {P ∈ Cn | xk
1(P ) = 0} = {(0, p2, . . . , pn) ∈ Cn}.

However, the polynomials vanishing at points (0, p2, . . . , pn) are precisely the
multiples of x1, in other words, those lying in (x1). It follows that I(V(I)) =
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(x1) ̸= (xk
1) = I. This particular ideal is illustrative in the sense that, intuitively,

elevating a polynomial does not create any new roots. The formalization thereof,
broadly speaking, is the content of the famous Hilbert’s Nullstellensatz, which we
now recall.

Theorem 1.1.2 (Nullstellensatz). Let I ⊆ C[x1, . . . , xn] be an ideal. Then,
I(V(I)) =

√
I where

√
I := {f ∈ C[x1, . . . , xn] | fk ∈ I for some k ∈ N}.

In particular, it is easily shown that I(V ) =
√︂

I(V ) for every affine algebraic set
V , and thus I(V(I(V ))) = I(V ).

Remark. The Nullstellensatz relies implicitly but heavily on the fact that the
ring C[x1, . . . , xn] is noetherian, its every ideal finitely generated. This has an
especially interesting interpretation in the case of ideals generated by affine alge-
braic sets in the plane. No matter how many points I choose, each polynomial
curve passing through all of them is a combination of an adequate finite set of
polynomial curves.

It is often said that Hilbert’s Nullstellensatz establishes a link between algebra
and geometry. That link assumes the shape of a Galois correspondence (via I
and V) between affine algebraic sets V ⊆ Cn and ideals satisfying I =

√
I, so

called radical ideals.

In our exploration of algebraic sets, we often find it easier to study their elemen-
tary constituents. This leads us to the idea of reducibility. We call an affine
algebraic set reducible if V is non-empty and V = V1 ∪ V2 for non-trivial affine
algebraic sets V1, V2 ⊊ V . The key insight here is that irreducible algebraic sets
give prime ideals.

Proposition 1.1.3. Let V ⊆ Cn be an affine algebraic set. Then, V is irreducible
if and only if I(V ) ⊆ C[x1, . . . , xn] is a prime ideal.

We will, as is often done, call irreducible affine algebraic sets, affine varieties.
The content of the last proposition quickly becomes crucial as we move on to
coordinate rings.

Definition 1.1.4 (Coordinate Ring). Let V be an affine algebraic set. We define

C[V ] := C[x1, . . . , xn]/I(V ).

and call it the coordinate ring of V . If V is an affine variety, then I(V ) is prime
and C[V ] is a domain.

The coordinate ring is often interpreted as the ring of polynomial functions from
V to C. This interpretation is justified by the fact that complex polynomials f
and g define the same function on points of V if and only if f − g ∈ I(V ). Hence,
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the coset f+I(V ) ∈ C[V ] can be considered a map φ : V → C with φ(P ) := f(P )
for all P ∈ V .

Coordinate rings also offer new ways of looking at our favourite set V . Instead of
keeping things simple and settle for points in space, we can, as we mathematicians
love doing, complicate things a notch and identify V with the set of maximal ideals
of C[V ]. How, you ask? For every P ∈ V , consider the set

MP := {f ∈ C[V ] | f(P ) = 0}.

It is clear that MP ⊆ C[V ]. We will show that MP is a maximal ideal. Since
we have not proven anything yet and cheekily assumed potential readers do not
expect us to lie, we might as well give it a shot and prove a result of a little
farther reaching importance.

We need to make use of one additional statement, though, widely known as the
Weak Nullstellensatz. It seems apt to recall it, as well.

Theorem 1.1.5 (Weak Nullstellensatz). Let I ⊆ C[x1, . . . , xn] be an ideal satis-
fying V(I) = ∅. Then, I = C[x1, . . . , xn].

Proposition 1.1.6. Let V be an affine algebraic set. Then, for every point
P ∈ V , the set MP is a maximal ideal of C[V ]. Moreover, all maximal ideals of
C[V ] are of this form.

Proof. Firstly, MP is of course an ideal. Given f, g ∈ MP , we get (f + g)(P ) =
f(P ) + g(P ) = 0 and also (h · f)(P ) = h(P ) · f(P ) = 0 for h ∈ C[V ].

Moving further, we find an isomorphism C[V ]/MP ≃ C. Since C is a field,
existence of such an isomorphism implies that MP is maximal. Let us thus define
a map φ : C[V ] → C by φ(f+I(V )) := f(P ). Clearly, kerφ = MP since f(P ) = 0
exactly when f + I(V ) ∈ MP . Also, imφ = C trivially because the cosets of all
constant polynomials lie in C[V ]. First Isomorphism Theorem now ascertains
that indeed C[V ]/MP ≃ C. Finally, this construction is valid for any choice of
P , so MP is a maximal ideal of C[V ] for every P ∈ V .

To prove the third and final statement, we employ the Weak Nullstellensatz. Let
I ⊊ C[V ] be a maximal ideal. Let I be its pre-image via the canonical projection
C[x1, . . . , xn] ↠ C[V ]. Suppose for contradiction that I ̸= MP for all P ∈ V .
From maximality of I, we have that also I ⊈ MP for all P ∈ V . Translating
this into a more common language, for each P ∈ V , there is some function f ∈ I
which is non-zero at P . This is because MP is the set of all polynomial functions
V → C which vanish at P . Since I is not contained in any of them, there can
be no P ∈ V which is a common zero of all polynomial functions in I. This
remains true for its pre-image I as well. If we denote J := I(V ), by the last
statement, we get V(I) ∩ V(J) = ∅. Note that V(I) ∩ V(J) = V(I + J). By
the Weak Nullstellensatz, I + J = C[x1, . . . , xn]. Projecting back to C[V ], this
equality becomes I + J = C[V ]. However, J is 0 in C[V ]. So, we get I = C[V ], a
contradiction with the choice I as a maximal ideal of C[V ].
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Remark. For the sake of rigorousness, it should be mentioned that we regarded
C[V ] as the ring of functions V → C without warning. We will henceforth make
use of this identification whenever suitable and will not mention it explicitly
again.

The relation between V and C[V ] is most succinctly expressed by

V = Specm(C[V ]),

where Specm(C[V ]) denotes the set of maximal ideals of C[V ], the so-called max-
imal spectrum of C[V ].

The introduction into affine algebraic sets would not be complete without our
being able to move between them. As affine algebraic are defined through poly-
nomials, it is hopefully not too astonishing a revelation that ‘nice maps’ between
them are exactly polynomial maps. To adhere to the nomenclature of category
theory, we call a polynomial map between affine algebraic sets, a morphism.

Given that coordinate rings are really complex functions defined on affine alge-
braic sets, any morphism f : V → W induces a homomorphism of C-algebras
f ∗ : C[W ] → C[V ] given by φ ↦→ φ ◦ f .

In contrast to the same notion in the theory of groups or rings, an isomorphism
between affine algebraic sets is not simply a bijective morphism. Actually, it is
a stronger notion. We call a morphism f : V → W an isomorphism if we can
find a morphism g : W → V such that f ◦ g = 1W and g ◦ f = 1V where 1V

denotes the identity map on V . Expressed differently, an isomorphism between
affine algebraic sets is a bijective polynomial map whose inverse is also a bijective
polynomial map.

The reason for this definition is partially given by the following result.

Proposition 1.1.7. Two affine algebraic sets V and W are isomorphic if and
only if their coordinate rings C[V ] and C[W ] are isomorphic as C-algebras.

See Example 1.1.19 for a setting where a bijective morphism which is not
an isomorphism would assimilate two affine varieties that we wish not consider
similar in a strong sense.

1.1.2 Zariski Topology

In later chapters, we will be engrossed in smoothing out wrinkled varieties. To
even start defining the necessary tools, we would very much like to have a topol-
ogy on affine varieties and, somewhat surprisingly, everyone’s favourite pick, the
classical topology on Cn, does not quite cut it.

In comes the Zariski topology, the new kid on the block. It is defined specifically
to serve the purposes of algebraic geometry. By definition, closed sets are precisely
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affine algebraic sets. As such, the Zariski topology covers the entirety of Cn and
is then inherited by affine algebraic sets where closed sets are their subsets which
are themselves affine algebraic sets.

It is easy to check that V(I)∪V(J) = V(IJ) and V(I)∩V(J) = V(I+J). This
confirms that affine algebraic sets are closed under finite unions and arbitrary
intersections, and can thus be used to define a topology. Also observe that we
have V(0) = Cn and that, by the Weak Nullstellensatz, V(C[x1, . . . , xn]) = ∅, so
∅ and Cn are closed.

As a matter of fact, it holds that V(I) = Cn if and only if I = 0. With the
leftward implication being obvious, we expand on the rightward one as we need
make use of it before long.

Lemma 1.1.8. If I ⊆ C[x1, . . . , xn] is an ideal, then V(I) = Cn if and only of
I = 0.

Proof. We already observed that V(0) = Cn.

The converse will be proven by induction on n. We will show that only the
zero polynomial can vanish on the entirety of Cn. If n = 1, then any non-zero
f ∈ C[x] has only as many roots as is its degree, in particular, finitely many.
Hence V(I) = C enforces I = 0.

For n > 1, choose f ∈ C[x1, . . . , xn] and write f = ∑︁k
i=1 fix

i
n for polynomials

fi ∈ C[x1, . . . , xn−1]. Since f is a polynomial in one variable over C[x1, . . . , xn−1],
then under the assumption that fi(p1, . . . , pn−1) ̸= 0 for at least one i, there
are only finitely many pn ∈ C satisfying f(p1, . . . , pn) = 0. So, the only way
for every point P to be a root of f is to require that fi(p1, . . . , pn−1) = 0 for
all (p1, . . . , pn−1) ∈ Cn−1, in other words, to require that V(f1, . . . , fk) = Cn−1.
From the induction hypothesis, we get f1 = . . . = fk = 0, hence also f = 0 which
completes the proof.

It is beneficial to note that the Zariski topology indeed differs from the classical
one. To list just one of those differences, it is not Hausdorff. This can be seen
with fairly little work. Let us first label D(I) the complement of V(I) for a given
ideal I ⊆ C[x1, . . . , xn]. That is, if

V(I) = {x ∈ Cn | f(x) = 0 ∀f ∈ I},

then D(I) can be described as

D(I) = {x ∈ Cn | ∃f ∈ I f(x) ̸= 0}.

These sets, which do not have any particular denomination as far as we are aware,
are of course open in the Zariski topology. It is quite easy to see that any two
non-empty Zariski open subsets of Cn always intersect. Let I, J ⊆ C[x1, . . . , xn]
be any ideals. Notice that D(I)∩D(J) = D(IJ). By Lemma 1.1.8, V(H) = Cn

if and only if H = 0. By definition, D(IJ) = ∅ when V(IJ) = Cn and so IJ = 0.
From this, it follows that also either I = 0 or J = 0. The conclusion is that
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D(I) ∩ D(J) = ∅ only in case either open set is empty. So, the Zariski topology
on Cn cannot be Hausdorff.

In the rare case that ‘not being Hausdorff’ is not quite enough to drown any
topological intuition dear readers possess, the following behaviour open sets in
the Zariski topology exhibit and those in the classical topology, of course, do not,
will surely finish the job. Despite being counter-intuitive, the fact we are about
to reveal is indispensable for the theory of toric varieties as becomes transparent
in the very start of Section 1.3.

Proposition 1.1.9. Let V := V(f1, . . . , fk) and for a non-zero g ∈ C[V ] denote
Vg := V \ V(g) = {P ∈ V | g(P ) ̸= 0}. Then, there is a homeomorphism with
respect to the Zariski topology

Vg ↔ W := V(f1, . . . , fk, 1 − xn+1g).

Proof. The natural map to consider is

π : W → Vg,

(p1, . . . , pn+1) ↦→ (p1, . . . , pn).

We show that it is bijective. If (p1, . . . , pn) = (r1, . . . , rn) ∈ Vg, then also pn+1 =
rn+1 because

pn+1 = 1/g(p1, . . . , pn) = 1/g(r1, . . . , rn) = rn+1

so π is injective. Also, the pre-image of every P := (p1, . . . , pn) ∈ Vg is the point
(p1, . . . , pn, 1/g(P )) ∈ W because g(P ) ̸= 0 by the definition of Vg. Thus, π is
surjective.

To show that π is a homeomorphism, we first recall one more classical result –
polynomial maps are continuous in the Zariski topology. Since π is a continuous
map which is bijective, it remains to show that π is open. Let U ⊆ W be open,
we want that π(U) ⊆ Vg is open. This is equivalent to π(U) being open in V as
Vg is also open in V .

Since U is open, there exist polynomials g1, . . . , gl such that U = W \V(g1, . . . , gl).
Define

g̃i(x1, . . . , xn) := gi(x1, . . . , xn, 1/g(x1, . . . , xn)).
Let R ∈ N be large enough so that gRg̃i ∈ C[x1, . . . , xn] for all i ≤ l.

We are going to prove that π(U) = V \ V(gRg̃1, . . . , g
Rg̃l) =: X.

If P ∈ π(U), then (P, 1/g(P )) ∈ U so g(P ) ̸= 0, thus gR(P ) ̸= 0, g̃i(P ) is well-
defined and g̃i(P ) = gi(P, 1/g(P )) ̸= 0 for all i = 1, . . . , l. Since U ⊆ W , also
fi(P ) = 0 for all i = 1, . . . , k. In words, all fi’s vanish at P and g plus all g̃i’s do
not vanish at P . Hence, P ∈ X and π(U) ⊆ X.

The argument for the inverse direction is very similar. If P ∈ X, then gR(P ) ̸= 0,
implying g(P ) ̸= 0, and g̃i(P ) ̸= 0 for all i. Combination of these two inequalities
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ensures that also gi(P ) ̸= 0 for all i ≤ l. Finally, all the fi’s vanish at P . Put
together, the immediate conclusion is that (P, 1/g(P )) ∈ U and P ∈ π(U).

This finishes the proof as X = V \ V(gRg̃1, . . . , g
Rg̃l) is open in V .

The construction of Vg can be extended to any finite number of polynomials. The
proof that there is a homeomorphism between

{P ∈ Cn | fi(P ) = 0 ∧ gj(P ) ̸= 0 ∀i ≤ k, j ≤ l}

and
V(f1, . . . , fk, 1 − xn+1g1, . . . , 1 − xn+lgl)

follows immediately by induction on l from Proposition 1.1.9.

1.1.3 Local Rings And Tangent Spaces

As is mostly the case in geometry, smooth points on objects are defined using
tangent spaces at those points. In case of affine algebraic sets, it is beneficial to
define these purely algebraically using a construction styled local ring at a point.
To that end, let us recall a few more results and definitions.

Definition 1.1.10 (Multiplicative Set). A subset S of a commutative ring R is
called multiplicative if 0 /∈ S, 1 ∈ S and a, b ∈ S =⇒ a · b ∈ S.

Multiplicative sets are useful to us for two reasons. First, they serve well for
localization, as they do not contain 0 and are closed under multiplication. Second,
given an algebraic set V and a point P ∈ V , the set

SP := {f ∈ C[V ] | f(P ) ̸= 0}

is multiplicative. Indeed, 1(P ) ̸= 0 and if f, g ∈ SP do not vanish at P , neither
does their product. What shall we use this set for? You have guessed it. We
shall localize C[V ] at it.

Definition 1.1.11 (Local Ring at a Point). Let V be an affine algebraic set and
P ∈ V . With set SP defined as above, we denote OV,P := C[V ]SP

, the localization
of C[V ] at SP , and call it the local ring of V at P .

It follows from results in commutative algebra that if V is irreducible, and C[V ]
ergo an integral domain, C[V ]SP

is a subring of the field of fractions of C[V ], which
is often denoted C(V ). In other words, using the definition of SP for a particular
point P ∈ V , OV,P = C[V ]SP

consists of equivalence classes of expressions f/s
where f, s ∈ C[V ] and s(P ) ̸= 0 modulo the relation f/s ∼ g/t ⇐⇒ ft−gs = 0.
For a general algebraic set, relation ∼ must be subtly redefined. We will not go
into more detail here because toric varieties are by definition irreducible and
reducible algebraic sets thus lose all relevance to our purpose. When talking
about local rings in the future, we shall limit ourselves to affine varieties.
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You would be right to call us out on the unjustified naming used in the last
definition. It is not immediately obvious that OV,P is a local ring for all affine
varieties V and all points P ∈ V . We are going to make certain it is.

Proposition 1.1.12. Let V be an affine variety and P ∈ V . Then, OV,P is
a local ring, that is, it has a unique maximal ideal. Moreover, if we label the
maximal ideal mV,P , then

mV,P = {q ∈ OV,P | q(P ) = 0}.

Proof. Let us first show that mV,P is a maximal ideal. Clearly, mV,P ⊊ OV,P .
As in the proof of Proposition 1.1.6, we can show what OV,P/mV,P ≃ C. The
projection OV,P ↠ C is canonically given by f/g ↦→ f(P )/g(P ) since g(P ) ̸= 0
by definition of OV,P . Its kernel is mV,P and its image the entirety of C. First
Isomorphism Theorem takes care of the rest.

For contradiction, suppose that I ⊊ OV,P is a maximal ideal different from mV,P .
In particular, there exists an element r ∈ I such that r(P ) ̸= 0. We write
r = f/s for some f, s ∈ C[V ]. We have f(P ) ̸= 0 since r(P ) ̸= 0, and s(P ) ̸= 0
by definition. This means that r is invertible in OV,P , its inverse being s/f which
is defined at P as f(P ) ̸= 0. It follows that 1 ∈ I, a contradiction.

Before we move on, we mention one specific localization which we feel closer to
more so than to the others. Remember Proposition 1.1.9? We bet you do. If
V is an affine algebraic set and f ∈ C[V ], then the set

Sf := {1, f, f 2, . . .}

is multiplicative. We will denote the localization C[V ]Sf
by C[V ]f and call it the

localization of C[V ] at f . If V is in addition irreducible, then

C[V ]f = {g/fk | g ∈ C[V ] ∧ k ∈ N0}.

Even better, it actually turns out irreducibility also entails the convenient relation
Specm(C[V ]f ) = Vf as we proceed to formally prove.

Lemma 1.1.13. If V := V(f1, . . . , fk) is an affine variety, f ∈ C[V ] and W :=
V(f1, . . . , fk, 1−xn+1f), then C[W ] ≃ C[V ]f . Consequently, Specm(C[V ]f ) = Vf .

Proof. We already know that W is homeomorphic to Vf via the projection map
π : W → Vf sending (p1, . . . , pn+1) to (p1, . . . , pn). We show that there exists an
isomorphism C[V ]f ≃ C[W ] of C-algebras.

Because we have ‘xn+1 = 1/f ’ in W , the natural candidate is φ : g/f l ↦→ gxl
n+1.

Scalars in C[V ]f are fractions c/1 for c ∈ C and φ(c/1) = c, hence φ sends scalars
to scalars. We compute

φ

(︄
g

f l
+ h

fm

)︄
= φ

(︄
gfm + hf l

fm+l

)︄
= gfmxm+l

n+1 + hf lxm+l
n+1 = φ

(︄
g

f l

)︄
+ φ

(︄
h

fm

)︄
.
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Compatibility of φ with multiplication is proved similarly.

We check φ is well-defined. Suppose g/f l = h/fk and, without loss of generality,
l ≥ k. Then, gfk = hf l and so g = hf l−k. We obtain

g(P̃ )pl
n+1 = h(P̃ )f l−k(P̃ )pl

n+1 = h(P̃ )pk−l
n+1p

l
n+1 = h(P̃ )pk

n+1

for all P = (P̃ , pn+1) ∈ W as we wanted.

It remains to see that φ is injective and surjective. If g ∈ C[W ], write g as

g(x1, . . . , xn+1) =
d∑︂

i=1
gi(x1, . . . , xn)xi

n+1

where d := degxn+1 g. Then, we have

φ

(︄
d∑︂

i=1

gi

f i

)︄
=

d∑︂
i=1

φ

(︄
gi

f i

)︄
=

d∑︂
i=1

gix
i
n+1 = g.

As for injectivity, it is probably easiest to prove kerφ = 0. Suppose it is
not so. Then, we have φ(g/f l) = 0 for some non-zero g ∈ C[V ]. Meaning,
gxl

n+1(P ) = 0 for all points in W . However, every point P ∈ W by definition sat-
isfies pn+1 = 1/f(p1, . . . , pn) ̸= 0 so we must have g(p1, . . . , pn) = 0 for all points
(p1, . . . , pn) ∈ Vf . This means that gf(p1, . . . , pn) = 0 for all (p1, . . . , pn) ∈ V . V
is an affine variety and f ̸≡ 0 on V but gf ≡ 0 on V which means that g ≡ 0 on
V . In other words, g ∈ I(V ), hence g is 0 in C[V ], which is a contradiction.

Now that we know that C[W ] ≃ C[V ]f , we also know

Specm(C[V ]f ) = Specm(C[W ]) = W ≃ Vf .

With local rings at points and their maximal ideals at our disposal, we are nearing
the end of the section. We finish strong by defining smooth points and dimensions
of affine varieties.

Definition 1.1.14 (Zariski Tangent Space). Given an affine variety V and a
point P ∈ V , we define the cotangent space of V at P as mV,P/m

2
V,P . It is a

vector space over OV,P/mV,P , which is isomorphic to C by the proof of Propo-
sition 1.1.12. Its dual, the vector space (mV,P/m

2
V,P )∗ = Hom(mV,P/m

2
V,P ,C) is

called the tangent space of V at P and denoted TPV .

This purely algebraic definition is elegant but not very useful for calculation of
tangent spaces of particular affine varieties. The following lemma provides a
better way.

Lemma 1.1.15. Let V be an affine variety, V = V(I) for some prime ideal
I ⊊ C[x1, . . . , xn], P ∈ V and f ∈ C[x1, . . . , xn]. Define

dP (f) :=
n∑︂

i=1

∂f

∂xi

(P )xi

11



and also
T := {X ∈ Cn | dP (f)(X) = 0 ∀f ∈ I}.

Then,
T ∗ ≃ mV,P/m

2
V,P .

Proof. See Hulek [2003], Theorem 3.14.

This lemma formalizes an intuitive idea that a tangent space should linearly
approximate a manifold on a neighbourhood of a chosen point. In case of affine
varieties, a function defined near a point P means a rational function regular at
P , an element of OV,P . Since linear forms vanish at the origin, we require our
rational functions to vanish at P , to lie in mV,P . We quotient out all parts that
are not linear, leaving us with mV,P/m

2
V,P .

The last tool we need to define a smooth affine variety is the concept of dimension.
Since smoothness at a point is a local property, the dimension of the local ring
seems like a good candidate. Let us recall how we can define dimensions of rings.

Definition 1.1.16 (Krull Dimension). For a commutative ring R, we define its
Krull dimension to be the supremum across the lengths of all chains of prime
ideals in R. More specifically, if

P0 ⊊ P1 ⊊ . . . ⊊ Pk

is a strictly ascending chain of prime ideals, we define its length to be k. Now,
for a specific prime ideal P ⊊ R, its height is the supremum of the lengths of
all chains of prime ideals contained in P . The Krull dimension of R is then the
supremum of the heights of all prime ideals in R. We denote it simply, dimR.

Even though the construct of Krull dimension might seem overly dissociated from
the ‘typical’ definition of dimension of a vector space or a manifold, it is actually a
natural extension. It is carefully defined so that polynomial rings have dimension
equal to the number of variables. Indeed, the longest chain of prime ideals one
can get in a polynomial ring K[x1, . . . , xn], where K is an arbitrary field, is for
instance

(0) ⊊ (x1) ⊊ (x1, x2) ⊊ . . . ⊊ (x1, . . . , xn).
The choice of the generating variables is of course arbitrary. This construction
works as longs as the k-th ideal in the chain is generated by precisely k − 1
variables. The fact that no longer chain can be produced requires some work to
prove and distrustful readers should consult for instance Thierry and Lombardi
[2005] for a relatively simple proof. Do notice that the way we have created the
chain above is akin to how one can produce a chain of length n of subspaces of a
vector space with basis {x1, . . . , xn}.

Time is ripe to a define a smooth point of V and the dimension of V at any point.
We are going to accomplish it in one breath.

12



Definition 1.1.17 (Smooth Affine Variety). Let V be an affine variety. The
dimension of V at P , denoted simply dimP V , is the Krull dimension of OV,P . A
point P ∈ V is smooth if

dimTPV = dimP V,

where dimTPV denotes the dimension of TPV as a vector space over C. A point
which is not smooth is called singular. Finally, V is also dubbed smooth if its
every point is smooth and singular otherwise.

Now, that we know what a smooth point is, we would like some convenient way
to check smoothness if we know the dimension of the affine variety. The following
statement is an almost immediate corollary of Lemma 1.1.15.

Corollary 1.1.18 (Exercise 1.0.9 in Cox et al. [2011]). Let V := V(I) where
I = (f1, . . . , fk) for adequate f1, . . . , fk ∈ C[x1, . . . , xn]. A point P ∈ V is smooth
if and only if the Jacobian matrix

JP (f1, . . . , fk) := (∂ifj(P ))i=1,...,n;j=1,...,k

has rank n− dimP V .

Proof. First of all, note that, thanks to Lemma 1.1.15,

TPV = {X ∈ Cn | dP (f)(X) = 0 ∀f ∈ I}
= {X ∈ Cn | dP (f1)(X) = dP (f2)(X) = . . . = dP (fk)(X) = 0}.

The proof is based upon the fact that

TPV = ker JP (f1, . . . , fk).

Indeed, we have at dP (fi)(X) = ∇fi(P )XT where ∇fi is the row vector of par-
tial derivatives (∂1fi, . . . , ∂nfi) and X ∈ Cn is a point in Cn identified with
the corresponding row vector. The space TPV is then defined by the set of
equations ∇fi(P )XT = 0. However, that is precisely the space determined by
JP (f1, . . . , fk)XT = 0.

From linear algebra, we know that

dim(ker JP (f1, . . . , fk)) = n− rank JP (f1, . . . , fk).

Denote d := dimP V . If rank JP (f1, . . . , fk) = n− d, then

dimTPV = dim(ker JP (f1, . . . , fk)) = n− (n− d) = d.

Conversely, if dimTPV = d, then the same calculation gives rank JP (f1, . . . , fk) =
n− d.

Remark. We should mention that the inequality dimP V ≤ dimTPV always
holds. To give a not absolutely rigorous overview of the reason, do note that,
by the preceding corollary, dimP V = n− rank JP where JP is the corresponding
Jacobian matrix if P is a smooth point of V . If partial derivatives of the defining
polynomials of V vanish, the rank of JP decreases and so the dimension of TPV
increases because dimTPV = dim(ker JP ) = n − rank JP . Hence, dimP V is
always at most dimTPV .
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It is not always easy to determine the dimension of an affine variety. Fortunately,
the irreducibility of an affine algebraic set equates the dimension of local rings
at a point across all points in the set. For a proof and a careful explanation, see
Atiyah [2015], Chapter 11. Hence, to compute the dimension of an affine variety,
it is enough to compute the Krull dimension of its coordinate ring, which is often
a little bit easier to do.

As will become apparent especially in the second chapter, we care a considerable
bunch about smoothness. In light of the last definition, we can give an elucidating
example as to why we do not want to consider bijective morphisms as isomor-
phisms of affine varieties. It just so happens that there exist bijective morphisms
between smooth and singular varieties.

Example 1.1.19. Let V := V(y − x) and W := V(y2 − x3). Firstly, note that
both y−x and y2−x3 are irreducible so I(V(y−x)) = (y−x) and I(V(y2−x3)) =
(y2 − x3). Also, both of these ideals are prime because they are generated by a
single irreducible polynomial. This means that V and W are affine varieties.

The map given by (t, t) ↦→ (t2, t3) for z ∈ C is a bijective morphism V → W .
Clearly, (t, t) ∈ V and (t2, t3) ∈ W for all t ∈ C. It is injective, because s2 = t2

implies s = ±t and applying s3 = t3 gives us s = t. For (x, y) ∈ W , we have
y2/x2 = x3/x2 = x. It follows that (t, t) ↦→ (t2, t3) is also surjective because the
pre-image of every non-zero point (x, y) ∈ W is the point (y2/x2, y2/x2) ∈ V and
the pre-image of (0, 0) ∈ W is of course (0, 0) ∈ V .

We have C[V ] = C[x, y]/(y − x) = C[x] and C[W ] = C[x, y]/(y2 − x3). We
will show that these C-algebras are not isomorphic. For instance, we know from
basic algebra course that C[x] is a principal ideal domain. However, C[W ] is not
because for instance the ideal (x, y) where x and y denote the cosets of x and y
is easily seen not to be principal. Hence, we have C[V ] ̸≃ C[W ] so V ̸≃ W .

To give a more geometric argument as to why we do not want to consider V and
W to be ‘the same’ in any meaningful sense, we talk about smoothness. You see,
V is smooth but W is not. The problematic point is (0, 0). If we denote f(x, y) :=
y − x and g(x, y) := y2 − x3, we have (∂xf(0, 0), ∂yf(0, 0)) ̸= 0 but ∂xg(0, 0) =
∂yg(0, 0) = 0. Ergo, dimT(0,0)V = 1 = dim(0,0) V as dimC[V ] = dimC[x] = 1 so
V is smooth at (0, 0). We could prove that dim(0,0) W = 1 as well but we do not
need to because it is definitely not zero. Then, Corollary 1.1.18 can be used to
conclude that (0, 0) is not a smooth point of W because rank J(0,0)(g) = 0.

Since the entire second chapter of the thesis deals with the problem of singular
points on toric varieties, our notion of isomorphism must preserve the smoothness
of points. We have not yet proven that it does but we shall, further down the
line.
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1.2 Cones

Actually, the title of this section should sound ‘Strongly Convex Rational Poly-
hedral Cones’ but advanced marketing techniques suggest that titles should be
short and punchy. We are not sure about the punchy part, so we have at least
kept it short. This section loosely follows Cox et al. [2011], §1.2. and Fulton
[1993], Section 1.2. Many omitted proofs were added.

We believe you wonder what exactly are we doing here? How do cones connect
to toric varieties, or even affine algebraic sets in general? The connection indeed
exists but is not at all obvious. We bid you hold your breath for a while longer as
this section only deals with the necessary technical details and offers a glassful of
geometric intuition in order to make the transition to toric varieties as painless
as possible.

We shall start with a few definitions. Not exactly of the cone just yet since they
say you should save the best for last.

Definition 1.2.1 (Lattice). A free commutative group of a finite rank r ∈ N,
hence isomorphic to Zr, is called a lattice.

Each lattice N and its dual M := Hom(N,Z) give naturally rise to a mapping

⟨·, ·⟩ : M ×N → Z,

where ⟨m,n⟩ := m(n). This mapping also canonically identifies the lattice N with
Hom(M,Z) via ⟨n,−⟩ : M → Z and is thus, by definition of a homomorphism,
bilinear. We shall make use of this duality and regard ⟨·, ·⟩ as either a mapping
M ×N → Z or N ×M → Z. It follows from the identification N = Hom(M,Z)
that ⟨m,n⟩ = ⟨n,m⟩ for all n ∈ N,m ∈ M .

By scalar extension to the field of real numbers, a lattice N gives rise to a real
vector space with basis formed by its generators. In symbols, if N is generated
by n1, . . . , nr, then we define

NR := {a1n1 + . . .+ arnr | ai ∈ R}.

If M is the lattice dual to N , then MR is the real vector space dual to NR, hence
⟨·, ·⟩ is naturally extended to a mapping from MR ×NR to R.

You might wonder why we bother with lattices and scalar extensions and not
simply talk about Zr and Rr. Whilst this is not really an answer, the reason is
strictly formal and will become apparent when we meet toric varieties with their
respective groups of characters and one-parameter subgroups.

To make our definition of a polyhedral cone very geometric and natural, we shall
make use of polytopes. Polytopes are generally defined as convex hulls of finite
sets of points in Rn. Most prominent examples are probably two- and three-
dimensional polytopes, typically styled convex polygons and convex polyhedra,
respectively. For formal reasons, we extend the traditional definition to the real
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vector space NR and formulate our definitions accordingly. Hence, to us a polytope
denotes a set

P = Conv(S) :=
{︄∑︂

s∈S

λss | λs ∈ R, λs ≥ 0 and
∑︂
s∈S

λs = 1
}︄

where S ⊆ NR is finite.

Each polytope then defines a convex polyhedral cone in the following way. For
simplicity, suppose there is a hexagon sitting somewhere in R3. Choose an arbi-
trary point (typically the origin) which does not lie in it and draw rays starting
in this chosen point through each of the points of the hexagon. This process
yields a sort of unbounded prism in R3 tipped at the chosen point. These prisms
are exactly what we shall call convex polyhedral cones in this text. Do note that
convex polyhedral cones are never cones in the widespread meaning of the word
since no polytope with a finite number of vertices is ever circular. Despite this
fact, we will refer to convex polyhedral cones simply as cones, owing to a need for
brevity.

Now, for the formalities. As the previous paragraph was meant to make intuitive,
we replace each point of a given polytope P with a ray starting at the origin and
passing through that point. This is as simple as replacing a point p ∈ P with the
line {t · (p, 1) | t ≥ 0}. Hence, we define

C(P ) := {t · (p, 1) | p ∈ P, t ≥ 0}

and call the set a convex polyhedral cone of P .

Before we move on to proving some important properties of cones (meaning con-
vex polyhedral cones), we require a simpler description. Notice that if P is a
subset of NR, then C(P ) is a subset of NR × R which, however, is also a real
vector space of dimension one higher. If P = Conv(S) for a finite S ⊆ NR, then

C(P ) =
{︄(︄∑︂

s∈S

tλss, t

)︄
| t ≥ 0, λs ≥ 0 and

∑︂
s∈S

λs = 1
}︄

=
⎧⎨⎩ ∑︂

(s,1)∈S×{1}
λ′

s(s, 1) | λ′
s ≥ 0

⎫⎬⎭
(1.2.1)

because the condition ∑︁s∈S λs = 1 becomes irrelevant when the sum is multiplied
by a scalar t spanning [0,∞).

Indeed, the description (1.2.1) not only provides a more succinct definition of a
cone but also summarizes a geometric notion. Instead of defining cones through
polytopes, we could have decided to do so by taking all the ‘positive’ linear
combinations of a finite set of rays starting at the origin.

In the light of (1.2.1), we generally define a convex polyhedral cone as follows.
Definition 1.2.2 (Convex Polyhedral Cone). For a finite set S ⊆ NR, we define

Cone(S) :=
{︄∑︂

s∈S

λss | λs ≥ 0
}︄

⊆ NR.

and call it the convex polyhedral cone, or the cone for short, generated by S.
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The underlying polytope is then obtained by simply ‘forgetting’ one coordinate,
with respect to a chosen basis of NR, and allowing only convex combinations.

When studying geometric objects, the notion of duality is often of great import.
In the case of cones, their duals, which we are about to define and dedicate the
next few pages to, are key components in the construction of toric varieties.

Definition 1.2.3 (Dual Cone). Let S ⊆ NR be finite and σ := Cone(S). The
dual cone to σ is defined as

σ∗ := {m ∈ MR | ⟨m, s⟩ ≥ 0 ∀s ∈ σ}.

We know state and proof a specific version of a classical result in convex geometry
called the hyperplane separation theorem, which says that any two disjoint closed
convex sets can be separated by a hyperplane. As we will promptly explain, its
version for convex polyhedral cones can be stated as such.

Lemma 1.2.4 (Separation Theorem for Cones). Let σ be a cone and v ∈ NR a
point lying outside of σ. Then, there exists m ∈ σ∗ such that ⟨m, v⟩ < 0.

Before the proof, we elucidate how elements of dual cones actually define hyper-
planes which delimit the original cone in the space. Formally, by a hyperplane in
NR, we mean a subset

{x ∈ NR | ⟨m,x⟩ = cm} ⊆ Rn

for some fixed m ∈ MR and cm ∈ R. If we identify NR and MR with Rr, then
⟨·, ·⟩ becomes the standard dot product and a hyperplane is indeed a subspace of
codimension one. In particular, for a chosen m ∈ MR, we denote

Hm := {x ∈ NR | ⟨m,x⟩ = 0}.

Given a cone σ, we call Hm a supporting hyperplane of σ if ⟨m, s⟩ ≥ 0 ∀s ∈ σ.
Notice that, by definition, Hm is a supporting hyperplane if and only if m ∈ σ∗.
After this short venture into hyperplanes, we need a well-known result from linear
algebra known as Farkas’ lemma.

Lemma 1.2.5 (Farkas’ lemma). Let A ∈ Rn×s and b ∈ Rn. Then exactly one
of the following assertions holds:

1. There exists an x ∈ Rs such that Ax = b and x ≥ 0.

2. There exists a y ∈ Rn such that AT y ≥ 0 and bT y < 0.

Here, x ≥ 0 means xi ≥ 0 for all i ≤ s.

Proof. For a detailed proof and an interesting account of the usage of this lemma
in linear programming, consult Matoušek and Gärtner [2007], pages 81-104.
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We trust you think “Wait, what?”. If you do, it is a very natural response. We
take upon ourselves the educational challenge of translating this lemma to the
theory of cones. The translation will itself be the proof of Lemma 1.2.4 as it
will become apparent that the two lemmata actually say exactly the same thing.

Fix some S := {u1, . . . , us} ⊆ NR and let σ := Cone(S). To shake hands with
linear algebra, we identify MR ≃ NR ≃ Rr for some r ∈ N. Let

A := (u1 | u2 | · · · | us) ∈ Rn×s,

that is, the i-th column of A is ui. Notice that by definition

Cone(u1, . . . , us) = {Ax | x ≥ 0}.

Now, choose some point v /∈ σ. In the notation of Farkas’ lemma, b := v. Since
b /∈ σ and σ = {Ax | x ≥ 0}, there is no x ≥ 0 such that Ax = b. So, the
assertion (2) in Farkas’ lemma must hold. We get an existence of a point y ∈ Rn

satisfying AT y ≥ 0 and bT y < 0. What does it mean in the cone tongue? Well,
AT y means that y ∈ σ∗ because

AT y =

⎛⎜⎜⎝
uT

1 y
...

uT
s y

⎞⎟⎟⎠ =

⎛⎜⎜⎝
⟨y, u1⟩

...
⟨y, us⟩

⎞⎟⎟⎠ .
If ⟨y, ui⟩ ≥ 0 for all i and ui generate σ, then ⟨y, u⟩ ≥ 0 for all u ∈ σ as u is a
non-negative linear combination of the ui. Finally, bT y = ⟨y,b⟩ < 0 so y ∈ σ∗ is
the sought-after element m from Lemma 1.2.4.

We now derive consequences of Lemma 1.2.4 which will help us greatly when
we use cones to build toric varieties. The following statements are, up to some
exceptions, due to Cox et al. [2011], Section 1.2. Missing proofs were added.

Lemma 1.2.6 (Dualing ’Round And ’Round). Let σ ⊆ NR be a cone. Then,
(σ∗)∗ = σ.

Proof. Let u ∈ σ. Then, ⟨m,u⟩ ≥ 0 ∀m ∈ σ∗. Since ⟨m,u⟩ = ⟨u,m⟩, this implies
u ∈ (σ∗)∗.

For the other direction, suppose u /∈ σ. Then, by Lemma 1.2.4, we find an
m ∈ σ∗ such that ⟨m,u⟩ < 0. This, however, means that u /∈ (σ∗)∗ because
⟨m,u⟩ ≥ 0 does not hold for every one m ∈ σ∗.

The next important step for us is to prove that σ∗ is also a convex polyhedral
cone. For that we need the concept of a face.

Definition 1.2.7 (Face of a Cone). Let σ ⊆ NR be a cone. Its face is any subset
H ∩ σ ⊆ σ where H is a supporting hyperplane of σ.

Lemma 1.2.8 (Properties of Faces). Let σ be a cone. Then,

1. A face of σ is a cone.
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2. Intersection of faces is a face.

3. A face of a face is a face.

Proof.

1. Indeed, letHm,m ∈ MR be a supporting hyperplane of σ := Cone(u1, . . . , us).
The face Hm ∩σ is then a cone generated by those ui which lie in Hm. This
is due to linearity of ⟨·, ·⟩ as

⟨m,u⟩ =
⟨︄
m,

s∑︂
i=1

λiui

⟩︄
=

s∑︂
i=1

λi ⟨m,ui⟩

for u ∈ σ, λi ∈ R. In particular, σ has only finitely many faces.

2. If m,m′ ∈ σ∗, then (Hm ∩ Hm′) ∩ σ = Hm+m′ ∩ σ. Indeed, by linearity
of ⟨·, ·⟩, we have m,m′ ∈ σ∗ =⇒ m + m′ ∈ σ∗. Since ⟨m,u⟩ ≥ 0 and
⟨m′, u⟩ ≥ 0 for every u ∈ σ, also

⟨m+m′, u⟩ = ⟨m,u⟩ + ⟨m′, u⟩ = 0 ⇐⇒ ⟨m,u⟩ = 0 ∧ ⟨m′, u⟩ = 0,

so indeed (Hm ∩ Hm′) ∩ σ = Hm+m′ ∩ σ. Because m + m′ ∈ σ∗, Hm+m′ is
supporting, so we are done.

3. We note that if Hm is a supporting hyperplane of σ, then Hm is also sup-
porting of every H ′

m ∩ σ where Hm′ is another supporting hyperplane of σ.
The rest follows similarly as in (b), given that a face of H ′

m ∩σ assumes the
shape Hm ∩ (Hm′ ∩ σ) = Hm+m′ ∩ σ.

The span of a cone σ is the linear subspace Rσ = σ + (−σ) ⊆ NR. We call the
dimension of Rσ, the dimension of the cone σ itself. Faces of codimension one
are called facets. The following three propositions and significant parts of their
proofs are due to Fulton [1993], Section 1.2.

Proposition 1.2.9. Each proper face τ of σ, that is, τ ̸= σ, is contained in a
facet.

Proof. If we prove that each face of codimension at least two is contained in a
face of higher dimension, the result follows.

Without loss of generality, suppose σ = Cone(u1, . . . , us) spans a vector space V
of dimension s. Otherwise consider a subset {v1, . . . , vn} ⊆ {u1, . . . , us} which
spans V . If Hm is a supporting hyperplane, then the face τ := Hm ∩ σ spans
a subspace W of V . Denote by π : V ↠ V/W the canonical projection. If
W = span(ui1 , . . . , uik

) for adequate {i1, . . . , ik} ⊊ {1, . . . , s} and k ≤ s − 2,
we view V/W as the span of {uj1 , . . . , ujs−k

} for {j1, . . . , js−k} the complement of
{i1, . . . , ik}. The projection π then simply ‘nullifies’ the coordinates whose indices
are not in {j1, . . . , js−k}.

19



Thus, the hyperplane Hm := {x ∈ V/W | ⟨m,x⟩ = 0} is a supporting hyperplane
for π(σ). So, all the π(ui) lie on one side of Hm. We rotate Hm inside V/W so
that all π(ui) still lie on one side but π(ujl

) lies directly on it for some l ≤ s− k.
Since the rotated hyperplane is still supporting, this gives us the existence of an
m′ ∈ σ∗ such that τ ⊆ Hm′ but also ujl

∈ Hm′ . This means that σ∩Hm′ is a face
one dimension higher than τ which contains τ .

Remark. Notice that if τ is a face of codimension two, then V/W is a plane and
there are exactly two lines H ′ from the proof of the previous proposition. Hence
a face of codimension two lies in the intersection of two facets. This observation
drives the proof of the following corollary.

Corollary 1.2.10. Each face is the intersection of facets containing it.

Proof. If τ is a face of codimension larger than two, then by Proposition 1.2.9
it lies in some facet ρ. By induction, τ is an intersection of facets of ρ, which are
themselves an intersection of two facets of σ by the previous remark. So, τ is an
intersection of facets of σ.

Proposition 1.2.11. The boundary of a cone σ is the union of its facets.

Proof. Let τ := Hm ∩ σ be a facet of σ. Since ⟨m,u⟩ < 0 for each point u ∈ NR
lying across from σ with respect to Hm, there are points lying outside of σ which
arbitrarily close to τ . Interior points of σ satisfy ⟨m,u⟩ > 0, so, for the same rea-
son, there are interior points arbitrarily close to τ . Hence, τ lies in the boundary
of σ.

In the other direction, suppose u ∈ ∂σ and take a sequence vi → u with vi /∈ σ.
By Lemma 1.2.4, there are points mi ∈ σ∗ such that ⟨mi, vi⟩ < 0. Note that the
mi can be chosen so that ∥mi∥ = 1 because ⟨mi, vi⟩ < 0 implies ⟨mi/∥mi∥, vi⟩ =
∥mi∥−1 ⟨mi, vi⟩ < 0. Because a sphere of radius 1 is a compact set, the sequence
(mi)∞

i=1 has a converging subsequence. Without loss of generality, we assume that
mi → m. Since σ∗ is closed, m ∈ σ∗, ⟨m,u⟩ = 0 and u lies in the face σ∩Hm.

The last proposition allows us to describe a convex polyhedral cone σ as the
intersection of the half-spaces determined by its facets. This result connects to
a traditional result from convex analysis concerning the expression of polytopes
given as convex hulls of finite sets of points in terms of intersections of finitely
many half-spaces. This result does not serve us well for two reasons: cones are
not polytopes as we defined them and we do not need the generality provided. It
would require arguably more work to translate this result into our setting than
to prove it directly.

Notice that if τ is a facet of σ, then there is a vector m ∈ σ∗ unique up to scalar
multiplication such that Hm ∩ σ = τ . This is true because τ spans a subspace of
V , the space spanned by σ, of codimension one – a hyperplane. For each facet
τ , we denote this unique vector mτ . Then, the following and hopefully not too
surprising result holds.
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Proposition 1.2.12. If σ spans NR but σ ̸= NR, then σ is the intersection of
half-spaces determined by Hτ := Hmτ , that is

σ =
⋂︂

τ facet of σ

{v ∈ V | ⟨mτ , v⟩ ≥ 0}.

There is one little trick we must use in the proof of the above proposition. For
two subsets A,B ⊆ Rn, their distance is defined as

d(A,B) := inf{d(a, b) = ∥a− b∥ | a ∈ A, b ∈ B}.

Now, the case interesting for us is A = {a} and B = σ, a convex polyhedral
cone. We claim that there exists a point b ∈ ∂σ which is closest to a. Let
C := ∂σ ∩ B be the intersection of ∂σ with a ball centred at the origin. If B is
chosen large enough, then d(a, C) = d(a, ∂σ). Since both {a} and C are compact,
the continuous function (a, u) ↦→ d(a, u) : {a} × C → R+ attains minimum for
some point b ∈ C.

Proof of Proposition 1.2.12. Clearly, σ lies in the intersection above as each of
the hyperplanes Hτ is supporting.

Suppose a point u lies in the intersection of half-spaces but not in the cone σ.
Choose the point v ∈ ∂σ closest to u. By Proposition 1.2.11, v lies in some
facet τ . Then, ⟨mτ , v⟩ = 0 and ⟨mτ , u⟩ < 0 as u lies on the opposite side of σ
with respect to Hτ . This is a contradiction.

All this work bears fruit, as we reach a result about cones which is of utmost
importance in their connection to toric varieties.

Theorem 1.2.13 (Dual Cone Is a Cone). If σ is a convex polyhedral cone, then
σ∗ is a convex polyhedral cone. Moreover, if σ spans NR, then σ∗ = Cone({mτ |
τ a facet of σ}).

Proof. First of all, recall that σ has only finitely many faces so the number of
facets is also finite.

Suppose first that σ spans NR. Then, each of the vectors mτ lies in σ∗ trivially.
If an element m ∈ σ∗ were not a linear combination of mτ ’s with non-negative
coefficients, then we would, by Lemma 1.2.4 applied to σ∗, find u ∈ NR such
that ⟨mτ , u⟩ ≥ 0 but ⟨m,u⟩ < 0. This contradicts Proposition 1.2.12.

If σ spans a linear subspace Rσ of NR, then it is straightforward to check that σ∗

is generated by the preimages (via the canonical projection) of the generators of
the dual cone to σ inside (Rσ)∗ together with all the vectors and their opposites
in the basis of (Rσ)⊥ := {m ∈ MR | ⟨m,w⟩ = 0 ∀w ∈ W}.

We are reaching the climax of the section, with only two concepts remaining to ex-
plore. In the next section where we talk, among other things, about algebraic tori,
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there are two important lattices which give rise to characters and one-parameter
subgroups. The property of being integral (or rational for that matter) of lattices
is their defining property as geometric objects inside real vector spaces.

For everything to work out smoothly, we demand cones be rational as well. Quite
naturally, a cone is called rational if its generators belong to N (as opposed to
belonging to the real extension NR). The important observation here is, coming
directly from the construction of the generators mτ , that if σ is rational, so is σ∗.
Indeed, if τ = Hτ ∩ σ is a facet of a rational cone σ, then its generators as a cone
are also rational. The vector mτ must then either be rational or a real scalar
multiple of a rational vector, otherwise the equations ⟨mτ , u⟩ = 0 as u ranges
over the generators of τ would not hold. In the latter case, simply exchange mτ

for cmτ where c ∈ R is chosen so that cmτ is rational. Since we do not concern
ourselves with norms of generating vectors, we thus assume that mτ are always
rational.

For those affiliated, the structure of a cone looks suspiciously close to the structure
of a semigroup – having a neutral element, being closed under addition but having
no inverses. This hunch turns out to be right on target as the rational points of
cones actually do form a semigroup. Notice that the rational part of a cone, that
is σ ∩ N , is not the same as σ even if σ is itself rational. The quality of being
rational only requires the cone to be spanned by rational vectors whereas σ ∩N
are points of the lattice N lying inside σ.

Actually, the semigroups stemming from lattice points inside rational cones ex-
hibit other geometrically nice properties and are thus called affine. The defining
properties of an affine semigroup are

• commutativity,

• finite number of generators,

• ability to be embedded in some lattice N ≃ Zr.

The very last result of the section formalizes the preceding paragraphs, albeit for
dual cones, and establishes a connection which will be in the heart of the rest of
the thesis.

Proposition 1.2.14 (Gordan’s Lemma). If σ is a rational convex polyhedral
cone, then σ∗ ∩M is an affine semigroup.

Proof. The proof is taken from Fulton [1993], Section 1.2, Proposition 1.

Since σ∗ ∩ M is embedded in M and addition of vectors is commutative, it is
enough to show that it is finitely generated.

Let m1, . . . ,ms denote the generators of σ∗. Denote

K :=
{︄

s∑︂
i=1

timi | ti ∈ [0, 1]
}︄
.
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Then, K is compact and K ∩M is finite as M is discrete. We show that K ∩M
generates σ∗ ∩ M as a semigroup, in other words, every element m ∈ σ∗ ∩ M
is a Z-linear combination of elements in K ∩ M . If m ∈ σ∗ ∩ M , then, m =∑︁s

i=1 rimi for some ri ≥ 0. Factor ri as ri = zi + ti where zi are non-negative
integers and ti ∈ [0, 1]. Then, m = ∑︁s

i=1 zimi + m′ where mi ∈ K ∩ M and also
m′ = ∑︁s

i=1 timi ∈ K ∩M .

Before we march off this and on to the next section, we define one last property
our cones may have which will make them all the nicer to work with.
Definition 1.2.15 (Smooth Cone). A cone σ is called smooth if its generators
form a Z-basis of the lattice N .

1.3 Affine Toric Varieties

The time is ripe to introduce the crux of the thesis – toric varieties. In vague
terms, toric varieties are affine varieties which contain an algebraic torus. This
description is in fact not even all that vague as we will soon see. The sole
definition of affine toric varieties is really not much more complicated than this.

The section is a compilation of Cox et al. [2011], Section 1.1 and Oda [1985],
Section 1.2 spiced with a small number of short excerpts from Fulton [1993],
Section 1.3. Proofs are original unless stated otherwise.

1.3.1 Algebraic Torus

We start off with the definition of an algebraic torus. The name torus here is
used in the same sense as in Lie group theory. Algebraic torus of any dimension
is not homeomorphic, in Zariski or classical topology, to the ‘topological’ torus –
S1 × S1.
Definition 1.3.1 (Algebraic Torus). By an algebraic torus, we mean any affine
variety T isomorphic to (C∗)n which inherits the structure of a multiplicative
group from (C∗)n.
Remark. It might have struck you that we claim (C∗)n to be an affine va-
riety in the preceding definition. To justify this claim, notice that (C∗)n =
Cn \ V(x1x2 · · ·xn). Hence, backed up by Proposition 1.1.9, we identify (C∗)n

with V(1−x1 · · ·xnxn+1). For a few lines, we concern ourselves with proving that
this algebraic set is irreducible and its coordinate ring are precisely the Laurent
polynomials.
Lemma 1.3.2 (Algebraic Torus Is Irreducible). The affine algebraic set (C∗)n =
V(1 − x1 · · ·xnxn+1) is irreducible and its coordinate ring is the ring

C[x±1
1 , . . . , x±1

n ]

of Laurent polynomials.
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Proof. First of all, notice that 1−x1 · · ·xn+1 is irreducible, so I := (1−x1 · · ·xn+1)
is prime and V(I) is indeed an affine variety. Thanks to Lemma 1.1.13,
we can calculate the coordinate ring of (C∗)n as R := C[x1, . . . , xn]x1···xn . If
f/x1 · · ·xn ∈ R, then we can write f as a sum of Laurent monomials by simpli-
fying each term. So, indeed f ∈ C[x±1

1 , . . . , x±1
n ]. In the other direction, we have

C[x±1
1 , . . . , x±1

n ] ⊆ R since xi = xi/1 and x−1
i = x1 · · ·xi−1xi+1 · · ·xn/x1 · · ·xn.

We now introduce two important lattices tied to the concept of algebraic torus –
characters and one-parameter subgroups.

Definition 1.3.3 (Character). A character of an algebraic torus T is a morphism
λ : T → C∗ which is also a group homomorphism.

It turns out that the quality of being both a morphism of affine varieties and a
homomorphism of groups is severely restricting. We need to prove the following
characterization of characters.

Lemma 1.3.4 (Characterizing Characters). Let χ : (C∗)n → C∗ be a character
of (C∗)n. Then,

χ(P ) = pm1
1 · · · pmn

n

for all P = (p1, . . . , pn) ∈ (C∗)n and adequate (m1, . . . ,mn) ∈ Zn.

Proof. Since χ is a morphism (C∗)n → C∗ and we know that the coordinate ring
of (C∗)n are the Laurent polynomials, we identify χ with its defining polynomial
χ ∈ C[x±1

1 , . . . , x±1
n ]. Let

χ(x1, . . . , xn) =
d∑︂

i=−d

fix
i
n

for adequate fi ∈ C[x±1
1 , . . . , x±1

n−1]. Due to being a group homomorphism, χ
satisfies χ(zw) = χ(z)χ(w) for z, w ∈ (C∗)n. Writing out the sums, we get

d∑︂
i=−d

fi(z̃w̃)zi
nw

i
n =

⎛⎝ d∑︂
i=−d

fi(z̃)zi
n

⎞⎠⎛⎝ d∑︂
i=−d

fi(w̃)wi
n

⎞⎠
where z = (z1, . . . , zn), w = (w1, . . . , wn) and z̃, w̃ denote projections to the first
n− 1 coordinates. Comparing coefficients, we get

fi(z̃w̃) = fi(z̃)fi(w̃) ∀ − d ≤ i ≤ d and fi(z̃)fj(w̃) = 0 ∀i ̸= j. (1.3.1)

We argue that if fi ̸≡ 0, then fi cannot vanish at all points of (C∗)n−1. Suppose
fi(P ) = 0 for some P ∈ (C∗)n−1. Choose K ∈ N large enough so that g :=
xK

1 · · ·xK
n−1fi ∈ C[x1, . . . , xn−1]. Then, g also vanishes at P . By Lemma 1.1.8,

this cannot be true for all P ∈ (C∗)n−1, as (C∗)n−1 is Zariski dense in Cn−1, so
fi does not vanish everywhere on (C∗)n−1. For this reason, the second equality
in (1.3.1) necessarily means that f has only one term and can thus be written
as f(z) = fm(z̃)zm

n where fm ∈ C[x±1
1 , . . . , x±1

n−1] is also a group homomorphism
(C∗)n−1 → C∗ by the first equality in (1.3.1).
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In comes induction. If n = 1, then fm is some constant am ∈ C∗, so fm(z̃w̃) =
fm(z̃)fk(w̃) becomes just am = a2

m whence we get am = 1. In the case of n =
1, we thus arrive at the conclusion that f(z) = zm. Applying the inductive
hypothesis, we get fm(z̃) = zm1

1 · · · zmn−1
n−1 . Finally, we see that f is of the shape

f(z) = zm1
1 · · · zmn

n as desired.

For a chosen m ∈ Zn, we denote by χm the corresponding character. The previous
lemma implies that characters of (C∗)n form a group isomorphic to Zn where
χmχm′ := χm+m′ . If T is an arbitrary algebraic torus, its characters instead form
a lattice which we denote by M .

Definition 1.3.5 (One-parameter Subgroup). A one-parameter subgroup of an
algebraic torus T is a morphism λ : C∗ → T which is also a group homomorphism.

Just as a character, each one-parameter subgroup is wholly determined by a choice
of some t ∈ Zn. One-parameter subgroups are in a sense a dual concept to the
one of characters. Hopefully, the characterization of one-parameter subgroups of
(C∗)n does not come unforeseen.

Lemma 1.3.6 (Characterizing One-parameter Subgroups). If λ : C∗ → (C∗)n is
a one-parameter subgroup of (C∗)n, then

λ(z) = (zt1 , . . . , ztn)

for every z ∈ C∗ and adequate t = (t1, . . . , tn) ∈ Zn.

Proof. Notice that λ(z) = (λ1(z), . . . , λn(z)) where λi(z) : C∗ → C∗ is a one-
parameter subgroup of C∗. Since characters and one-parameter subgroups of C∗

coincide, we call out to the proof of Lemma 1.3.4 and unveil the true form of
λi, being λi(z) = zti for some ti ∈ Z. The argument is over because

λ(z) = (λ1(z), . . . , λn(z)) = (zt1 , . . . , ztn)

for t1, . . . , tn ∈ Z.

We denote λt the one-parameter subgroup given by t ∈ Zn. If we define λtλs =
λt+s we see that one-parameter subgroups of an algebraic torus T also form a
lattice. We shall name it N .

The names M and N for the lattices of characters and one-parameter sub-
groups are chosen to coincide with the terminology established in the beginning
of Section 1.2. Thanks to the description provided by Lemma 1.3.4 and
Lemma 1.3.6, we also get a reasonably explicit formula for the bilinear pairing
⟨·, ·⟩ : M ×N → Z.

Take m ∈ M and u ∈ N . The composition χm ◦ λu : C∗ → C∗ is a character of
C∗ because it is a morphism of affine varieties and also a group homomorphism.
We know that it is given by t ↦→ tl for some l ∈ Z. The reasonable choice is
⟨m,u⟩ := l.
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For correctness, we should check that ⟨·, ·⟩ coincides with the standard dot prod-
uct if T = (C∗)n. In this case, we have

(χm ◦ λu)(t) = χm(tu1 , . . . , tun) =
n∏︂

i=1
tmiui = t

∑︁n

i=1 miui .

so indeed ⟨m,u⟩ = ∑︁n
i=1 miui.

We need two more results about tori before we finally define an affine toric variety.
The first concerns images of tori under morphisms.

Proposition 1.3.7. Let T1, T2 be algebraic tori. Then,

1. If Φ : T1 → T2 is a morphism which is also a group homomorphism, then
Φ(T1) is an algebraic torus which is closed in T2.

2. If H is both a subvariety and a subgroup of T1, then H is an algebraic torus.

Proof. See Humphreys [1975], Section 16.

The second result, which becomes of importance later on when we discuss con-
structions of affine toric varieties states that linear maps given by the action of
an algebraic torus T can be diagonalized simultaneously for all t ∈ T .

Before we proceed, we elucidate what we mean by ‘linear action’.

Definition 1.3.8 (Algebraic Action). Let V be an affine variety and T an alge-
braic torus. We call a map φ : T × V → V an algebraic action of T on V if the
following is satisfied.

• φ is polynomial.

• φ(1T , P ) = P for all P ∈ V where 1T = (1, . . . , 1) ∈ T is the identity
element of T .

• φ(t1, φ(t2, P )) = φ(t1t2, P ) for all t1, t2 ∈ T, P ∈ V .

In the special case when V is a finite-dimensional complex vector space, we call
φ linear if φ(t,−) : V → V is linear for all t ∈ T . We typically denote φ(t, P ) by
t · P .

Now that we understand one another, consider the linear action of T on a finite-
dimensional complex vector space W .

Given an element m from the character lattice M , we denote

Wm := {w ∈ W | t · w = χm(t)w ∀t ∈ T}.

Really, Wm is the space of common eigenvectors of linear maps t · − : W → W
with eigenvalue χm(t). We need the following result.
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Proposition 1.3.9. If T is an algebraic torus, M its character lattice and W a
complex vector space, then

W =
⨁︂

m∈M

Wm.

Proof. See Springer [2008], Theorem 3.2.3.

The lattice N of one-parameter subgroups of an algebraic torus T provides a
canonical isomorphism N ⊗ZC∗ ≃ T by u⊗ t ↦→ λu(t). For this reason, it is often
the case that T is written TN , specifying the underlying lattice of one-parameter
subgroups. We adhere to this norm.

1.3.2 Affine Toric Variety

Without further ado, let us dig in to the main course.

Definition 1.3.10 (Affine Toric Variety). An affine variety V ⊆ Cn is called an
affine toric variety if it contains an algebraic torus TN as an open subset (with
respect to the Zariski topology) and the action of TN on itself extends to an action
of TN on V .

Remark. The required existence of an extension of every morphism TN × TN →
TN to a morphism TN × V → V might seem unnatural at first. It is in fact quite
difficult to come up with an affine variety that contains a torus whose action on
itself does not extend to an action on the variety.

That is why we beg you hold your breath a bit longer, until the beginning of
Section 1.4 where we present a projective toric variety which does not satisfy
this criterion and is all the uglier for it.

Just as promised, in this section we elucidate the mystery behind the link between
polyhedral cones and toric varieties. We start by showing how we can construct
toric varieties directly from algebraic tori by delimiting finite subsets of their
character lattices.

The following constructions and most of their proofs are due to Cox et al. [2011].
Explanatory remarks and some missing details in proofs were added.

Suppose TN is an algebraic torus with character lattice M . For a finite subset
A := {m1, . . . ,ms} ⊆ M define the map

ΦA : TN → (C∗)s,

P ↦→ (χm1(P ), . . . , χms(P )).

Proposition 1.3.11. Denote by VA the Zariski closure of ΦA(TN) in Cs where
ΦA is defined as above. Then, VA is an affine toric variety containing the torus
ΦA(TN) with character lattice ZA = {∑︁s

i=1 zimi | zi ∈ Z}. Moreover, ΦA(TN) ≃
(C∗)r where r := rankZA.
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Before we proceed with the proof, there is a tiny technical detail we need to take
care of.

Lemma 1.3.12.

(a) Let X be a topological space and Y an irreducible subspace of X. Then, Y
is also irreducible, where Y denotes the closure of Y in X.

(b) Let V,W be affine algebraic sets and φ : V → W a surjective morphism. If
V is irreducible, then so is W .

Proof.

(a) If Y = Y1 ∪ Y2 for some proper closed subsets Y1, Y2 ⊊ Y , both of them
non-empty, then Y = (Y1 ∩ Y ) ∪ (Y2 ∩ Y ) which makes Y into a union of
proper closed subsets, into a reducible subspace.

(b) Suppose W = φ(V ) is reducible and write W = W1 ∪ W2 for two proper
closed subsets W1,W2 ⊊ W . By continuity of φ, φ−1(W1) and φ−1(W2) are
proper closed subsets of V and V = φ−1(W1) ∪ φ−1(W2).

Proof of Proposition 1.3.11. Note that ΦA, being defined through characters, is
a morphism and a group homomorphism. By Proposition 1.3.7, ΦA(TN) is
torus which is closed in (C∗)s. From this, it follows that VA ∩ (C∗)s = ΦA(TN)
because VA = ΦA(TN) and is thus closed in Cs. So ΦA(TN) is open in VA. By
Lemma 1.3.12, ΦA(TN) is irreducible and consequently so is VA. Thus VA is an
affine variety.

To show that it is indeed toric, we extend an action ΦA(TN)×ΦA(TN) → ΦA(TN)
to VA. Since T ⊆ (C∗)s, T acts on Cs and takes affine varieties to affine varieties.
Indeed, if V = V(I) ⊆ Cs is an affine variety, then from the definition of an
algebraic action, we get f(t · P ) = t · f(P ) for all f ∈ I, P ∈ V . So, t · V is an
affine variety.

In our case, we care about the fact that t · VA is an affine variety for every t ∈
ΦA(TN). Because VA = ΦA(TN) and ΦA(TN) ⊆ t·ΦA(TN), also ΦA(TN) ⊆ t·VA so
t·VA contains the torus ΦA(TN). However, its closure is VA, hence also VA ⊆ t·VA.
Repeating the same argument with t−1 gives t · VA ⊆ VA. The action of ΦA(TN)
on itself thus extends to action on VA, proving that VA is an affine toric variety.

We compute the character lattice of ΦA(TN) which we for now denote by M ′.
We first observe that each morphism of algebraic tori φ : T1 → T2 induces a map
φ̂ : M2 → M1 of their character lattices defined by the equality

χm2 ◦ φ = χφ̂(m2)

for m2 ∈ M2. The induced map Φ̂A : Zs → M from the character lattice of
(C∗)s to the character lattice of TN thus sends the canonical basis {e1, . . . , es}
to A = {m1, . . . ,ms}. It follows that Φ̂A(Zs) = ZA. However, ΦA can also be
seen as the surjective map TN ↠ ΦA(TN) and so Φ̂A|M ′ is also an injective map

28



M ′ ↪→ M . Finally, we also have the natural surjective map Zs ↠ M ′ induced
by the inclusion ΦA(TN) ↪→ (C∗)s. Hence, we have this following commutative
diagram

M Zs

M ′

Φ̂A

of character lattices. From this, it follows that M ′ ≃ ZA.

If r := rankZA, then ΦA(TN) ≃ (C∗)r by definition of the algebraic torus.

The preliminary step of choosing a finite subset of the character lattice of an
algebraic torus might remind perceptive readers of a similar construction we did
only a section ago. Indeed, recall that the generators of a rational polyhedral cone
are always elements of a finite subset of a lattice. We have shown in Section 1.2
that the points of the dual cone which are integral form an affine semigroup. We
shall soon define semigroup algebras which quite remarkably happen to also be
coordinate rings of affine toric varieties. Hence, every rational polyhedral cone
directly defines an affine semigroup which again directly defines an affine toric
variety.

Even more remarkably, the converse is also true. The coordinate ring of every
affine toric variety is a semigroup algebra. To elucidate why, we need go astray
momentarily and have a serious debate about toric ideals.

We would like to understand the structure of I(VA) where A ⊆ M is a finite subset
of the lattice of characters of an algebraic torus TN . Fortunately, with a little bit
of work, a relatively simple explicit description will make itself conspicuous.

We have shown that the character lattice of ΦA(TN) is ZA. In light of that we
define a map of lattices Zs → ZA which sends ei to mi, where A = {m1, . . . ,ms}
and {e1, . . . , es} is the canonical basis of Zs. We denote L the kernel of this map.
For an s-tuple l = (l1, . . . , ls) ∈ L, we denote

l+ :=
∑︂
li>0

liei and l− :=
∑︂
li<0

−liei.

Then, l = l+ − l− and l+, l− ∈ Ns. Moving on, for z = (z1, . . . , zs) ∈ Zs, we
simplify the notation somewhat and write

xz :=
s∏︂

i=1
xzi

i .

We will show that for every l ∈ L, the binomial xl+ − xl− vanishes on ΦA(TN)
and consequently also on VA. From this, we will get the inclusion (xl+ − xl− | l ∈
L) ⊆ I(VA). As it turns out, the opposite inclusion is also true.
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Let us first ascertain that xl+ − xl− is 0 on ΦA(TN). Recall the definition ΦA =
(χm1 , . . . , χms). Then,

xl+ ◦ (χm1 , . . . , χms) =
∏︂

i,li>0
(χmi)li =

∏︂
i,li>0

χmili = χ
∑︁

i,li>0 mili

and analogously for xl− . Since ∑︁s
i=1 limi = 0 by definition of L, we have that∑︁

li>0 limi = ∑︁
li<0 −limi because l = l+ − l−. By the computation above, this

precisely means that xl+ ◦ ΦA = xl− ◦ ΦA, as desired.

The other inclusion, concretely I(VA) ⊆ (xl+ − xl− | l ∈ L), is harder to prove.
We start by finding another useful description of the ideal on the right.

Lemma 1.3.13 (Exercise 1.1.2 in Cox et al. [2011]). Let A := {m1, . . . ,ms} ⊆ M
and L be the kernel of the lattice map Zs → ZA which sends {e1, . . . , es} to A.
Then,

(xl+ − xl− | l ∈ L) = (xα − xβ | α, β ∈ Ns ∧ α− β ∈ L).

Proof. The rightward inclusion is evident. Both l+ and l− lie in Ns and l+ − l− =
l ∈ L.

Label IL the ideal on the left. Write α = (a1, . . . , as), β = (b1, . . . , bs). There
exists some l ∈ L such that α − β = l. Without loss of generality assume that
the coordinates of l = (l1, . . . , ls) are ordered in such a way that there exists some
j ≤ s satisfying li ≥ 0 for i ≤ j and li ≤ 0 for i ≥ j+ 1. If this were not the case,
we could just define indexing sets I, J ⊆ {1, . . . , s} such that li ≥ 0 for i ∈ I
and lj ≤ 0 for j ∈ J . The ensuing argument remains unaffected, only indices get
uglier.

Notice that we have ai − bi = li for each i ≤ s, hence necessarily ai ≥ bi for i ≤ j
and ai ≤ bi for i ≥ j+ 1 because ai, bi are natural numbers. We get the following
factorization of xα − xβ.

xα − xβ =
s∏︂

i=1
xai

i −
s∏︂

i=1
xbi

i =
j∏︂

i=1
xbi

i

s∏︂
i=j+1

xai
i

⎛⎝ j∏︂
i=1

xai−bi
i −

s∏︂
i=j+1

xbi−ai
i

⎞⎠ .
However, the binomial in the parentheses is exactly xl+ −xl− because (l1, . . . , ls) =
(a1 − b1, . . . , as − bs). We have xα − xβ ∈ IL as was required to show.

We keep the established notation IL := (xl+ − xl− | l ∈ L). We now proceed to
show the inclusion I(VA) ⊆ IL. The main idea behind the proof is taken from
Sturmfels [1996], Lemma 4.1.

Proposition 1.3.14 (Ideal of An Affine Toric Variety). The ideal of an affine
toric variety VA ⊆ Cs is exactly I(VA) = IL.

Proof. We already know that IL ⊆ I(VA).

We proceed to show the opposite inclusion. Let < denote the lexicographical
order on monomials of C[x1, . . . , xs], that is, xα < xβ if there exists an index
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j ≤ s such that aj < bj and ai = bi for all i < j. Also, fix an isomorphism
TN ≃ (C∗)r. We may thus assume M = Zr. The map ΦA : TN = (C∗)r → Cs

is then given Laurent monomials tmi in variables t1, . . . , tr for mi ∈ Zr. If we
suppose IL ⊊ I(VA), then we can pick f ∈ I(VA) \ IL with minimal leading
monomial xα. After potential rescaling of f by a suitable constant, xα becomes
its leading term.

Because f ∈ I(VA), f(tm1 , . . . , tms) ≡ 0 as a Laurent polynomial in variables
t1, . . . , tr for every m1, . . . ,ms ∈ Zr. In particular, f must contain a monomial
xβ which cancels out xα. By choice of xα, we have xβ < xα. Also, from

xα(tm1 , . . . , tms) − xβ(tm1 , . . . , tms) = 0

we get
s∏︂

i=1
taimi
i =

s∏︂
i=1

tbimi
i ,

hence
s∑︂

i=1
aimi =

s∑︂
i=1

bimi,

which implies α − β ∈ L. By Lemma 1.3.13, xα − xβ ∈ IL. This means
that f − (xα − xβ) lies in I(VA) \ IL and has smaller leading term than f . A
contradiction.

If L ⊆ Zs is now any sublattice, we call the ideal

IL := (xα − xβ | α, β ∈ Ns ∧ α− β ∈ L)

a lattice ideal. A prime lattice ideal is styled toric. This nomenclature is justified
by the previous proposition as I(VA) is a lattice ideal and also a prime ideal due
to VA being irreducible. The fact that given a toric ideal I, the affine variety
V(I) is also toric is subject to be proven later in the section. For now, we are
satisfied with proving a useful characterization of toric ideals.

Proposition 1.3.15 (Characterizing Toric Ideals). An ideal of C[x1, . . . , xs] is
toric if and only if it is prime and generated by binomials.

Proof. Toric ideals are prime and generated by binomials by definition.

If I ⊆ C[x1, . . . , xs] is a prime ideal generated by binomials, we claim that
V(I)∩(C∗)s is a torus. Firstly, it is non-empty because (1, . . . , 1) ∈ V(I)∩(C∗)s.
Secondly, it is a subgroup of (C∗)s. This is true because monomials satisfy
xα(PQ) = xα(P )xα(Q) for all points P,Q ∈ Cs. Hence, if xα − xβ ∈ I and
P,Q ∈ V(I), then

xα(PQ) = xα(P )xα(Q) = xβ(P )xβ(Q) = xβ(PQ),

so (xα − xβ)(PQ) = 0. Finally, V(I) is irreducible, so V(I) ∩ (C∗)s is irreducible
and thus a subvariety of (C∗)s. By Proposition 1.3.7, T := V(I) ∩ (C∗)s is a
torus.
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Projection to the i-th coordinate defines a character χmi : T ↪→ (C∗)s ↠ C∗

of T for some mi ∈ M . If we let A := {m1, . . . ,ms}, then ΦA((C∗)s) = T
and VA = T = V(I) ∩ (C∗)s = V(I) where the last equality holds because
V(I) ∩ (C∗)s is Zariski dense in V(I). By the Nullstellensatz, I = I(VA) for I is
prime, therefore radical. By Proposition 1.3.14, I(VA) is toric.

Now that we know what a toric ideal is and that it is safe for kids, we make a
U-turn and land right back on affine semigroups.

Two of the three defining properties of affine semigroups were finite number of
generators and ability to be embedded into a lattice. Buying a doughnut TN with
character lattice M , each finite set A ⊆ M gives the affine semigroup NA ⊆ M .
Conversely, for every affine semigroup S ⊆ M there is some finite generating set
A ⊆ M such that S = NA.

Definition 1.3.16 (Semigroup Algebra). Let TN be an algebraic torus with char-
acter lattice M and S ⊆ M an affine semigroup. Each element m ∈ M gives a
character χm. We define the semigroup algebra C[S] as

C[S] :=
⎧⎨⎩∑︂

m∈S
cmχ

m | cm ∈ C ∧ cm ̸= 0 for only finitely many m ∈ S

⎫⎬⎭
with multiplication given by χmχm′ = χm+m′ .

In particular, if A = {m1, . . . ,ms} ⊆ M is such that S = NA, then

C[S] = C[χm1 , . . . , χms ].

Proposition 1.3.17 (Affine Toric Variety From Affine Semigroup). Let A ⊆ M
be a finite subset. Let S := NA, then

1. C[S] is an integral domain and finitely generated as a C-algebra.

2. Specm(C[S]) is an affine toric variety whose torus has character lattice ZA.
Moreover, Specm(C[S]) ≃ VA.

There are two preparatory steps to be made before the proof of this key propo-
sition.

The first step is to observe that the lattice M can itself be seen as an affine
semigroup. If {e1, . . . , er} is the basis of M as a lattice, then {±e1, . . . ,±er}
are its generators as an affine semigroup. One gets a canonical isomorphism of
C-algebras C[M ] ≃ C[x±1

1 , . . . , x±1
r ] which sends χ±ei to x±1

i .

The second step is to analyse the kernel of the C-algebra homomorphism Φ∗
A :

C[x1, . . . , xs] → C[M ] given by xi ↦→ χmi where A = {m1, . . . ,ms}. To justify this
notation, we view the map ΦA as a morphism TN → Cs. Then, the induced map
Φ∗

A is a C-algebra homomorphism from C[x1, . . . , xs] to C[x±1
1 , . . . , x±1

r ] ≃ C[M ].
We will show that ker Φ∗

A = I(VA).
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The veracity of this claim is straightforward to verify. If f ∈ I(VA), then f
vanishes on the image of ΦA thus Φ∗

A(f) ≡ 0. Symmetrically, if Φ∗
A(f) = f ◦ Φ

is identically 0, then f vanishes on the image of ΦA. Hence, f vanishes also on
the closure of the image of ΦA due to continuity of polynomial maps in Zariski
topology. So f ∈ I(VA).

Proof of Proposition 1.3.17.

1. If A = {m1, . . . ,ms}, then

C[S] = C[χm1 , . . . , χms ],

thus finitely generated. Because C[S] ⊆ C[M ] ≃ C[x±1
1 , . . . , x±1

r ], C[S] is an
integral domain.

2. Observe that the image of Φ∗
A : C[x1, . . . , xs] → C[M ], xi ↦→ χmi is precisely

C[χm1 , . . . , χms ] = C[S]. We know that ker Φ∗
A = I(VA), hence

C[VA] = C[x1, . . . , xs]/I(VA) = C[x1, . . . , xs]/ ker Φ∗
A ≃ im Φ∗

A = C[S].

This shows that Specm(C[S]) ≃ VA. The character lattice of the torus of
Specm(C[S]) is ZS by Proposition 1.3.11. Because S = NA, we have
ZS = ZA, which completes the proof.

Corollary 1.3.18 (Affine Variety From A Cone). Let σ ⊆ NR be a rational
convex polyhedral cone. Then Specm(C[σ∗ ∩ M ]), where M is the dual lattice to
N , is an affine toric variety.

Proof. The set σ∗ ∩ M is an affine semigroup by Gordan’s Lemma. Hence,
C[σ∗ ∩ M ] is a semigroup algebra and Specm(C[σ∗ ∩ M ]) an affine toric vari-
ety by Proposition 1.3.17.

We promised to demonstrate that there is also a convex polyhedral cone hidden
in the heart of an affine toric variety. To keep our promise, we need to argue that
the coordinate ring of every affine toric variety is a semigroup algebra and that
every semigroup algebra is of the shape C[σ∗ ∩ M ] for a rational cone σ. Proof
of the second fact is straightforward. If S is an affine semigroup generated by a
finite set A = {m1, . . . ,ms} ⊆ M , then choosing σ := (Cone(m1, . . . ,ms))∗, that
is, σ is the dual to the cone generated by A, we immediately have S = σ∗ ∩ M
because σ∗ = Cone(m1, . . . ,ms).

The proof of the first fact takes more work and to do it we need to pull the
strange factorization of a vector space into a sum of eigenspaces of a torus action
in Proposition 1.3.9 out of the back of your mind as it is the main ingredient.

Our vector space W will be the queen herself, the semigroup algebra C[M ]. We
define the action of TN on C[M ] by the formula (t · f)(P ) = f(t−1 · P ) where
P ∈ TN and f ∈ C[M ]. This might seem like it has fallen straight from the
sky but to make things clearer we would need to dive into the theory of linear
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algebraic groups which we do not intend to do. We ask dear readers to cut us
some slack on this one.

The following technical lemma is the last rung on the ladder.

Lemma 1.3.19. If A ⊆ C[M ] is a subspace of C[M ] which is invariant under
the action of TN on C[M ], then

A =
⨁︂

χm∈A

C · χm.

Proof. The leftward inclusion is clear. Pick a non-zero f ∈ A. Since f ∈ C[M ],
we can write

f =
∑︂

m∈B
cmχ

m

for some finite B ⊆ M . Let B := span(χm | m ∈ B). We have

(t · χm)(P ) = χm(t−1 · P ) = χm(t−1)χm(P )

for all t, P ∈ TN because characters are group homomorphisms. It follows that
B and in addition B ∩ A are invariant under the action of TN . Because B ∩ A
has finite dimension by definition of B, Proposition 1.3.9 implies that B ∩ A
is spanned by eigenvectors common to all linear maps t · − : C[M ] → C[M ].
However, eigenvectors in C[M ] are characters, so B ∩A is spanned by characters
of TN . Because f ∈ B ∩A is a C-linear combination of characters χm for m ∈ B,
we infer χm ∈ A for all m ∈ B. Hence f ∈ ⨁︁

χm∈A C · χm.

A direct consequence of this lemma is the proof of the fact that coordinate rings
of affine toric varieties are semigroup algebras.

Proposition 1.3.20. Let V be an affine toric variety. Then there exists an affine
semigroup S ⊆ M such that V = Specm(C[S]).

Proof. Let V contain the algebraic torus TN with character lattice M . We have
observed that C[M ] is the coordinate ring of TN . The inclusion map ι : TN ↪→ V ,
induces the map ι∗ : C[V ] → C[M ] on coordinate rings. This map is injective
because TN , being open in V , is Zariski dense in V . This means that an extension
of a polynomial (thus continuous) map f : TN → C to a polynomial map f : V →
C is (if it exists) uniquely given by ι∗(f) = f ◦ ι = f , so ι∗ is indeed injective. In
light of that, we regard C[V ] as a subalgebra of C[M ].

The action of TN on V is a morphism TN × V → V . If we define, as we did
before, the action of TN on C[V ] by (t · f)(P ) = f(t−1 ·P ) for t ∈ TN , P ∈ V and
f ∈ C[V ], then t · f ∈ C[V ] because t−1 · P ∈ V , so C[V ] is invariant under the
action of TN . By Lemma 1.3.19, we can decompose

C[V ] =
⨁︂

χm∈C[V ]
C · χm.

Therefore, C[V ] = C[S] for the semigroup S := {m ∈ M | χm ∈ C[V ]}.
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Because C[V ] is finitely generated, we can find f1, . . . , fs ∈ C[V ] such that C[V ] =
C[f1, . . . , fs]. Expressing each function fi in terms of characters following the
decomposition of C[V ] above, we obtain a finite set of generators for S. So, S is
indeed an affine semigroup.

We have reached the crux of the section where we collect our findings into one
big theorem. It exactly says that the three different views of affine toric varieties
we have presented throughout the section are in reality one and the same.

Theorem 1.3.21 (On Building of Affine Toric Varieties). Let V be an affine
variety. The following statements are equivalent.

1. V is an affine toric variety.

2. V = VA for a finite subset A of a lattice.

3. V = V(I) for a toric ideal I.

4. V = Specm(C[S]) for an affine semigroup S.

Proof. The equivalence (b) ⇐⇒ (c) is the content of Proposition 1.3.14 and
both (b) ⇐⇒ (d) and (d) =⇒ (a) follow from Proposition 1.3.17. Finally,
the implication (a) =⇒ (d) is covered by the last Proposition 1.3.20.

The proof of Proposition 1.3.20 also instructs us how to construct a cone from
an affine toric variety. This is the last result we state before falling headlong
onto the next section where we have fun making collages out of cones and toric
varieties.

Corollary 1.3.22 (Cone From An Affine Toric Variety). Let V be an affine toric
variety with torus TN whose character lattice is M . Then there exists a rational
convex polyhedral cone σ ⊆ NR such that V = Specm(C[σ∗ ∩M ]).

Proof. From Proposition 1.3.20, we know that there exists an affine semigroup
S such that V = Specm(C[S]). Let A := {m1, . . . ,ms} ⊆ M be its set of genera-
tors. Taking σ := (Cone(m1, . . . ,ms))∗ gives S = σ∗ ∩M .
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2. Abstract Toric Varieties, Fans
and Resolution of Singularities

Building upon concepts discussed in the first chapter, we define a ‘manifold of
toric varieties’, which is commonly called an abstract toric variety, and is essen-
tially a designation for a complex analytical space that locally looks like an affine
toric variety. In a similar manner, we glue together convex polyhedral cones to
objects which are called ‘fans’ and show a neat connection to abstract toric vari-
eties. And, number theorists rejoice, we finish off explaining how singular points
on toric surfaces (abstract toric varieties of dimension two) can be removed by
inserting new cones whose bases are given by specific continued fractions.

2.1 Abstract Varieties

Before we can start gluing together toric varieties, we would like to try it with
your normal boring mundane stereotypical affine varieties first. One should not
tackle muffins before knowing how to make dough.

Unsurprisingly, as things get more abstract, category theory drives in, wearing
sunglasses and a childish smirk. We hope that readers are at least marginally
acquainted with categorical concepts like morphisms, sheaves or, well, a category.
We do not wish to make an introduction to category theory inside the thesis itself,
as we did in the case of algebraic geometry in Section 1.1. Hopefully, we will
not need to since not as much machinery is needed for the ensuing constructions
to make sense.

This particular section mostly follows Cox et al. [2011], Section 3.0. Oda [1985]
gives many useful insights but does the construction of abstract varieties in a
much more analytical (meaning less algebraic) manner and Fulton [1993] in a
way bypasses abstract varieties altogether. As was the case with all previous
sections, proofs are either original or augmented versions of those existent in the
original text. The latter case is always mentioned.

The way we construct an abstract variety is similar to the way one constructs a
topological manifold, albeit less concrete.

First, given a finite collection {Vα}α∈A of affine varieties, we need to find a way
to naturally glue them together. The first condition is the ability to move back
and forth between them. The following may remind readers of the definition of
transition maps within some differential structure. For each Vα, we require Zariski
open sets Vβα ⊆ Vα and isomorphisms gβα : Vβα ≃ Vαβ satisfying the following
‘compatibility’ conditions:

(C1) gαβ = g−1
βα ∀α, β ∈ A,
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(C2) gβα(Vβα ∩ Vγα) = Vαβ ∩ Vγβ and gγα = gγβ ◦ gβα on Vβα ∩ Vγα ∀α, β, γ ∈ A.

We daringly believe dear readers are getting lost in the indices. Let us shed some
light on the situation. Note that Vβα ⊆ Vα and Vαβ ⊆ Vβ. A funny analogue to
the condition (C1) is that people build two-way roads. The road you take from
one city to another is often the same one you take when coming back. Of course,
this is not the ‘actual’ reason this property of transition maps is important. It is
more of a comparison to make things settle in better. In this case, we say that
the road from Vαβ to Vβα is the same as the inverse one, from Vβα to Vαβ.

The condition (C2) is possibly harder to decode. It says two related things. First,
transition maps preserve intersections. What we mean by this is that starting in
the intersection Vβα ∩ Vγα ⊆ Vα of open sets corresponding to β and γ inside Vα

and then moving to Vβ, we end up not only inside Vαβ (which is true by definition
of gβα) but also inside Vγβ, the open set in Vβ corresponding to γ. Finally, the
second condition is that the road

Vβα ∩ Vγα Vαβ ∩ Vγβ Vαγ ∩ Vβγ

gβα gγβ

is the same as

Vβα ∩ Vγα Vβγ ∩ Vαγ
gγα .

We finish our construction by gluing the Vα together. Basically, what we do is
that we identify points on different varieties which are mutually reachable via the
transition maps. Let Y := ∐︁

α∈A Vα. We define the relation ∼ on Y in such a
way that a ∼ b if there exist α, β ∈ A such that a ∈ Vα, b ∈ Vβ and gβα(a) = b.
Condition (C1) assures that ∼ is symmetric and (C2) that it is transitive. Hence,
we define the abstract variety X as the quotient space Y/ ∼ with the quotient
topology. For each α ∈ A, the set

Uα := {[a] ∈ X | a ∈ Vα} (2.1.1)

is open in X and maps hα : Vα → Uα, a ↦→ [a] are homeomorphisms between Vα

and Uα. So, X is locally an affine variety.

We now proceed to augment the constructions made in Section 1.1 for affine
varieties and move them to the language of abstract varieties. This basically
means defining the local properties of abstract varieties.

We begin with what is typically called a structure sheaf or sheaf of regular func-
tions of an affine variety. Local rings at points crumble under the inexorable flow
of time for being, well, a tad too local. Since the elements of X are officially
not points but equivalence classes, we must extend our definition of local rings at
points to open sets. Before we do that, we let you munch on some sheaf theory.

Definition 2.1.1 (Presheaf). Given X a topological space, a datum F is called
a presheaf (of sets) on X if
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(PSH1) for each open set U ⊆ X there is a set F(U),

(PSH2) for each pair of open sets V, U with V ⊆ U there is a restriction map
ρU

V : F(U) → F(V ) such that ρU
U = 1U ,

(PSH3) for each triple of open sets U, V,W such that W ⊆ V ⊆ U we have
ρU

W = ρV
W ◦ ρU

V .

Elements of F(U) are normally called sections of F over U and we denote s|V :=
ρU

V (s) for s ∈ F(U) if V ⊆ U .

A presheaf F on X is in addition called a sheaf, if for every U ⊆ X open, elements
of F(U) are defined locally and can be glued together. Formally, we require:

(SH1) If {Ui | i ∈ I} is an open cover of U and s, t ∈ F(U) are such that
s|Ui

= t|Ui
for all i ∈ I, then s = t.

(SH2) If {Ui | i ∈ I} is an open cover of U and {si ∈ F(U) | i ∈ I} is a family of
sections satisfying si|Ui∩Uj

= sj|Ui∩Uj
for all i, j ∈ I, then there exists some

s ∈ F(U) such that s|Ui
= si for all i ∈ I.

Now, this was a tedious definition but hopefully the notions of locality and gluing
seeped through. It will take a while and many small steps to explain why this
notion is useful to our cause. Since abstract varieties are meshes of affine varieties,
we shall start with the latter.

Definition 2.1.2 (Regular Function). If V is an affine variety and U ⊆ V an
open set, we say that a function φ : U → C is regular if there exists a rational
function r ∈ C(V ) which is defined at each point of U and φ(P ) = r(P ) for each
P ∈ U .

The ring of regular functions on U is denoted OV (U).

Remark. Observe that a rational function r ∈ C(V ) is an element of OV,P , the
local ring of V at P if r is defined at P . In the preceding definition, we considered
OV (U) to be those rational functions defined for every P in U . It follows that

OV (U) =
⋂︂

P ∈U

OV,P .

We could have used this as our definition of a regular function.

This description also makes it easy to see that regular functions are continuous in
the Zariski topology. On the neighbourhood of each point, they are defined as the
quotient of two polynomial, thus continuous maps, with non-zero denominator
on said neighbourhood.

Observe that OV is a presheaf on V . Not of sets, no, of C-algebras but that does
not pose any difficulties. Indeed, the restriction maps ρU

W are defined naturally
by restricting regular functions on U to regular functions on W . It is, in fact,
also a sheaf. We will dedicate a number of lines to the verification of this claim.
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Firstly, fix some open U ⊆ V with an open cover {Ui | i ∈ I}. If f ̸= g ∈ OV (U),
then by continuity we find an open W ⊆ U such that f|W ̸= g|W . Since Ui cover
U , there exists also some i such that f|Ui

̸= g|Ui
. This sates the needs of (SH1).

Condition (SH2) is not much harder. The construction we are about to do here
is, in a more general setting, formalized in category theory as a product. We
shall not define it properly as we wish to avoid technical preliminaries such as
diagrams, cones, limits and whatnot.

Given fi ∈ OV (Ui) for each i ∈ I, we simply define f ∈ OV (U) by f|Ui
:= fi. Ui

cover U so this defines a function on the entirety of U . The condition fi|Ui∩Uj
=

fj|Ui∩Uj
ensures that this definition makes sense, that is, f(P ) is indeed defined

uniquely for each point P ∈ U . Should P lie in more than one Ui, its images
under the corresponding fi coincide. Finally, f is regular on the entirety of U . If
ri ∈ C(V ) are the rational functions witnessing the regularity of fi for each i ∈ I,
then gluing them together exactly the same way as we did the fi gives a rational
function r ∈ C(V ) defined at each point of U and such that f(P ) = r(P ) for each
P ∈ U . Hence, (SH2) is satisfied.

Having defined regular functions on open subsets of V , a natural question arises.
What are the ‘global’ regular functions, OV (V )? A natural answer comes forth.
The only functions that are regular everywhere are polynomial functions.

Proposition 2.1.3. Let V be an affine variety. Then, C[V ] = OV (V ).

Proof. The inclusion C[V ] ⊆ OV (V ) is clear. A function f ∈ C[V ] defines a
regular function on the entirety of V which is given by f/1 around each point
P ∈ V .

We use the equality OV (V ) = ⋂︁
P ∈V OV,P . Fix some f ∈ C(V ) and define

J := {g ∈ C[V ] | fg ∈ C[V ]}.

J is an ideal of C[V ] because if fg ∈ C[V ] and h ∈ C[V ], then fgh ∈ C[V ], which
implies that gh ∈ J . Similarly, if fg ∈ C[V ] and fh ∈ C[V ], then fg + fh =
f(g + h) ∈ C[V ]. Thus, g + h ∈ J .

Note that V(J) = {P ∈ V | g(P ) = 0 ∀g such that fg ∈ C[V ]}. In the case that
f is defined at every point P ∈ V , V(J) must be empty. Indeed, suppose this is
not the case and pick P ∈ V(J). For any representation f = g/h where g, h ∈
C[V ] we would have h(P ) = 0 because fh = g ∈ C[V ]. Thus, f is not defined
at P . This is a contradiction, hence V(J) = ∅. By the Weak Nullstellensatz,
J = C[V ]. In particular, 1 ∈ J , so 1f = f ∈ C[V ] by definition of J .

The last concept we are yet to define are morphisms between open subsets of affine
varieties. We, again, take the categorical approach. For V1, V2 affine varieties and
U1 ⊆ V1, U2 ⊆ V2 open sets, we dub a map

φ : U1 → U2,
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a morphism (of affine varieties) if the induced map takes regular functions to
regular functions, that is, φ∗(OV2(U2)) ⊆ OV1(U1) where, recall, φ∗(f) := f ◦ φ
for f ∈ OV2(U2).

A morphism φ is called an isomorphism if φ is bijective and its inverse φ−1 is a
morphism.

Morphisms have a few nice properties we care about and shall endeavour to prove
before moving on.

Lemma 2.1.4 (Properties of Morphisms, Exercise 3.0.3 in Cox et al. [2011]).

(1) Regular functions on U are precisely morphisms U → C.

(2) A composition of morphisms is a morphism.

(3) The inclusion map W ↪→ U where W ⊆ U is an open set of V is a mor-
phism.

(4) Morphisms are continuous in the Zariski topology.

Proof.

(1) Let φ ∈ OV (U) be a regular function. Since OC(C) = C[x] by Proposi-
tion 2.1.3, we require that for every f ∈ C[x], the composition f ◦ φ be
regular on U . This is true because φ is regular on U and f is a polyno-
mial. Hence, if φ is represented by a rational function r on U , then f ◦φ is
represented by f ◦ r, which is rational and defined on U .
Conversely, let φ be a morphism U → C. Then the induced map is
φ∗ : C[x] → OV (U). Meaning, f ◦ φ is regular on U for every f ∈ C[x].
Specifically, 1C ◦ φ = φ is regular on U .

(2) Let V1, V2, V3 be affine varieties, Ui ⊆ Vi, i = 1, 2, 3 be open sets and
φ : V1 → V2, ψ : V2 → V3 be morphisms. We have φ∗(OV2(U2)) ⊆ OV1(U1)
and ψ∗(OV3(U3)) ⊆ OV2(U2). Composing gives

(ψ ◦ φ)∗(OV3(U3)) = φ∗(ψ∗(OV3(U3))) ⊆ φ∗(OV2(U2)) ⊆ OV1(U1),

so ψ ◦ φ is a morphism.

(3) The map induced by an inclusion map is a restriction map, so it is a mor-
phism. Indeed, if ι : W ↪→ U is the inclusion map, then for f ∈ OV (U), we
have f ◦ ι = f|W . If f is regular on U , then it is, in particular, regular on
W .

(4) We use the notation from (2). We argue in a way similar to the second
paragraph in (1). Since φ : U1 → U2 is a morphism, the induced map
is a C-algebra homomorphism OV2(U2) → OV1(U1). This means that all
compositions f ◦ φ for f ∈ OV2(U2) are regular, thus continuous. Choosing
f to be successively the projection to each coordinate gives the continuity
of φ.
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We took great care to define the notions of regular functions and morphisms so
that they are easily scalable from affine varieties to abstract varieties. We leave
that as an easy exercise. Alright, alright, quit screaming. We do not.

In the following we consider abstract varieties X := ⋃︁
α∈A Uα and Y := ⋃︁

β∈B U
′
β

where Uα, U
′
β are as in (2.1.1) and there are transition maps on X and Y satisfying

(C1) and (C2). We also denote by hα the homeomorphism Vα ≃ Uα, a ↦→ [a].

Definition 2.1.5 (Morphism of Abstract Varieties). A Zariski continuous map
Φ : X → Y is styled a morphism (of abstract varieties) if

Φ|Uα∩Φ−1(U ′
β

) : Uα ∩ Φ−1(U ′
β) → U ′

β

is a morphism of affine varieties for all pairs (α, β) ∈ A×B.

Definition 2.1.6 (Sheaf of Regular Functions of an Abstract Variety). Let U ⊆
X be open and denote Wα := h−1

α (U ∩Uα) ⊆ Vα. A function φ : U → C is regular
if

φ ◦ hα|Wα : Wα → C

is regular for every α ∈ A. Thanks to conditions (C1) and (C2), the map φ◦hα|Wα

is well-defined and we can thus further define

OX(U) := {φ : U → C | φ is regular}.

One checks that OX is a sheaf on X pretty much exactly the same way as in the
case of an affine variety V .

We finish with basic concepts of abstract varieties by defining local rings at points.
In the language of sheaf theory, they are exactly stalks of the sheaf OX .

The local ring OV,P for an affine variety V and a point P ∈ V is essentially
the set of quotients f/g with f, g ∈ C[V ] and g(P ) ̸= 0. The set Vg is then an
open neighbourhood of P and f/g is regular on Vg. In light of this, we can view
elements of OV,P as regular functions defined on an open neighbourhood of P .

We scale this idea to the level of abstract varieties. There is not much to add, we
only need to make sure that regular functions that assume equal values around P
are identified. Formally, if U1, U2 are open neighbourhoods of a point P ∈ X and
f1, f2 regular functions on U1 and U2, respectively, we say that they are equivalent
at P if we can find an open neighbourhood U ⊆ U1∩U2 of P such that f1|U = f2|U .
We write this as f1 ∼P f2. Then, the local ring of X at P is defined as the set of
classes of regular functions that are equivalent at P . In symbols,

OX,P := {f ∈ OX(U) | U is a neighbourhood of P}/ ∼P .

Remark. Thanks to the relation ∼P , every φ ∈ OX,P has a well-defined value
at P . One can thus consider the map OX,P → C, φ ↦→ φ(P ) and, repeating the
steps of the proof of Proposition 1.1.12, show that OX,P is indeed local with
the maximal ideal

mX,P = {φ ∈ OX,P | φ(P ) = 0}.

41



In the following sections, we are going to use the terms normal, separated and
smooth abstract variety. We dedicate a few pages to them. Also, to save space
and finger muscles, we shall henceforth call abstract varieties simply ‘varieties’ if
there is no risk of confusion.

Definition 2.1.7 (Normal Ring). An integral domain R with field of fractions K
is called normal, seldom integrally closed, if every element of K which is integral
over R (is a root of a monic polynomial in R[x]) lies in R.

Just as in the affine case, we will, most of the time, want our varieties irreducible.
The definition here is the same as for the affine case. We call Zariski closed
subsets of X, subvarieties of X. The variety X is then called irreducible if it is
the union of no two proper subvarieties.

Definition 2.1.8 (Normal Variety). A variety X is called normal if it is irre-
ducible and OX,P is normal for every point P ∈ X.

From the definition, we see that normality is a local property. This definition is
however far from convenient when one is pressed to check normality explicitly.
Fortunately, not all is lost as normality of an abstract varietyX can be determined
by looking at its elementary constituents, the affine varieties Vα. Affine varieties
admit a definition of normality through coordinate rings, which are arguably
easier to work with, than local rings at points.

Definition 2.1.9 (Normal Affine Variety). Let V be an affine variety. Then V
is called normal if its coordinate ring C[V ] is a normal ring.

Since abstract varieties are identical to affine varieties in case they are built from
only one affine variety, it behooves us to reconcile the two notions in this edge
case. We require the following technical lemma from commutative algebra.

Lemma 2.1.10 (Exercise 1.0.7 from Cox et al. [2011]).

(1) Let Rα, α ∈ A be normal integral domains with common field of fractions
K. Then, ⋂︁α∈A Rα is normal.

(2) Let R be a normal integral domain with field of fractions K and S ⊆ R be
a multiplicative set. Then, RS is normal.

Proof.

(1) Denote S := ⋂︁
α∈A Rα. Clearly, the field of fractions for S is K. Let s ∈ K

be integral over S, that is, there exists f ∈ S[x] such that f(s) = 0.
Because S is the intersection of all Rα, we also have f ∈ Rα[x] for all
α ∈ A. In particular, s ∈ Rα for all α ∈ A because the Rα are normal. So,
s ∈ ⋂︁

α∈A Rα = S.

(2) Suppose k ∈ K is integral over RS. Thus k satisfies some equation

kn + rn−1

sn−1
kn−1 + . . .+ r0

s0
= 0
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where ri ∈ R and si ∈ S. Let s := s0 · · · sn−1. Then s ∈ S because S is
multiplicative. By definition of s, s/si ∈ S and so sri/si ∈ R for every
i ≤ n. We have

snkn + rn−1

sn−1
snkn−1 + . . .+ r0

s0
sn = (sk)n + srn−1

sn−1
(sk)n−1 + . . .+ snr0

s0
= 0.

Hence, sk is integral over R. R is normal, so sk ∈ R. It follows that k ∈ RS

because s ∈ S as was required to show.

Proposition 2.1.11. Let V be an affine variety. Then, C[V ] is normal if and
only if OV,P is normal for all P ∈ V .

Proof. The following proof is largely due to Cox et al. [2011], Proposition 3.0.11.

We know that C[V ] = ⋂︁
P ∈V OV,P . If OV,P is normal for all P ∈ V , then C[V ] is

normal by Lemma 2.1.10.

In the other direction, suppose C[V ] is normal and α ∈ C(V ) is integral over
OV,P . Then, α satisfies

a0 + a1α + . . .+ αk = 0
for some a0, . . . , ak−1 ∈ OV,P . Write ai = gi/fi for fi, gi ∈ C[V ] and fi(P ) ̸= 0.
Take f := f1 · · · fk. Then, ai ∈ C[V ]f and f(P ) ̸= 0. C[V ]f is normal, also
by Lemma 2.1.10, and C[V ]f ⊆ OV,P because f(P ) ̸= 0. It follows that α ∈
C[V ]f ⊆ OV,P . This concludes the proof.

The immediate corollary is one we shall employ heavily in Section 2.2.

Corollary 2.1.12. Let X be an irreducible abstract variety. Then, X is normal
if and only if each Vα is normal.

Proof. Just a few paragraphs later, when we discuss smooth abstract varieties,
we will show that OVα,P ≃ OX,P whenever P ∈ Vα. Hence, if X is normal, then
all OX,P are normal. Consequently, all the OVα,P for each α ∈ A and P ∈ Vα

are normal, so all the Vα are normal. The proof of the inverse implication is
symmetrical.

We now define a smooth variety. To that end, we need to make sure that both
notions – dimP X, the dimension of X at a point P ∈ X, and TPX, the tangent
space to X at P – are scalable from affine varieties to abstract ones. Thankfully,
with a little bit of work, they are.

As for dimP X, we have at our disposal the local rings at points OX,P . The
definition of dimP X as the Krull dimension of OX,P thus gets a pass without
change.

To show the same for TPX, we need to check that its definition does not depend
on the particular choice α ∈ A such that P ∈ Vα. Concretely, if P ∈ X is a point
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that lies in the intersection Vα ∩ Vβ for some α, β ∈ A, then we show that TVαP
and TVβ

P are isomorphic as complex vector spaces. This is most easily seen from
the fact that OVα,P ≃ OVβ ,P because tangent spaces are defined through maximal
ideals of these local rings.

A few paragraphs ago, we observed that OV,P for an affine variety V are really
regular functions defined on a neighbourhood of P ∈ V . This begets the idea
that perhaps also OVα,P ≃ OX,P . The natural map to consider is [f ] ↦→ [f ◦ h−1

α ]
where we abuse notation a little and denote by [·] both the equivalence class in
OVα,P and in OX,P . The map f ◦ h−1

α : Uα → C is indeed regular at P because
Uα is an open neighbourhood of P , h−1

α is a homeomorphism and f is regular.
Also, if f ◦ h−1

α ∼P g ◦ h−1
α , then there exists some neighbourhood U ⊆ Uα of P

on which those two functions agree. Since hα is a homeomorphism, f and g agree
on h−1

α (U), which is an open neighbourhood of P in Vα and thus they belong to
the same class in OVα,P . Finally, every [h] ∈ OX,P has its pre-image in [h ◦ hα].
The fact that [f ] ↦→ [f ◦ h−1

α ] is a ring homomorphism is clear and we have just
shown that it is well-defined and bijective. Hence, if P ∈ Vα ∩ Vβ, we claim that
OVα,P ≃ OX,P ≃ OVβ ,P and TPX is thus well-defined.
Definition 2.1.13 (Smooth Point of a Variety). A point P of a variety X is said
to be smooth if dimTPX = dimP X. A variety X is smooth if its every point is
smooth.

The remainder of the section is dedicated to separated varieties. We have observed
that the Zariski topology does not shake hands with Hausdorff-ness. However,
varieties can still be Hausdorff in the classical topology. An important result
states that a variety is classically Hausdorff if and only if it is separated in the
Zariski topology, which is a notion for varieties as close to Hausdorff-ness as we
can get.

We need to digress for a while and talk about products of varieties. We start with
their affine little sisters. If V1 and V2 are affine varieties, their product V1 × V2
can also be given the structure of an affine variety. We do not imbue it with
the product topology as one can show that this does not generally make V1 × V2
into an affine variety. Instead, suppose V1 ⊆ Cn = Specm(C[x1, . . . , xn]) and
V2 ⊆ Cm = Specm(C[y1, . . . , ym]). If I(V1) = (f1, . . . , fk) and I(V2) = (g1, . . . , gl),
then we define

V1 × V2 := V(f1, . . . , fk, g1, . . . , gl) ⊆ Cn+m.

Since fi and gj depend on distinct sets of variables, V1 × V2 is an affine variety.

This notion can be immediately transported to abstract varieties. If X = ⋃︁
α∈A Uα

and Y = ⋃︁
β∈B U

′
β, then their product X×Y is obtained by gluing Vα ×V ′

β via the
transitions maps gα1α2 × gβ1β2 for α1, α2 ∈ A and β1, β2 ∈ B. Since everything
is defined component-wise, the conditions (C1) and (C2) are satisfied almost
trivially.
Definition 2.1.14 (Separated Variety). Let X be a variety. Consider the diago-
nal map ∆ : X → X×X,∆(P ) := (P, P ). We call X separated if ∆(X) is Zariski
closed in X ×X.
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Theorem 2.1.15. A variety X is separated if and only if it is Hausdorff in the
classical topology.

Proof. See Cox et al. [2011], Theorem 3.0.17.

The last thing we do is prove two rather useful properties of separated varieties.

Lemma 2.1.16 (Exercise 3.0.6 in Cox et al. [2011]). Let X be a separated variety.
Then,

(1) If φ, ψ : Y → X, where Y is a variety, are morphisms, then {y ∈ Y |
φ(y) = ψ(y)} is closed in Y .

(2) If U, V are affine open subsets of X, then U ∩ V is also affine.

Here an affine subset means a subset of X isomorphic to an affine variety.

Proof.

(1) Define Φ : Y → X × X by Φ(y) = (φ(y), ψ(y)). Denote Z := {y ∈ Y |
φ(y) = ψ(y)}. Since φ and ψ are continuous (as morphisms), so is Φ.
Observe that Z = Φ−1(∆(X)) because φ(y) = ψ(y) if and only if y ∈ Z. It
follows that Z is closed due to continuity of Φ and X being separated.

(2) We first show that U ∩V can be identified with ∆(X) ∩ (U ×V ) ⊆ X ×X.
If P ∈ U ∩ V , then P ∈ U and P ∈ V , in other words, (P, P ) ∈ U × V .
Of course, (P, P ) ∈ ∆(X). Conversely, if (P,Q) ∈ ∆(X) ∩ (U × V ), then
P = Q and thus (P, P ) ∈ U×V . It follows that P ∈ U ∩V . The result now
follows because ∆(X) is closed by assumption on X and U × V is affine
thanks to the way products of affine varieties are constructed.

2.2 Fans and Toric Varieties

In this section, we define fans, basically collections of cones glued together in a
natural way. Also, we show a correspondence between abstract toric varieties and
fans, a scaled-up version of events occurring in Section 1.3.

On the way, we will need to prove a few more essential properties of affine semi-
groups and cones in general. Since these properties are tied to fans and normal
varieties, we decided to include them here rather than incorporate them into Sec-
tion 1.2. That is where we start. In this section, we follow Cox et al. [2011],
Section 3.1 and Fulton [1993], Section 1.4.

Suppose σ is a rational convex polyhedral cone gleefully dwelling in the real vector
space NR coming from a lattice N ≃ Zr with dual lattice M . We have proven
in Section 1.2, specifically in Gordan’s Lemma, that Sσ := σ∗ ∩ M is an affine
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semigroup. Theorem 1.3.21 implies that Vσ := Specm(C[Sσ]) is an affine toric
variety and every affine toric variety assumes this shape.

We specify our area of interest a little further and require that Vσ always be
normal. As one might guess, this puts some necessary conditions on the cone σ.
One particular condition also turns out to be sufficient. It seems that whenever
σ is strongly convex, meaning σ ∩ (−σ) = {0}, Vσ is automatically normal and
vice versa. We shall now proceed to prove both assertions and for that we need
to talk about saturated affine semigroups.

Definition 2.2.1 (Saturated Affine Semigroup). We call a semigroup S ⊆ M
saturated, if for all non-zero k ∈ N and m ∈ M , km ∈ S implies m ∈ S.

The following theorem for the proof whereof we thank Cox et al. [2011] and
their Theorem 1.3.5 connects normal affine varieties, saturated semigroups and
strongly convex cones.

Theorem 2.2.2. Let V be an affine variety. The following statements are equiv-
alent.

(1) V is normal.

(2) V = Specm(C[S]) where S ⊆ M is a saturated affine semigroup.

(3) V = Vσ for σ a rational strongly convex polyhedral cone.

Proof. By Theorem 1.3.21, V = Specm(C[S]) for an affine semigroup S. By
Proposition 1.3.17, the torus of V has character lattice M = ZS. Let r :=
rankM .

(1) ⇒ (2). If V is normal, then C[S] = C[V ] is normal. Choose a non-zero k ∈ N
and m ∈ M such that km ∈ S. The character χkm : TN → C∗ is a polynomial
function on TN and thus can be seen as a rational function V → C because TN

is Zariski open in V . We have χkm ∈ C[S] because km ∈ S. It follows that χm

is a root of the monic polynomial Xk − χkm ∈ C[S][X]. The normality of C[S]
implies χm ∈ C[S] and thus m ∈ S. This means that S is saturated.

(2) ⇒ (3). Let A ⊆ S be a generating set of S. Then, S ⊆ Cone(A) ⊆ MR.
If rankZA = r, then dim Cone(A) = r. Indeed, this is true because we have
rankZA = dim span(A). By definition of the dimension of a cone, dim Cone(A) =
dim span(A). Hence, dim Cone(A) = rankZA.

We show that in this case, σ := Cone(A)∗ is strongly convex. For contradiction,
suppose that there is a non-zero u ∈ σ ∩ (−σ). Then, necessarily ⟨u,m⟩ = 0
for all m ∈ Cone(A) because u ∈ σ implies ⟨u,m⟩ ≥ 0 and u ∈ −σ implies
⟨−u,m⟩ = − ⟨u,m⟩ ≥ 0, so ⟨u,m⟩ ≤ 0. However, Cone(A) spans MR by the
previous paragraph, hence ⟨u,m⟩ = 0 for all m ∈ MR. This means that there is a
non-zero vector u ∈ M⊥

R . Basic results from linear algebra imply that dimM⊥
R =

0, though, so this is not possible. Thus, σ∩ (−σ) = {0} and σ is strongly convex.
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We see that S ⊆ σ∗ ∩ M . The final step is to prove that σ∗ ∩ M ⊆ S in case S
is saturated. We present a little trick. Let {m1, . . . ,mr} be the basis of M and
denote MQ := M ⊗ZQ the vector space over Q with basis {m1, . . . ,mr}. Observe
that

σ∗ ∩MQ =
{︄∑︂

a∈A
λaa | λa ∈ Q ∧ λa ≥ 0

}︄
.

Choose some concrete element m ∈ σ∗ ∩ M . Then, m ∈ σ∗ ∩ MQ. This means
that we can write

m =
∑︂
a∈A

λaa

for some λa ∈ Q, λa ≥ 0. Let l be the product of the denominators of all the λa.
Then, l ∈ N and lm ∈ NA = S. Since S is saturated, m ∈ S.

(3) ⇒ (1). This final implication requires the usage of the following lemma.
Lemma 2.2.3. Let σ ⊆ NR be a rational strongly convex polyhedral cone and ρ
be its edge (face of dimension one). Then, since σ is strongly convex, ρ is a ray
and since σ is rational, the semigroup ρ ∩N has precisely one unique generator.
We denote this generator by uρ and call it the ray generator of σ. Moreover, σ
is generated by the ray generators of its edges.

Proof. See Lemma 1.2.15 in Cox et al. [2011].

Continuation of the proof of Theorem 2.2.2. The goal is to show that C[Sσ] =
C[σ∗ ∩ M ] is normal when σ ⊆ NR is strongly convex and rational. Denote by
ρ1, . . . , ρr the rays of σ. By Lemma 2.2.3, σ is generated by uρ1 , . . . , uρr and
ρ1, . . . , ρr are cones, so

σ∗ =
r⋂︂

i=1
ρ∗

i .

Indeed, ⟨m,u⟩ ≥ 0 for m ∈ MR and all u ∈ σ if and only if ⟨m,ui⟩ ≥ 0 for all
ui ∈ ρi and all i ≤ r. Intersecting both sides with M yields

Sσ =
r⋂︂

i=1
Sρi
.

From there, somewhat trivially

C[Sσ] =
r⋂︂

i=1
C[Sρi

].

By Lemma 2.1.10, it is enough to show that each of C[Sρi
] is normal in order

for C[Sσ] to be normal. Hence, we show that C[Sρ] is normal when ρ is a rational
ray in NR. Given the unique generator uρ of ρ ∩ N , we see that uρ is primitive,
that is, 1

k
uρ /∈ N for any k > 1. In such a case, we can find a basis e1, . . . , er of

N such that e1 = uρ.

Why is this so? Suppose n1, . . . , nr is any basis of N and uρ = ∑︁r
i=1 zini for

zi ∈ Z. By primitivity of uρ, we have gcd(z1, . . . , zr) = 1. By Bézout’s identity
from basic algebra, there are u1, . . . , ur ∈ Z satisfying u1z1 + . . . + urzr = 1. If
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we write elements of N as vectors with respect to {n1, . . . , nr}, then the linear
transformation sending n1 to uρ, that is, (1, 0, . . . , 0) to (z1, . . . , zr) is invertible,
with inverse

(z1, . . . , zr) ↦→ (u1z1 + . . .+ urzr, 0, . . . , 0).
In summary, such linear transformation is a change of basis sending n1 to uρ.

This fact allows us to assume σ = Cone(e1) and so

C[Sρ] = C[x1, x
±1
2 , . . . , x±1

n ].

The proof of this is not difficult but would demand we lengthen an already long
enough exposition, so we delegate kind and understanding readers to Example
1.2.21 in Cox et al. [2011]. Finally, C[x1, . . . , xn] is normal and thus the localiza-
tion

C[x1, . . . , xn]x2···xn = C[x1, x
±1
2 , . . . , x±1

n ]
is normal by Lemma 2.1.10. With this we exhale in satisfaction and close the
lid on the proof of Theorem 2.2.2.

We now know that strongly convex cones are in one-to-one correspondence with
normal affine varieties. The same is true for smooth cones and smooth affine
varieties. The proof of this fact however, requires developing the theory of convex
cones a little further than we intend to. We take the following statements from
Cox et al. [2011], mostly for consistency, but readers are encouraged to confront
Fulton [1993], Section 1.4 and Oda [1985], Proposition 1.3 and Theorem 1.4 for
equivalent results in a slightly different setting.
Theorem 2.2.4 (Smoothie). Let σ be a strongly convex rational polyhedral cone.
Then, Vσ is smooth if and only if σ is smooth. Moreover, all smooth affine toric
varieties are of this form.

Proof. See for instance Cox et al. [2011], Theorem 1.3.12.

Our expedition into areas of cones yet unexplored is to end rather disappointingly
with two, seemingly random and mostly technical results that we also only cite
for reasons of space and time. These however, turn out to be the relics of the
past which bring all the ancient civilizations together. Or so we would like to say
but reality is scarcely so grand.
Proposition 2.2.5. Let τ := Hm ∩ σ be a face of a strongly convex rational
polyhedral cone σ for m ∈ σ∗. Then, Sσ + Z(−m) = Sτ and, moreover, the
semigroup algebra C[Sτ ] = C[τ ∗ ∩M ] is the localization of C[Sσ] at the character
χm ∈ C[Sσ]. That is, C[Sτ ] = C[Sσ]χm.

Proof. See Cox et al. [2011], Proposition 1.3.16.
Lemma 2.2.6. Let σ1, σ2 ⊆ NR be polyhedral cones that meet along a common
face τ = σ1 ∩ σ2 (this means that τ is the face of both σ1 and σ2 and constitutes
their intersection). Then there exists m ∈ σ∗

1 ∩ (−σ2)∗ ∩M such that

τ = Hm ∩ σ1 = Hm ∩ σ2.
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Proof. Right from our holy book on toric varieties, Cox et al. [2011], Lemma
1.2.13.

An immediate consequence of Proposition 2.2.5 is that

(Vσ)χm = Specm(C[Sσ]χm) = Specm(C[Sτ ]) = Vτ

for τ = Hm ∩ σ a face of σ. Coupling it with Lemma 2.2.6 gives not only
Vτ = (Vσ1)χm ⊆ Vσ1 but also Vτ = (Vσ2)χ−m ⊆ Vσ2 . Put more plainly, if σ1 and
σ2 meet along a face τ , then the affine toric variety Vτ lies in Vσ1 ∩ Vσ2 . We will
need this fact to transition between Vσ1 and Vσ2 once we glue them together.

There is one last step needed before we define fans and abstract toric varieties and
also show how to construct the latter from the former. The inverse construction,
a way to somehow suck out a fan from an abstract toric variety, must regrettably
stay shrouded in mystery as the crucial theory of orbit-cone correspondence is in
the end too spacious to cover.

First, a technical lemma. Enjoy.

Lemma 2.2.7. Let σ1, σ2 be cones. Then,

σ∗
1 + σ∗

2 = (σ1 ∩ σ2)∗.

Proof. It is easier to show that

σ∗
1 ∩ σ∗

2 = (σ1 + σ2)∗.

The inclusion from left to right is obvious because

⟨m,u1⟩ ≥ 0 ∧ ⟨m,u2⟩ ≥ 0 =⇒ ⟨m,u1 + u2⟩ = ⟨m,u1⟩ + ⟨m,u2⟩ ≥ 0

for all m ∈ σ∗
1 ∩ σ∗

2 and u1 ∈ σ1, u2 ∈ σ2.

To prove the inverse inclusion, choose m ∈ (σ1 + σ2)∗. Since 0 ∈ σ2, this gives
⟨m,u1⟩ ≥ 0 for all u1 ∈ σ1 and symmetrically 0 ∈ σ1 implies ⟨m,u2⟩ ≥ 0 for all
u2 ∈ σ2. It follows that m ∈ σ∗

1 ∩ σ∗
2.

Finally, the desired equality is achieved by replacing σi with σ∗
i for i = 1, 2 and

taking the dual of both sides. Concretely, the previous implies

σ1 ∩ σ2 = (σ∗
1 + σ∗

2)∗

and thus
(σ1 ∩ σ2)∗ = σ∗

1 + σ∗
2.

And here comes the last proposition we need to build toric varieties from fans.

Proposition 2.2.8. Let σ1 and σ2 meet along a common face τ . Then,

Sτ = Sσ1 + Sσ2 .
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Proof. Save for a few added details due to Cox et al. [2011], Proposition 3.1.3.

The inclusion Sσ1 + Sσ2 ⊆ Sτ follows from the previous Lemma 2.2.7 because
σ∗

1 + σ∗
2 = (σ1 ∩ σ2)∗ = τ ∗.

For the reverse, take some t ∈ Sτ and find m ∈ σ∗
1 ∩ (−σ2)∗ ∩M , whose existence

ensures Lemma 2.2.6, satisfying

τ = σ1 ∩Hm = σ2 ∩Hm.

Applying Proposition 2.2.5 to σ1 yields t = s + k(−m) for adequate s ∈ Sσ1

and k ∈ N. Since −m ∈ σ∗
2 ∩M = Sσ2 , we have t ∈ Sσ1 + Sσ2 , as desired.

Definition 2.2.9 (Fan). A fan Σ in NR is a collection of finitely many strongly
convex rational polyhedral cones such that

(F1) Each face of σ ∈ Σ is also a cone in Σ for all σ ∈ Σ.

(F2) If σ1, σ2 ∈ Σ, the intersection σ1 ∩ σ2 is a face of both σ1 and σ2 (and thus
lies in Σ).

We also define the support of Σ as

|Σ| :=
⋃︂

σ∈Σ
σ

and Σ(r) denotes the set of r-dimensional cones in Σ.

Definition 2.2.10 (Toric Variety). An (abstract) variety X is called toric if X
contains a torus TN ≃ (C∗)r as a Zariski open subset and the action of TN on
itself extends to an action TN ×X → X of TN on X.

With all this ammunition in stock, we can build a toric variety from a fan quite
easily. Let Σ be a fan in NR and consider Vσ = Specm(C[Sσ]) for every σ ∈ Σ.
We glue these affine toric varieties together.

Let σ1, σ2 ∈ Σ and τ := σ1 ∩ σ2. By Proposition 2.2.5 and Lemma 2.2.6, we
obtain the isomorphism

gσ2,σ1 : (Vσ1)χm
∼−→ (Vσ2)χ−m

which restricts to the identity map on τ .

We check the compatibility conditions (C1) and (C2) for gσ2,σ1 .

As for (C1), we have

(Vσ1)χm (Vσ2)χ−m (Vσ1)χm

gσ2,σ1 gσ1,σ2

and so gσ1,σ2 ◦ gσ2,σ1 is the identity map on (Vσ1)χm as both gσ2,σ1 and gσ1,σ2 are
isomorphisms.
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Let σ3 ∈ Σ be another cone in Σ and m′ ∈ M such that σ1 ∩ σ3 = Hm′ ∩ σ1 =
Hm′ ∩ σ3. Since m ∈ M satisfies σ1 ∩ σ2 = Hm ∩ σ1 = Hm ∩ σ2, observe that we
have

Hm+m′ ∩ σ1 = Hm ∩Hm′ ∩ σ1 = (Hm ∩ σ1) ∩ (Hm′ ∩ σ1) = σ1 ∩ σ2 ∩ σ3.

Moreover, (Vσ1)χm ∩ (Vσ1)χm′ = (Vσ1)χm+m′ because (Vσ1)χm ≃ Vσ1 \ V(χm) and so

(Vσ1 \ V(χm)) ∩ (Vσ1 \ V(χm′)) = Vσ1 \ (V(χm) ∪ V(χm′)) = Vσ1 \ V(χmχm′).

It follows that

gσ2,σ1((Vσ1)χm ∩ (Vσ1)χm′ ) = gσ2,σ1((Vσ1)χm+m′ ) = (Vσ2)χ−m−m′

= (Vσ2)χ−m ∩ (Vσ2)χ−m′

as demanded by (C2). The equality gσ3,σ1 = gσ3,σ2 ◦ gσ2,σ1 is proven by a very
similar set of equalities as above but is notationally cumbersome and at this stage
does not provide any new insight to the matter at hand. We have decided to skip
it.

By gluing together all the Vσ for σ ∈ Σ, we obtain a variety X, which we label
XΣ. The following result is the essence of this section.

Theorem 2.2.11 (Toric Variety From A Fan). Let Σ be a fan in NR. Then, XΣ
is a separated normal toric variety.

Proof. We, again, present an augmented version of the proof of Theorem 3.1.5 in
the book by Cox et al. [2011]. We will also use Proposition 1.2.12 in the same
book stating that a cone σ ∈ Σ is strongly convex if and only if {0} is a face of
σ.

Since all cones of Σ are strongly convex by definition of a fan, {0} is a face of
every σ ∈ Σ. Hence, we have C[Sσ] ⊆ C[S{0}] = C[M ] for {0}∗ = MR. This
implies TN = Specm(C[M ]) ≃ (C∗)r ⊆ Vσ for all σ ∈ Σ. For the same reason,
also TN ⊆ Specm(C[Vσ]χm) = (Vσ)χm which means that gluing the Vσ together
identifies all the underlying tori. So, we have TN ⊆ XΣ.

The transition maps gσ2,σ1 viewed as morphisms Vσ1 → Vσ2 , restrict to identity
maps on Vσ1∩σ2 . The torus TN acts on each Vσ by a morphism TN ×Vσ → Vσ. We
see that the action TN ×Vσ1 → Vσ1 and the action TN ×Vσ2 → Vσ2 are compatible
on the intersections Vσ1 ∩ Vσ2 thanks to the transition maps. This means there is
an action TN ×X → X of TN on X given on the neighbourhood of each P ∈ X
by the action of TN on Vσ if σ ∈ Σ is such that P ∈ Vσ.

On our quest to prove that X is normal, we first observe that X is irreducible.
This is because each Vσ is irreducible and, being an affine toric variety, contains
TN . As we have perceived in the previous paragraph, the tori of Vσ are glued
together by the transition maps so, if we had X = X1 ∪X2 for some subvarieties
X1, X2 ⊆ X, then for instance X1 would have to contain all (the quotients of) the
tori. However, these are Zariski open subsets of the irreducible affine varieties
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Vσ, hence dense in Vσ. X1, being closed, thus contains all the Uσ = hσ(Vσ) which
forces X2 to be ∅.

Each Vσ is normal by Theorem 2.2.2. Hence, X is normal by Corollary 2.1.12.

It remains to check that XΣ is separated. For that, we need a little lemma which
says that separated-ness is a local property.
Lemma 2.2.12. If X be the variety obtained by gluing together Vα, α ∈ A along
the transition maps gβα : Vβα ≃ Vαβ. Then, X is separated if the image of
∆ : Vαβ → Vα × Vβ, P ↦→ (P, gαβ(P )) is Zariski closed for all α, β ∈ A.

Proof. Let ∆X denote the typical diagonal map ∆X(P ) = (P, P ) ∈ X × X.
Observe that under the assumptions of the lemma, ∆X(X) naturally has the
structure of a variety. Indeed, since ∆(Vαβ) is closed in Vα × Vβ, it is an affine
variety and we have the canonical isomorphisms Γβα : ∆(Vαβ) ≃ ∆(Vβα) given
by (P, gαβ(P )) ↦→ (gβα(P ), gβα(gαβ(P )) = (gβα(P ), P ) because the gαβ are also
isomorphisms. It follows that, being defined via gαβ, the maps Γαβ satisfy com-
patibility conditions (C1) and (C2) and so we can glue together ∆(Vαβ) to get
∆X(X). This proves that ∆X(X) is a subvariety of X×X and is thus closed.

Continuation of the proof of Theorem 2.2.11. By Lemma 2.2.12 it is enough to
show that for all σ1, σ2 ∈ Σ, the image of the diagonal map

∆ : Vσ1∩σ2 → Vσ1 × Vσ2

is Zariski closed. However, the map induced by ∆ is the C-algebra homomorphism

∆∗ : C[Sσ1 ] ⊗C C[Sσ2 ] → C[Sσ1∩σ2 ].

given by χm ⊗ χn ↦→ χmχn = χm+n. By Proposition 2.2.8, ∆∗ is surjective,
thus

C[Sσ1∩σ2 ] ≃ (C[Sσ1 ] ⊗C C[Sσ2 ])/ ker(∆∗).
Looking at maximal spectra of these rings implies that ∆(Vσ1∩σ2) is a subvariety
of Vσ1 ∩ Vσ2 and is, therefore, closed.
Remark. In the proof of the theorem above, we quietly and inconspicuously used
the fact that C[V1 × V2] ≃ C[V1] ⊗C C[V2] for affine varieties V1 and V2. This,
however, is not hard to prove.

Suppose a regular function f : V1 ×V2 → C is given by a pair of regular functions
f1 : V1 → C, f2 : V2 → C. The map f = (f1, f2) ↦→ f1 ⊗ f2 is a C-algebra
homomorphism thanks to the properties of the tensor product. Indeed, we have

(f1 + f ′
1) ⊗ (f2 + f ′

2) = (f1 ⊗ f2) + (f ′
1 ⊗ f ′

2)

and
(f1f

′
1) ⊗ (f2f

′
2) = (f1 ⊗ f2)(f ′

1 ⊗ f2).
It is clearly bijective because f1 ⊗ f2 = f ′

1 ⊗ f ′
2 if and only of f1 = f1 and f ′

2 = f ′
2

and each pair of regular functions f1, f2 defines a regular function f = (f1, f2) on
V1 ×V2. This remark was perhaps unnecessarily long for readers acquainted with
tensor products of rings but we have shown that C[V1 × V2] ≃ C[V1] ⊗C C[V2].
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The fact that every separated normal toric variety comes from an underlying
fan is also true, as was already mentioned, but, unfortunately, we are not going
to make the necessary effort to see this conclusion. It requires diving into the
correspondence between orbits of the action of TN on X and individual cones of
the fan Σ, and will remain, just barely, out of the scope of this work.

We end on a similarly unsatisfactory note in the case of smooth varieties. We call
a fan smooth if its every cone is smooth. Since smoothness is a local property
dependant on the dimensions of tangent spaces and local rings at points, which
always lie inside one of the glued-together affine toric varieties, an immediate
consequence of the aptly dubbed Smoothie theorem is that XΣ is smooth if and
only if Σ is smooth. The idea that smooth toric varieties always come from
smooth fans will, likewise, stay unexplored.

2.3 Resolution of Singularities on Toric Surfaces

The preceding text provided a very general view of toric varieties and their corre-
spondence to fans in real vector spaces. In this last section of the thesis we take
a look at a specific types of toric varieties, specifically toric varieties of dimension
two, which we call toric surfaces.

We know that a toric surface coming from a fan is always normal and separated
but not necessarily smooth. We study the singular points of such surfaces and
discover that there is in fact an algorithmic way to smooth them out, ‘resolve’
them, so to speak, by refining the defining fan.

There are, however, a few pieces of theory we did not address properly, or at all,
that are necessary for the following results to make sense. We shall either cite or
prove them as we go.

The content of this section is a somewhat complex conglomerate of Cox et al.
[2011], Sections 10.1 and 10.2, Fulton [1993] Sections 2.2 and 2.6 and last but not
least Oda [1985], Section 1.6.

We would like to understand the structure of Vσ for σ is strongly convex rational
polyhedral cone of dimension two. Let {e1, e2} be the basis of N . If σ is smooth,
then by definition its generators form a Z-basis of N so we can suppose σ =
Cone(e1, e2). Indeed, if this is not the case, consider the isomorphism N ≃ N ′

where N ′ ≃ Z2 is the lattice with basis the generators of σ and look at σ as a
cone in N ′

R ≃ NR.

Then, S = σ∗ ∩M are simply the linear combinations of the elements of the dual
basis, which we label {ε1, ε2}, with non-negative integral coefficients. In other
words, S = N{ε1, ε2}, hence

C[Sσ] = C[χε1 , χε2 ] ≃ C[x, y].

It follows that Vσ = Specm(C[Sσ]) ≃ Specm(C[x, y]) = C2 so the case when σ is
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smooth is not too interesting.

Before we tackle the general case, we consider the cone σ := Cone(e2, ke1 − e2)
for some k ∈ N, k ≥ 2 and on we march to wage war against Vσ.

If k ≥ 2, then σ is of course not smooth. What does Vσ look like in this case?
Consider the lattice N ′ with basis {e2, ke1 − e2}. Denote by σ′ the cone with the
same generators as σ but viewed as a cone in N ′

R. Then, σ′ is smooth and so
Vσ′ ≃ C2 by the observations already made. To describe Vσ, we need the following
result.

Proposition 2.3.1. Let N ′ is a sublattice of N of finite index (meaning N/N ′ is
finite) and σ ⊆ N ′

R ≃ NR a strongly convex rational polyhedral cone. Denote by
σ′ the cone with the same generators as σ considered as a cone in N ′

R. Then

(a) there is a natural isomorphism

N/N ′ ≃ ker(TN ′ → TN),

(b) G := N/N ′ acts on Vσ′ and the morphism Vσ′ → Vσ induced by the inclusion
N ′ ↪→ N is surjective and has kernel G. Therefore,

Vσ′/G ≃ Vσ.

Proof. We cannot prove this statement unless we dive into orbits of torus action
and deepen our understanding of convex cones. Thus, for a full proof, see for
instance Oda [1985], Proposition 1.25.

This proposition enables us to find an explicit form for Vσ if we can do so first for
N/N ′. We can write N and N ′ as N = Ze1 ⊕ Ze2 and N ′ = Ze2 ⊕ Z(ke1 − e2) =
kZe1 ⊕ Ze2. This makes it easy to see that N/N ′ ≃ Z/kZ. We (hopefully) know
this group quite well. One important fact to us is that, Z/kZ is isomorphic to
the multiplicative subgroup of C∗ consisting of k-th roots of unity, which we will
denote by µk. We study the action of N/N ′ on Vσ′ ≃ C2.

Denote by M ′ the dual lattice to M . The inclusion N ′ ⊆ N implies M ⊆ M ′.
Recall that we denote NQ := N ⊗Z Q and MQ := M ⊗Z Q. The bilinear pairing
M × N → Z induces a bilinear pairing MQ × NQ → Q. Given that we are
interested in µk ≃ N/N ′, we are, in the light of this discovery, prompted to define
the map

M ′/M ×N/N ′ → C∗,

(m′ +M,u+N ′) ↦→ e2πi⟨m′,u⟩

which basically maps m′ + M and u + N ′ to the ⟨m′, u⟩-th root of unity. This
statement makes sense because ⟨m′, u⟩ is in this scenario often a rational number.
Indeed, if the basis of N ′ is {e2, ke1 − e2}, then it is easy to calculate that the
basis of M ′ is { 1

k
ε1 + ε2,

1
k
ε1}. Hence M ′ ≃ Z( 1

k
ε1 + ε2) ⊕Z 1

k
ε1 ≃ 1

k
Zε1 ⊕Zε2 and

so
M ′/M ≃ (1

k
Zε1 ⊕ Zε2)/(Zε1 ⊕ Zε2) ≃ 1

k
Z/Z.
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As before, we will denote equivalence classes by [·], be it in M ′/M , N/N ′ or
any other quotient as long as the context is clear. Using the lattice isomorphism
above, we can write

⟨[a/k], [b]⟩ = ab

k
.

for [a/k] ∈ 1
k
Z/Z ≃ M ′/M and [b] ∈ Z/kZ ≃ N/N ′. This shows that we actually

have a mapping
M ′/M ×N ′/N → µk.

We ascertain it is well-defined. Suppose [a/k] = [a′/k] and [b] = [b′], Then,
a ≡ a′ (mod k) and b ≡ b′ (mod k), so ab ≡ a′b′ (mod k). It follows that
e2πiab/k = e2πia′b′/k. This bilinear mapping thus induces an isomorphism N ′/N ≃
HomZ(M ′/M, µk).

The last line finally gives us the form of the action of G := N ′/N on Vσ′ . If we
now denote the basis of M ′ as {m1,m2}, the previous paragraph implies that G
acts on C[Vσ′ ] = C[χm1 , χm2 ] ≃ C[x, y] by

[u] · χm′ = e2πi⟨m′,u⟩χm′

for m′ ∈ (σ′)∗ ∩M ′ and u = le1, l = 0, . . . , k − 1. We calculate that

⟨m1, e1⟩ =
⟨︃1
k
ε1 + ε2, e1

⟩︃
= 1
k

and similarly
⟨m2, e1⟩ = 1

k
.

Hence, if we set up the isomorphism µk ≃ N/N ′ by mapping e2πil/k ↦→ [le1], then
we have

e
2πil

k · (x, y) = (e 2πil
k x, e

2πil
k y)

for all l ≤ k − 1 and (x, y) ∈ Vσ′ as x = χm1 and y = χm2 . From this and
Proposition 2.3.1 we finally get the result that Vσ ≃ Vσ′/µk ≃ C2/µk if σ =
Cone(e2, ke1 − e2) and the action of µk on C2 is as above.

You might wonder why we went through all this stuff just to study this one
special case. We are glad you wonder and beg you put your mind at ease. The
cone Cone(e2, ke1 −e2) is actually not all that special. A general two-dimensional
strongly convex cone is not too different. We prove the following combinatorial
result.

Proposition 2.3.2 (Characterizing Two-Dimensional Strongly Convex Cones).
Let σ ⊆ NR be a two-dimensional strongly convex rational polyhedral cone. Then,
there exists a basis {e1, e2} of N such that

σ = Cone(e2, ke1 − le2)

for k > 0, 0 ≤ l < k and gcd(k, l) = 1.

55



Proof. Suppose σ = Cone(u1, u2) for primitive vectors u1, u2 ∈ N , which we
identify with Z2. Because of primitiveness, we can suppose one of u1, u2 is part
of the canonical basis of Z2, for instance u2 = (0, 1), and the other is (k, z) for
some positive integer k and z ∈ Z. Since the matrix(︄

1 0
c 1

)︄
,

for c ∈ Z, is a lattice automorphism of Z2 and(︄
1 0
c 1

)︄(︄
k 0
z 1

)︄
=
(︄

k 0
ck + z 1

)︄
,

we see that we can choose z arbitrarily modulo k. So, we take z := −l for some
0 ≤ l < k. The equality gcd(k, l) = 1 stems from the fact that u1 is primitive.
Hence, σ = Cone(e2, ke1 − le2) for k > 0, 0 ≤ l < k and gcd(k, l) = 1.

This proposition gives us a great advantage in dealing with Vσ for arbitrary
strongly convex rational cone σ. As a matter of fact, the calculations covered
in the last few pages are almost directly applicable to the situation when σ =
Cone(e2, ke1 − le2).

If N ′ now has the basis {e2, ke1 − le1}, then the dual basis of M ′ is { l
k
ε1 +

ε2,
1
k
ε1} =: {m1,m2}. Consequently, ⟨m1, e1⟩ = 1/k and ⟨m2, e1⟩ = l/k, so

N/N ′ ≃ µk acts on C2 by
ζ · (x, y) = (ζx, ζ ly)

where ζ := e2πi/k and , again, x = χm1 , y = χm2 .

With part of the preliminaries explained and proven, we are ready to progress
to the resolution of singularities on toric surfaces. On the level of affine toric
varieties, the isomorphism Vσ′/G ≃ Vσ, with notation as above, implies that Vσ

has only finitely many singular points because Vσ′ is smooth and G = N/N ′ is
finite. The idea stays the same for the toric variety XΣ where Σ is a fan. Since
every point of XΣ lies in some Vσ, σ ∈ Σ whereof there are finitely many, XΣ
also has only finitely many singular points. Unfortunately, we lack the resources
to provide a rigorous argument for this fact and instead must delegate tolerant
readers to Cox et al. [2011], Section 3.2 for a general discussion and Theorem
3.2.6 for the main result.

The idea behind smoothing out XΣ is to subdivide cones of Σ which are not
smooth into multiple new cones, which are. To formalize this, we first need to
touch upon toric morphisms and refinements of fans.

Definition 2.3.3 (Toric Morphism). Let XΣ1 , XΣ2 be normal toric varieties com-
ing from fans Σ1 in (N1)R and Σ2 in (N2)R. We call a morphism

φ : XΣ1 → XΣ2

toric if φ maps the torus TN1 ⊆ XΣ1 into TN2 ⊆ XΣ2 and φ|TN1
is a group

homomorphism.
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An important results states that lattice maps which are compatible with fans
yield toric morphisms between the corresponding toric varieties.

First things first, reusing the notation from Definition 2.3.3, we say that a Z-
linear map Φ : N1 → N2 is compatible with the fans Σ1 and Σ2 if for every cone
σ1 ∈ Σ1, one can find a cone σ2 ∈ Σ2 such that Φ(σ1) ⊆ σ2.

Now, the result.

Theorem 2.3.4. Let N1, N2 be lattices and Σi a fan in (Ni)R, i = 1, 2. If Φ :
N1 → N2 is a Z-linear map compatible with Σ1 and Σ2, then there exists a toric
morphism Φ : XΣ1 → XΣ2 such that Φ|TN1

is the map

Φ ⊗ 1 : N1 ⊗Z C∗ → N2 ⊗Z C∗.

Proof. See Cox et al. [2011], Theorem 3.3.4.

Finally, we elucidate what we mean by ‘resolution of singularities’. Recall that a
map f : X → Y between topological spaces X and Y is called proper if f−1(K)
is compact for every compact K ⊆ Y . Let X be a surface (two-dimensional
variety) and denote by Xsing the set of singular points of X. A proper morphism
φ : Y → X is called a resolution of singularities if Y is a smooth surface and φ
induces an isomorphism

Y \ φ−1(Xsing) ≃ X \Xsing

of varieties.

In the case of toric varieties, resolutions of singularities are induced by the re-
finements of fans corresponding to said varieties. If Σ is a fan in NR, we say that
a fan Σ′ is a refinement of Σ if every cone in Σ is a union of cones in Σ′. The
identity map N → N is then compatible with Σ and Σ′ and we obtain a toric
morphism XΣ′ → XΣ. In case Σ′ is smooth, then XΣ′ is a smooth variety.

In light of this, our strategy of smoothing out toric varieties will be as follows.
Consider an affine toric variety Vσ for σ a strongly convex rational polyhedral
cone in NR. Suppose Vσ has only one singular point Pσ. In particular, σ is
not smooth. We refine σ by inserting a new ray, effectively subdividing it into
two smaller cones, which together form a fan Σ. We will soon show this always
yields a refinement such that the resulting fan is smooth. The corresponding toric
morphism φσ : XΣ → Vσ restricts to an isomorphism

XΣ \ φ−1
σ (Pσ) ≃ Vσ \ Pσ

and is proper, so it is a resolution of singularities. This process is iterable and
scales to generic toric surfaces with finite number of singularities. One just needs
to make a refinement successively for every singularity. Since XΣ is obtained by
gluing together Vσ for all σ ∈ Σ, the final resolution of singularities is a gluing
of all the φσ. We must omit the full proof of this statement and instead make
one more reference to Cox et al. [2011], Example 10.1.8. Thankfully, with what
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is available to us at the moment, we can at least prove that a smooth refinement
always exists. This is the content of the following claim, for the content of which
we thank Cox et al. [2011] and their Theorem 10.1.10.

Theorem 2.3.5 (Resolution of Singularities on Toric Surfaces). Let Σ be a fan in
NR and XΣ a normal toric surface. There exists a smooth fan Σ′ refining Σ such
that the induced toric morphism φ : XΣ′ → XΣ is a resolution of singularities.

Proof. Thanks to the facts contained in the preceding few paragraphs, we know
that if such a refinement exists, then the identity map on the lattice N induces a
resolution of singularities.

Let σ1, . . . , σr be the two-dimensional cones in a fan Σ. Let Ni be the sublattice
of N with basis consisting of the ray generators of σi for every i. We define
mult(σi) := |N/Ni| and

s(Σ) :=
r∑︂

i=1
(mult(σi) − 1).

We will prove the existence of a smooth refinement of Σ by induction on s(Σ).

If s(Σ) = 0, then either r = 0 or mult(σi) = 1 for all i as mult(σi) is a positive
integer. It is clear that in this case Σ is already smooth because it is either empty
or the generators of σi form the basis of Ni ≃ N for each i. We take this as the
base case for the induction hypothesis.

Assume that we can find a smooth refinement for every Σ with s(Σ) < s for
some s ∈ N and consider a fan Σ with s(Σ) = s. If s ≥ 1 and Σ is not smooth,
then there exists a non-smooth cone σi ∈ Σ for some i. By Proposition 2.3.2,
σi = Cone(e2, ke1 − le2) for parameters k > 0, 0 ≤ l < k and gcd(k, l) = 1.
Consider the refinement Σ′ of Σ constructed by inserting the ray ρ := Cone(e1)
which subdivides σi into σ′

i = Cone(e2, e1) and σ′′
i = Cone(e1, ke1 − le2). We shall

show that s(Σ′) < s(Σ). For all j ̸= i, the values mult(σj) remain unchanged.
The cone σ′

i is smooth because {e1, e2} is the basis of N . Hence, mult(σ′
i) − 1 = 0

and σ′
i contributes nothing to the sum s(Σ′). We must deal with the cone σ′′

i .

The matrix (︄
0 −1
1 0

)︄
,

written with respect to the basis {e1, e2}, defines a Z-linear mapping which is
also an automorphism of N . It thus takes the cone σ′′

i to Cone(e2, le1 + ke2)
while maintaining the value mult(σ′′

i ). We need to make use of the following easy
number-theoretical lemma.
Lemma 2.3.6 (Can We Divide?, Exercise 10.1.1 in Cox et al. [2011]). Let u ∈
Z, v > 0. Then, there exist unique x, y ∈ Z such that 0 ≤ y < v and u = xv − y.

Proof. Let −y := u mod v. Then, 0 ≤ y < v and there exists unique x ∈ Z such
that xv − y = u.
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Continuation of the proof of Theorem 2.3.5. By Lemma 2.3.6, we write

k = xl − y

for some x ∈ Z and 0 ≤ y < l. Since gcd(k, l) = 1, we also have gcd(l, y) = 1.
Hence, σ′′

i = Cone(e2, le1 − ye2). Because l < k, if N ′′
i is the sublattice generated

by the generators of σ′′
i , we obtain

mult(σ′′
i ) = |N/N ′′

i | = |Z/lZ| < |Z/kZ| = |N/Ni| = mult(σi).

So, s(Σ′) < s(Σ) and the proof follows by induction.

The last thing we take a look at this thesis before we part ways forever and
ever is the promised algorithmic way to construct refinements of fans, hence also
resolution of singularities on toric surfaces, through continued fraction expansion.

We know that we can find a basis {e1, e2} of N such that a strongly convex cone
is of the form Cone(e2, ke1 − le2) for k > 0 and l ∈ Z. We shall call these integers,
the parameters of the cone. In the proof of Theorem 2.3.5, we subdivided
the cone σ := Cone(e2, ke1 − le2) into σ′ := Cone(e2, e1), which is smooth, and
σ′′ := Cone(e1, ke1 − le1) which may not be. We used Lemma 2.3.6 to find
b1 ≥ 2 and 0 ≤ l1 < l such that k = b1l − l1 and thus write the latter possibly
non-smooth cone as Cone(e2, le1 − l1e2), that is, with parameters (l, l1).

Iterating this operation – taking N ′′ to be the sublattice of N with basis being the
generators of σ′′, we again subdivide σ′′ into a smooth cone and a possibly non-
smooth cone with parameters l1, l2, where 0 ≤ l2 < l1 is defined by l = b2l1 − l2
for adequate b2 ≥ 2. We get the sequence

k = b1l − l1,

l = b2l1 − l2,

...
lr−3 = br−1lr−2 − lr−1,

lr−2 = brlr−1

(2.3.1)

which computes the parameters of the cones constructed by each additional sub-
division of the original non-smooth cone σ. Since k > l > . . . > lr−1 > . . . is
a strictly decreasing sequence of natural numbers, it terminates for some r ∈ N
with lr = 0. Dividing the i-th equation by li−1 (where we take l0 := l) in (2.3.1),
we obtain

k

l
= b1 − l1

l
,

l

l1
= b2 − l2

l1
,

...
lr−3

lr−2
= br−1 − lr−1

lr−2
,

lr−2

lr−1
= br.

(2.3.2)
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Since we also have bi ≥ 2 for all i ≤ r, we mingle all these equations together to
obtain the continued fraction expansion

k

l
= b1 − 1

b2 − 1
...− 1

br

=: [[b1, . . . , br]] (2.3.3)

Before we formulate our final theorem of the section and of the thesis about
the, hopefully not shocking, relation of these continued fraction expansions and
constructions of resolution of singularities on toric surfaces through refinements,
we need one number-theoretical result.

Proposition 2.3.7. Let k > l > 0 be coprime integers and k/l = [[b1, . . . , br]].
Define pi and qi recursively by the following rule.

p0 := 1, q0 := 0,
p1 = b1, q1 := 1,

and for all 2 ≤ i ≤ r

pi := bipi−1 − pi−2,

qi := piqi−1 − qi−2.

Then,

(1) the sequences (pi)r
i=0, (qi)r

i=0 are integral and increasing,

(2) [[b1, . . . , br]] = pi/qi for all i ≤ r,

(3) pi−1qi − piqi−1 = 1 for all i ≤ r,

(4) we have the following strictly decreasing sequence
d

k
= pr

qr

<
pr−1

qr−1
< . . . <

p1

q1
.

Proof. Can be found in most books covering the basics of number theory and
continued fractions but Cox et al. [2011] also generously provide their own proof
in Proposition 10.2.2.

With this final result, whose proof we also only cite since it is somewhat technical
and only summarizes in a rigorous way the observations made thus far using the
notation and content of Proposition 2.3.7, we bid farewell to our kind readers.

Theorem 2.3.8. Let σ := Cone(e2, ke1 − le2) be a strongly convex rational poly-
hedral cone with parameters k, l. Let u0 = e2 and let pi, qi denote the integers
from Proposition 2.3.7. Construct vectors

ui := pi−1e1 − qi−1e2

and cones
σi := Cone(ui−1, ui)

for 1 ≤ i ≤ r + 1. Then,
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(1) each σi is a smooth cone and ui−1, ui are its ray generators,

(2) σi ∩ σi+1 = Cone(ui) for each i,

(3) ⋃︁r+1
i=1 σi = σ, so the fan Σ consisting of σi and all their faces is a smooth

refinement of σ,

(4) the induced toric morphism XΣ → Vσ is a resolution of singularities.

Proof. Can be found in Cox et al. [2011], Theorem 10.2.3.
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Conclusion

We have defined and studied affine toric varieties, objects dancing on the border
between combinatorics and algebraic geometry. We have seen how convex polyhe-
dral cones, closed convex sets in the real euclidean space, determine the structure
of affine toric varieties, basically special sets of solutions to a finite number of
polynomial equations. We have also briefly discussed algebraic tori and proven
many intrinsic qualities of cones and affine toric varieties separately.

We did not stop at the affine plane. We have introduced the concept of abstract
variety and then glued together affine toric varieties to construct abstract toric
varieties – complex analytical spaces only locally homeomorphic to affine toric
varieties but still retaining combinatorial properties. We demonstrated that there
are also natural gluing methods on the other side of the spectrum, creating fans of
convex polyhedral cones. The wild and overly optimistic idea that gluing together
cones might somehow produce abstract toric varieties was actually right on the
money as we took great pains to show.

We ended with a glimpse into the theory of singularities on toric surfaces and de-
vised an algorithmic way to remove those through refinement of the corresponding
fans of two-dimensional cones.

The correspondence between combinatorics and algebraic geometry was what
originally prompted me to write a thesis on the topic of toric varieties and I
sincerely hope I have managed to convey some of the fascination I have felt
in an accessible manner. I expect I shall dedicate myself to finding more of
these correspondences in the near future. The podium where many mathematical
disciplines come together to perform a play is where lies my curiousity, reward
and fun.
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