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on the two-dimensional complex vector space. We then factor out this action
to construct an algebraic variety with one singular point and find the Dynkin
diagram in this singularity.
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Introduction
In this thesis, we will study the classical McKay correspondence, which is a
bijection between nontrivial finite subgroups of SL(2, C) and the simply laced
Dynkin diagrams. This correspondence has two parts, the algebraic and the
geometric. Both describe a way how to construct a Dynkin diagram from a
given subgroup of SL(2, C), but the tools they are using are very different. We
will firstly classify the finite subgroups of SL(2, C) and the simply laced Dynkin
diagrams and then cover both of the correspondences.
The structure of this thesis is inspired by Hemelsoet [2018], which covers similar
topics. In this thesis, I’ve reached similar results, however, I tried to present my
own proofs of the theorems.
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1. Finite subgroups of SL(2,C)
and Dynkin diagrams

1.1 Classification of finite subgroups of SL(2,C)
Our first goal is to classify all the finite subgroups of SL(2,C) up to conjugation.
Fix any finite G < SL(2,C) with more than two elements. Recall from linear
algebra and group theory:

• Every matrix g ∈ G satisfies g|G| = I, where I is the identity matrix.

• Over algebraically closed field, any matrix is conjugate to a matrix in Jordan
canonical form.

• A Jordan block B of dimension d > 1 cannot satisfy an equality Bn = I for
n > 0, therefore all matrices in G must be diagonalizable.

• Two diagonalizable matrices commute if and only if they share a common
eigenbasis. A proof of this statement can be found in Horn and Johnson
[2012] (Theorem 1.3.12)

• Since G < SL(2,C) and for diagonalizable matrices the determinant is
the product of eigenvalues, the eigenvalues of any matrix from G must be
mutually inverse.

Now we can start the classification. Denote A the set of all maximal abelian
subgroups of G and a subgroup Z < G depending on the parity of G: Z = {I,−I}
for |G| even and Z = {I} for |G| odd.

Proposition 1.1.1. The matrix −I is in G if and only if |G| is even.

Proof. If |G| is odd, then the order of any g ∈ G is also odd, therefore −I ̸∈ G.
If |G| is even, then it must contain an element of order 2. As shown above,
this matrix must be conjugate to a matrix of the form diag(λ, λ−1). Since order
of this matrix is 2, the eigenvalues must satisfy the equation λ2 = 1, therefore
λ ∈ {1,−1}. λ = 1 gives us a matrix I of order 1, λ = −1 gives us −I. These
matrices commute with any other matrix, therefore conjugation doesn’t change
them and we see that −I is the only possible matrix of order 2, which can be in
G.

Proposition 1.1.2. Let A1, A2 ∈ A, A1 ̸= A2. Then A1 ∩ A2 = Z.

Proof. Since Z is a subgroup of the center Z(SL(2,C)), it is also in the center
Z(G). If we take a group generated by the elements of A1 and elements of Z, its
generators commute, therefore the group is abelian. From maximality of A1 this
means that Z ≤ A1. Similarly Z ≤ A2, therefore Z ≤ A1 ∩ A2. Now suppose
b ∈ (A1 ∩A2)\Z. The only matrices in G, which have an eigenspace of dimension
d > 1 are in Z, therefore b has only one eigenbasis B up to permuting and scaling
the vectors. From which it follows that for any matrix in G commuting with b, B
is an eigenbasis. Denote A = {g ∈ G|B is an eigenbasis of g}. This set is closed
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under multiplication, inverses and contains I, therefore a subgroup of G. From
the property of sharing an eigenbasis, A is abelian. Therefore A1 ≤ A ≥ A2 and
from the maximality of A1, A2 follows A1 = A = A2.
Corollary 1.1.3. |G| + (|A| − 1)|Z| = ∑︁

A∈A |A|

Proof. Every element of G \Z is in some A ∈ A, from the Proposition in exactly
one, therefore |G| − |Z| = ∑︁

A∈A(|A| − |Z|) = ∑︁
A∈A |A| − |A| · |Z|.

Proposition 1.1.4. For every A ∈ A there exists a matrix M ∈ GL(2,C) and a
natural number n, such that A = {M ·diag(e 2kπi

n , e− 2kπi
n )·M−1|k ∈ {0, . . . , n−1}}.

Proof. The set Z is not a maximal abelian subgroup of G (the group generated
by elements of Z and any other element is abelian), therefore for all A ∈ A it
holds A\Z ̸= ∅. According to the proof of previous proposition, if we choose any
b ∈ a\Z with eigenbasis B, then A = {g ∈ G|B is an eigenbasis of g}. Therefore
if we define M as the matrix, whose columns are the vectors of B, A will be
of the form {M · diag(λi, λ−1

i ) · M−1|i ∈ {1, . . . , |A|}} for some λi ∈ C. Since
the order of every a ∈ A is a divisor of |G|, only possible λi are those of the
form e

2kπi
|G| for k ∈ {0, . . . , |G| − 1}. Therefore A is a subgroup of a cyclic group

{M · diag(e
2kπi
|G| , e− 2kπi

|G| ) ·M−1|k ∈ {0, . . . , |G| − 1}}, from which it follows it is of
the form we claimed.
Proposition 1.1.5. If A ∈ A and g is in the normalizer N(A), then either
gag−1 = a for every a ∈ N(A) \ A, or gag−1 = a−1 for every a ∈ N(A) \ A.
Proof. Since A is cyclic, any homomorphism from A is given by its value on a
generator of A. The map a ↦→ gag−1 is a homomorphism and conjugation doesn’t
change the eigenvalues of a matrix, therefore only possible values of gag−1 are a
and a−1.
Proposition 1.1.6. For A ∈ A, either N(A) = A or |N(A)| = 2|A|.
Proof. Define a homomorphism N(A) → Aut(A), g ↦→ φg, φg(a) = gag−1. The
image of this homomorphism has one or two elements, the kernel consists of those
elements, which commute with all elements from A, from maximality of A this
kernel is A.
Theorem 1.1.7. For odd |G|, G is cyclic. For even |G|, G is cyclic or satisfy
the equality |A| = |G|

4 + 1.
Proof. When we consider the action of conjugation on A, i.e. φ : G → S(A),
φg(A) = gAg−1 and denote the orbit of A as Conj(A), then |Conj(A)| = |G|

|N(A)| .
Therefore if we denote lA = |N(A)|

|A| , we get an equality |A| = |G|
lA|Conj(A)| . From

Corollary 1.1.3 then follows

1 + (|A| − 1)|Z|
|G|

=
∑︂
A∈A

1
lA|Conj(A)| .

Conjugate groups have conjugate normalizers, therefore if we define C a set of
orbits {Conj(A)|A ∈ A, C = Conj(A)}, we can rewrite right-hand side of the
equation and get

1 + (|A| − 1)|Z|
|G|

=
∑︂
A∈A

1
lA|Conj(A)| =

∑︂
C∈C

∑︂
A∈C

1
lA|Conj(A)| =

∑︂
C∈C

1
lC
,
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where lC is defined as lA of any A ∈ C. But since all lA are 1 or 2, the right-hand
side is now some integral multiple of 1

2 . Therefore left-hand side must be also,
so |G| divides 2(|A| − 1)|Z|. For |G| odd, all A ∈ A must also have odd order,
therefore at least 3. For |G| even, they all contain −I, therefore they must have
even order, therefore at least 4. In both cases, A \ Z always contains at least 2
elements, which are not in any other Ai \ Z, therefore |G| > 2|A|. This means
that 2(|A| − 1)|Z| < |G| · |Z|. For |G| odd this means 2(|A| − 1)|Z| = 0|G|,
therefore |A| = 1 and A = {G}. Since all A ∈ A are cyclic, G is cyclic. For even
|G|, we can either have 2(|A| − 1)|Z| = 0|G| and for the same reason is G cyclic,
or 2(|A| − 1)|Z| = 1|G|, from which follows the statement.

Remark 1.1.8. From the proof it also follows that in the case of non-cyclic
groups, ∑︁C∈C

1
lC

= 3
2 , so C has either two elements with one having lC1 = 1 and

the other lC1 = 2, or three elements with lC1 = lC2 = lC3 = 2

From now on, assume G is not cyclic (and therefore |G| is even and |Z| = 2).

Proposition 1.1.9. If A1, A2 or A1, A2, A3, are representatives of different
elements of C, then 1

|G| + 1
4 = ∑︁

i
1

lAi
|Ai|

Proof. Follows from the equality |G|
4 + 1 = A = ∑︁

i |Conj(Ai)| when divided by
|G| and using the equality |A| = |G|

lA|Conj(A)| .

Proposition 1.1.10. If |C| = 3, the only values of |Ai| and |G| satisfying the
equality 1

G
+ 1

4 = ∑︁
i

1
lAi

|Ai| are (up to permutation of Ai):
Type: |A1| |A2| |A3| |G|

I 4 4 2k 4k
II 4 6 6 24
III 4 6 8 48
IV 4 6 10 120

If |C| = 2, the only possible values satisfying the equation (where lA1 = 1, lA2 = 2)
are:
Type: |A1| |A2| |G|

V 4 2k 4k
VI 6 4 24

Proof. Every A ∈ A contains the element −I of order 2, therefore |A| is even.
{I,−I} is not maximal, therefore |A| ≥ 4. If |C| = 3, we may WLOG assume
|A1| ≤ |A2| ≤ |A3|. Then |A1| = 4, since 6 ≤ |A1| ≤ |A2| ≤ |A3| implies∑︁
i

1
2|Ai| ≤ 1

4 <
1
4 + 1

|G| . If |A2| = 4, any value |A3| = 2k satisfies the equation with
|G| = 4k. If |A2| = 6, the only possible values for |A3| are 6, 8 and 10, otherwise
again ∑︁

i
1

2|Ai| ≤ 1
4 <

1
4 + 1

|G| . For the same reason 8 ≤ |A2| does not lead to a
solution. If |C| = 2 and lA1 = 1, lA2 = 2, then |A1| = x, |A2| = y is a solution
of the equation if and only if |A1| = |A2| = x, |A3| = y is a solution of the case
|C| = 3.

Proposition 1.1.11. The group G has 2 +∑︁
i

|Ai|−2
lAi

conjugacy classes.

Proof. Besides ±I, there are |Ai| − 2 elements in each Ai, therefore there exist
(|Ai| − 2)|Conj(Ai)| = (|Ai| − 2) |G|

lAi
|Ai| such elements in ⋃︁

Conj(Ai). Each of
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these elements commutes only with its maximal abelian subgroup, therefore has
conjugacy class of size |G|

|Ai| . Therefore ⋃︁Conj(Ai) \ {±I} splits into |Ai|−2
lAi

conju-
gacy classes. If we sum over i and add the conjugacy classes {I} and {−I}, we
get the expression 2 +∑︁

i
|Ai|−2
lAi

.

Proposition 1.1.12. For every n ∈ N, SL(2,C) has exactly one cyclic subgroup
of order n up to conjugation.

Proof. The group {diag(e 2kπi
n , e− 2kπi

n )|k ∈ {0, . . . , n− 1}} satisfies the properties,
therefore existence is proved. From Proposition 1.1.4 it follows that any two such
groups are conjugate.

Proposition 1.1.13. The subgroup of type I exists if and only if k is even. The
subgroup of type V exists if and only if k is odd and greater than 1. In both cases,
the group is unique up to conjugation.

Proof. Let G be group of the type I or V. According to Proposition 1.1.4, we
can find a matrix S with eigenvalues e iπ

k , e− iπ
k in the 2k-element cyclic subgroup

and a matrix T with eigenvalues e iπ
2 , e− iπ

2 in one of the 4-element maximal cyclic
subgroups. Since these matrices do not commute and |Conj(⟨S⟩)| = |G|

l⟨S⟩|⟨S⟩| = 1
(in other words, ⟨S⟩ is normal), it must hold TST−1 = S−1. Let B = (b1, b2) be
a basis, such that

[S]B =
(︄
e

iπ
k 0

0 e− iπ
k

)︄
.

If we denote the elements of [T ]B as

[T ]B =
(︄
q r
s t

)︄
,

we can compute its inverse

[T ]−1
B = 1

qt− rs

(︄
t −r

−s q

)︄
,

where from T ∈ SL(2,C) it follows that qt − rs = det(T ) = 1, and get a matrix
equality

(︄
qte

iπ
k − rse− iπ

k qr(e− iπ
k − e

iπ
k )

st(e iπ
k − e− iπ

k ) qte− iπ
k − rse

iπ
k

)︄
= [TST−1]B = [S−1]B =

(︄
e− iπ

k 0
0 e

iπ
k

)︄
.

From the equality of top right corners we learn that either q = 0 or r = 0, from
the equality of bottom left corners we learn that either s = 0 or t = 0. Since

det(T ) = qt − rs = 1, this gives us only two possibilities, [T ]B =
(︄
λ 0
0 λ−1

)︄
or

[T ]B =
(︄

0 −λ
λ−1 0

)︄
for some λ ∈ C∗, out of which only the second one gives us

the equality of the diagonal elements. If we now define a basis B′ = (λb1, b2), we
get

[S]B′ =
(︄
e

iπ
k 0

0 e− iπ
k

)︄
, [T ]B′ =

(︄
0 −1
1 0

)︄
.
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Since G must be generated by S and T (the subgroup ⟨S, T ⟩ contains an element
of order 2k and is not abelian, there is no such subgroup of SL(2,C) with order
less than 4k), this proves the uniqueness. To show the existence, let

S =
(︄
e

iπ
k 0

0 e− iπ
k

)︄
, T =

(︄
0 −1
1 0

)︄

and G = ⟨S, T ⟩. Since T ⟨S⟩T−1 = ⟨S⟩, ⟨S⟩ is a normal subgroup with 2k
elements. Since T ̸∈ ⟨S⟩, but T 2 = −I ∈ ⟨S⟩,

⃓⃓⃓
⟨S,T ⟩
⟨S⟩

⃓⃓⃓
= 2. Therefore ⟨S, T ⟩ has

4k elements. It is not abelian and contains an element of order 2k, therefore it is
either type I or type V. If k is odd, it can’t be of the type I, because the number
of sets conjugate to A1 would have to be |G|

|A1|·lA1
= k

2 , which is not an integer. If k
is even, then Sk/2TS−k/2 = Sk/2Sk/2T = −IT = T 3 = T−1, from which it follows
that l⟨T ⟩ = 2, therefore G is a group of the type I.

Proposition 1.1.14. A group of type II does not exist. A group of type VI exists
and is unique up to conjugation.

Proof. LetG be a group of the type II or VI. In both cases, there are four maximal
abelian subgroup of order 6, therefore eight matrices with eigenvalues eπi

3 and
e− πi

3 . Denote them M1, M2, M3, M4, M−1
1 , M−1

2 , M−1
3 and M−1

4 . The group
⟨M1⟩ acts on {M2,M3,M4,M

−1
2 ,M−1

3 ,M−1
4 } by conjugation. Since an element of

the set commute with an element of the group if and only if the element of the
group is ±I, the stabilizer of every element is {±I} and there are two orbits of
size 3. Suppose M−1

i = Mn
1 MiM

−n
1 . Then for any Mj = Mm

1 MiM
−m
1 it holds

M−1
j = Mm

1 M
−1
i M−m

1 = Mn+m
1 MiM

−n−m
1 = Mn

1 MjM
−n
1 , therefore if one element

in the orbit has its inverse in the same orbit, than this holds for all elements of the
orbit. Therefore this can’t happen, since the orbits have odd number of elements.
Therefore |Conj(⟨M2⟩)| ≥ 3 and G is of type VI. WLOG, we can therefore
assume M1, M2, M3 and M4 lie in the same conjugacy class, and M1 act on the
rest by conjugation as permutation (M2 M3 M4).

Since G is of the type VI, none of the Mi is conjugate to its inverse, therefore
orbit of M1 under the action of conjugating by ⟨M2⟩ is {M1,M3,M4}. Let M2
act on this set as a permutation (M1 Mi Mj) for {i, j} = {3, 4}. In the case
i = 3, j = 4 we reach a contradiction, since conjugating by M3 = M1M2M

−1
1

would give us a permutation (M2 M3 M4) ◦ (M1 M3 M4) ◦ (M2 M3 M4)−1 =
(M1 M4 M2), but M3 = M2M1M

−1
2 would give us (M1 M3 M4) ◦ (M2 M3 M4) ◦

(M1 M3 M4)−1 = (M1 M2 M4). Therefore i = 4, j = 3. From this follows
that the matrix M1M

−1
2 acts as a permutation (M2 M3 M4) ◦ (M1 M4 M3)−1 =

(M1 M4)(M2 M3). Therefore M1M
−1
2 is a group element of order 4. Let B =

(b1, b2) be a basis, such that

[M1]B =
(︄
e

πi
3 0

0 e− πi
3

)︄
.

Suppose

[M−1
2 ]B =

(︄
q r
s t

)︄
,
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therefore
[M1M

−1
2 ]B =

(︄
qe

πi
3 re− πi

3

se
πi
3 te− πi

3

)︄
.

The matrix M−1
2 is in SL(2,C), therefore qt− rs = 1. It has eigenvalues eπi

3 and
e− πi

3 , therefore q + t = tr([M−1
2 ]B) = 1. The matrix M1M

−1
2 has eigenvalues ±i,

therefore qeπi
3 + te− πi

3 = tr([M1M
−1
2 ]B) = 0. From the last two equalities follows

0 = qe
πi
3 + (1 − q)e− πi

3 = 1−
√

3i
2 +

√
3iq, q = 3+

√
3i

6 , t = 3−
√

3i
6 . Therefore

[M−1
2 ]B =

(︄
3+

√
3i

6 r

− 2
3r

3−
√

3i
6

)︄

for some r ∈ C∗. Again, we can change the basis to B′ = (rb1, b2) and then

[M1]B′ =
(︄
e

πi
3 0

0 e− πi
3

)︄

[M−1
2 ]B′ =

(︄
3+

√
3i

6 1
−2

3
3−

√
3i

6

)︄
.

The group ⟨M1,M2⟩ must be the whole G, since there is no subgroup of SL(2,C)
with order less then 24 and two noncommuting elements of order 6. This proves
the uniqueness. To prove the existence, let

M1 =
(︄
e

πi
3 0

0 e− πi
3

)︄

M2 =
(︄

3−
√

3i
6 −1
2
3

3+
√

3i
6

)︄

M3 =
(︄

3−
√

3i
6

1−
√

3i
2

−1−
√

3i
3

3+
√

3i
6

)︄

M4 =
(︄

3−
√

3i
6

1+
√

3i
2

−1+
√

3i
3

3+
√

3i
6

)︄

By direct computation, one can show that this set of matrices is closed under
under conjugation by M1 and M2, which act on it as the already mentioned per-
mutations (M2 M3 M4) and (M1 M2 M4) respectively. Therefore the action of
conjugation of M1, M2, M3 and M4 by ⟨M1,M2⟩ can be viewed as a group homo-
morphism ⟨M1,M2⟩ → A4. This homomorphism has kernel {±I}, since there is
no other element commuting with all of these matrices. Therefore ⟨M1,M2⟩ is a
group of order at most 24, since it contains two noncommuting elements of order
6, it is of the type VI.

Proposition 1.1.15. A group of type III does exist and is unique up to conjuga-
tion.

Proof. Let G be a group of the type III. There it contains 6 matrices with eigen-
values e iπ

4 and e
iπ
4 , denote them M1, M2, M3, M−1

1 , M−1
2 and M−1

3 . The set
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{M2,M3,M
−1
2 ,M−1

3 } is closed under conjugation by ⟨M1⟩. Since the only ele-
ments from ⟨M1⟩, which commute with some element from {M2,M3,M

−1
2 ,M−1

3 },
are ±I, the kernel of this action is {±I} and the action is transitive. The conjuga-
tion of M2 by M1 cannot be M−1

2 , otherwise the conjugation of M−1
2 by M1 would

beM2 and the orbit would have only these two elements. Therefore we can WLOG
assume M1 acts on {M2,M3,M

−1
2 ,M−1

3 } as the permutation (M2 M3 M
−1
2 M−1

3 ).
For the same reason, the matrix M2 acts on {M1,M3,M

−1
1 ,M−1

3 } as a permu-
tation (M±1

1 M3 M
∓1
1 M−1

3 ). The matrix M1M
2
2 therefore acts on the set of all

eight matrices as (M2 M3 M
−1
2 M−1

3 ) ◦ (M±1
1 M3 M

∓1
1 M−1

3 )2, therefore as a per-
mutation (M1 M

−1
1 )(M2 M3)(M−1

2 M−1
3 ). From this follows M1M

2
2 is an element

of order 4. Let B = (b1, b2) be a basis, such that

[M2]B =
(︄
e

πi
4 0

0 e− πi
4

)︄
.

Suppose

[M1]B =
(︄
q r
s t

)︄
,

therefore
[M1M

2
2 ]B =

(︄
iq −ir
is −it

)︄
.

Since M1 has eigenvalues e iπ
4 and e iπ

4 , its trace is
√

2. Since M1M
2
2 has order 4, it

has eigenvalues ±i and its trace is zero. Therefore q+ t =
√

2, iq− it = 0, which
has solution q = t =

√
2

2 . Since M1 ∈ SL(2,C), it must be of the form

[M1]B =
(︄ √

2
2 r

− 1
2r

√
2

2

)︄
.

Again, we change the basis to B′ = (
√

2rb1, b2) to get

[M2]B′ =
(︄
e

πi
4 0

0 e− πi
4

)︄

[M1]B′ =
(︄ √

2
2

√
2

2
−

√
2

2

√
2

2

)︄
.

Since M1 and M2 does not commute and both have order 8, the group ⟨M1,M2⟩
must be the whole G, which proves the uniqueness. To prove the existence, let

M2 =
(︄
e

πi
4 0

0 e− πi
4

)︄

M1 =
(︄ √

2
2

√
2

2
−

√
2

2

√
2

2

)︄
.

Since the set of 32 vectors{︄
ωv

⃓⃓⃓⃓
⃓ v ∈

{︄(︄
1
0

)︄
,

(︄
0
1

)︄
,

(︄√
2

2√
2

2

)︄
,

(︄ √
2

2
−

√
2

2

)︄}︄
, ω ∈

{︄
±1,±i,±

√
2

2 ±
√

2
2 i

}︄}︄
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is closed under multiplying by M1 and M2, it is closed under multiplying by all
matrices from ⟨M1,M2⟩. These vectors generate the space C2, therefore a matrix
is uniquely determined by its action on these vectors and the ⟨M1,M2⟩ can be
embedded to S32. Therefore it is finite and since it contains two noncommuting
elements of order 8, it is of the type III.

Proposition 1.1.16. A group of type IV exists and is unique up to conjugation.

Proof. Let G be a group of type IV. It contains a matrix M1 with eigenvalues e iπ
5

and e− iπ
5 . Let B = (b1, b2) be a basis, such that

[M1]B =
(︄
e

πi
5 0

0 e− πi
5

)︄
.

Let M2 be another matrix with the same eigenvalues, which generates a different
maximal abelian subgroup. Suppose

[M2]B =
(︄
q r
s t

)︄
.

Since M2 has eigenvalues e iπ
5 and e− iπ

5 , it has trace q + t = 2cos(π5 ) = 1+
√

5
4 .

Since M1M2 has order 3, 5, 6, 10 or 4, its trace eπi
5 q + e− πi

5 t can be 2cos(2πα)
for α ∈ { 1

10 ,
2
10 ,

3
10 ,

4
10 ,

1
6 ,

2
6 ,

1
4}. The same holds for the matrix M−1

1 M2 with the
trace e− πi

5 q + e
πi
5 t. If we add these equations, we get 2cos(2πα1) + 2cos(2πα2) =

2cos(π5 )q+2cos(π5 )t = 4cos2(π5 ). The only solution with possible α1, α2 is α1 = 1
10 ,

α2 = 1
6 or α1 = 1

6 , α2 = 1
10 . We can WLOG assume M1M2 has eigenvalues e iπ

5 and
e− iπ

5 , otherwise we can redefine M2 to be M−1
2 and then M1M

new
2 = (M old

2 M−1
1 )−1,

which is a matrix conjugated to M−1
1 M old

2 and have the same eigenvalues. We
can then compute q and t from q + t = 1+

√
5

4 and e
πi
5 q + e− πi

5 t = 1+
√

5
4 and get

q = 1+
√

5
4

1−e
πi
5

1−e
2πi

5
= · 1+

√
5

4(1+e
πi
5 )

, t = · (1+
√

5)e
πi
5

4(1+e
πi
5 )

. The same way as in the previous cases,
we can change the basis, such that both matrices M1, M2 have with respect to
that basis some fixed form. Since there is no other subgroup of SL(2,C) with
two noncommuting matrices of order 10, this shows uniqueness. Since elements
of this matrices are in very complicated form, we will not prove the existence this
way. The proof of the can be found in Lamotke [1986] (page 35).

Definition 1.1.17. The cyclic group of order n is denoted by Cn. The group
of type I or V of order 4n is called the binary dihedral group and is denoted by
BD4n. The group of type VI is called the binary tetrahedral group and is denoted
by BT . The group of type III is called the binary octahedral group and denoted
by BO. The group of type IV is called the binary icosahedral group and denoted
by BI.

The names of groups BT , BO and BI are derived from the names of the platonic
solids, because the quotient group G/{±I} is isomorphic to the rotation group
of the corresponding solid. More about this also in Lamotke [1986].
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1.2 Dynkin diagrams
Definition 1.2.1. A multigraph is a triple (V,E, f), where V is a nonempty finite
set, E is a finite set and f is a map assigning to every element of E a set of the
form {u, v} for some u, v ∈ V . The elements of the set V are called vertices, the
elements of E edges. Note that we allow edges e for which f(e) = {v, v}, such
edges are called loops. A submultigraph of a multigraph (V,E, f) is a multigraph
(V ′, E ′, f ′) satisfying V ′ ⊆ V , E ′ ⊆ E, f ′ = f |E′.

Definition 1.2.2. Two multigraphs (V,E, f) and (V ′, E ′, f ′) are isomorphic if
there exists a bijection of vertices α : V → V ′ and a bijection of edges β : E → E ′,
which for all edges e, f(e) = {u, v} satisfy f ′(β(e)) = {α(u), α(v)}. In this thesis,
isomorphic graphs will be considered as same.

Definition 1.2.3. A multigraph (V,E, f) is said to be connected if for any two
vertices u, v ∈ V there exists a walk from u to v, which means there exists a
natural number n, vertices w1, . . . , wn and edges e1, . . . , en−1 such that w1 = u,
wn = v and f(ei) = {wi, wi+1}.

Definition 1.2.4. An adjacency matrix of a graph (V,E, f) is a square matrix M
of order |V |, whose rows and columns are indexed by vertices and whose elements
are defined as Mu,v = |{e ∈ E|f(e) = {u, v}}|.

Remark 1.2.5. A multigraph is (up to isomorphism) uniquely determined by its
adjacency matrix.

Definition 1.2.6. Let M be a real matrix of order n. Its spectral norm ||M ||
is defined as max

{︂
||Mv||

||v||

⃓⃓⃓
0 ̸= v ∈ Rn

}︂
, where ||v|| is the Euclidean norm of a

vector v.

Remark 1.2.7. Since the value ||Mv||
||v|| depends only on the direction of the vector

and not the magnitude, the supremum of the values ||Mv||
||v|| for nonzero vectors is

the same as supremum for only the unit vectors. The set of all unit vectors is
compact, therefore the maximum in the definition is attained.

Definition 1.2.8. A simply laced Dynkin diagram is a connected multigraph with-
out loops, whose adjacency matrix has the spectral norm ||M || < 2. An extended
simply laced Dynkin diagram is a connected multigraph without loops, whose ad-
jacency matrix has the spectral norm ||M || = 2. In this thesis, we will call them
only Dynkin diagrams, resp. extended Dynkin diagrams.

Proposition 1.2.9. (Perron-Frobenius) Let M be a symmetric matrix with
nonnegative elements. Then there exists a nonzero eigenvector xM with nonneg-
ative components corresponding to an eigenvalue ||M ||.

Proof. Since M is symmetric, the vector space Rn has an orthogonal basis B =
(b1, . . . , bn) consisting of eigenvectors of M , Mbi = λibi. WLOG suppose |λ1| ≥
· · · ≤ |λn|. For a vector v = ∑︁

aibi, ai ∈ R then it holds ||Mv||2 = ||∑︁ aiλibi||2 =∑︁
a2
iλ

2
i ≥ ∑︁

a2
iλ

2
n = λ2

n||v||. For the vector bn it holds ||Mbn||2 = λ2
n||bn||, there-

fore |λn| is the spectral norm of M . Now define a vector xM componentwise as the
absolute value of bn, i. e. if bn = (β1, . . . , βn)T , then xM = |bn| = (|β1|, . . . , |βn|)T .
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Then compomnentwise MxM = M |bn| ≥ |Mbn| = |λnbn| = ||M || · |bn| = ||M ||xM .
But this inequality can’t be strict in any component, otherwise would ||MxM ||
be greater than ||M || · ||xM ||, which is a contradiction with the definition of the
spectral norm. Therefore MxM = ||M ||xM .

Remark 1.2.10. For a general matrix with nonnegative elements, the vector xM
does not have to be unique, we will denote by xM any fixed vector with these
properties.

Corollary 1.2.11. Let M be an adjacency matrix with nonnegative elements
and x its eigenvector corresponding to an eigenvalue λ, which has only positive
components. Then ||M || = λ.

Proof. Since xM is nonzero and has only nonnegative components, the value xTxM
is positive. Therefore λxTxM = (Mx)TxM = xTMxM = ||M ||xTxM implies
||M || = λ.

Proposition 1.2.12. Let G = (V,E, f) be a connected multigraph, M its adja-
cency matrix. Then any nonzero eigenvector xM with nonnegative components
has all components strictly positive.

Proof. The vector xM is nonzero and has only nonnegative components, there-
fore it has some positive component. Suppose there is some vertex, such that
the corresponding component of xM is zero. Since G is connected, we can
find an edge e, f(e) = {u, v}, such that the components xM,u, xM,v of vec-
tor xM satisfy xM,u > 0 and xM,v = 0. Since M and xM are nonnegative,
(MxM)v = ∑︁

x∈V Mv,xxM,x ≥ Mv,uxM,u ≥ xM,u > 0. But xM is an eigenvector of
M , which leads to a contradiction.

Proposition 1.2.13. Let G = (V,E, f) be a connected multigraph and M its
adjacency matrix. Then xM is defined uniquely up to scaling.

Proof. Suppose xM and x′
M are two eigenvectors with strictly positive compo-

nents. Since they correspond to the same eigenvalue, any linear combination of
them is also an eigenvector. Let ε be the smallest real number, such that xM−ϵx′

M

has a zero component. This vector is an eigenvector with nonnegative compo-
nents and one of the components is zero, therefore from the previous Proposition
it follows it is the zero vector and xM = ϵx′

M .

Proposition 1.2.14. Let G = (V,E, f) be a connected multigraph with adjacency
matrix M and G′ = (V ′, E ′, f ′) its proper connected submultigraph with adjacency
matrix M ′. Then ||M || > ||M ′||.

Proof. Define a vector w ∈ RV as wu = xM ′,u if u ∈ V ′ and wu = 0 otherwise.
Define a matrix N of order |V | as Nu,v = M ′

u,v if u, v ∈ V ′ and 0 otherwise. Since
G is connected and G′ is its proper submultigraph, there must be an edge e,
f(e) = {u, v}, such that at least one of the vertices u, v is in V ′, WLOG u. Then
(Mw)v ≥ (Nw)v+xM ′,u > ||M ′||wv and for other vertices i ∈ V it holds (Mw)i ≥
(Nw)i = ||M ′||wi, therefore ||Mw|| > ||M ′|| · ||w|| and ||M || > ||M ′||.

Corollary 1.2.15. An extended Dynkin diagram can’t be a proper submultigraph
of another extended Dynkin diagram.
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Theorem 1.2.16. Every extended Dynkin diagram either is in one of the infinite
families {Ãn|n ≥ 1}, {D̃n|n ≥ 4} or is one of three graphs Ẽ6, Ẽ7, Ẽ8:
Ã1 = , Ã2 = , Ã3 = , Ã4 = , . . .
D̃4 = , D̃5 = , D̃6 = , D̃7 = , . . .

Ẽ6 = , Ẽ7 = , Ẽ8 =

Proof. For each of the graphs on the list define a vector x ∈ RV by assigning
these values to vertices:

1 1
,

1

1 1
,

1

1 1 1
,

1

1 1 1 1
, . . .

1
1 2

1
1 ,

1

1
2 2

1

1
,

1

1
2

2
2

1

1
,

1

1
2

2 2
2

1

1
, . . .

1

1

2

2 3 2 1
,

1 2

2

3 4 3 2 1
,

12

3

4 6 5 4 3 2
We can check that for each multigraph, the vector x is an eigenvector of the
adjacency matrix M corresponding to the eigenvalue 2 (it can be seen from the
picture since for every vertex, the sum of values of its neighbours is twice the
value of the vertex, if one counts multiplicities in the multigraph Ã1). From
Corollary 1.2.11 then follows these multigraphs are extended Dynkin diagrams.
Now suppose there exists an extended Dynkin diagram, which is not on the list.
Since Ã1 is not its submultigraph, it can’t have multiple edges. Since none other
Ãn is its submultigraph, it must be a tree. Since D̃4 is not its submultigraph, its
vertices must have a degree at most 3. Since none other D̃n is its submultigraph,
it must have at most one vertex of degree 3. On the other hand, it must have a
vertex of degree 3, otherwise, it would be a submultigraph of some Ãn. Therefore
it consists of one vertex of degree 3 and three ”branches” coming from it:

Since Ẽ6 is not its submultigraph, the length of one of these ”branches” must be
1.

The other two must be longer than 1, otherwise, it would be a submultigraph of
some D̃n. On the other hand, one of them must be shorter than 3, otherwise, Ẽ7
would be its multigraph.

But then either it is a submultigraph of Ẽ8 or Ẽ8 is its submultigraph.

Corollary 1.2.17. Every Dynkin diagram either is in one of the infinite families
{An|n ≥ 1}, {Dn|n ≥ 4} or is one of three graphs E6, E7, E8:
A1 = , A2 = , A3 = , A4 = , . . .
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D4 = , D5 = , D6 = , D7 = , . . .

E6 = , E7 = , E8 =

Proof. In the proof of the theorem, we actually showed that every connected
multigraph either is a submultigraph of an extended Dynkin diagram or contains
an extended Dynkin diagram as a submultigraph. Therefore the Dynkin diagrams
are exactly connected proper submultigraphs of the extended Dynkin diagrams.

Remark 1.2.18. The extended Dynkin diagrams are called extended because we
get them when we ”extend” Dynkin diagrams by one new vertex (in a suitable
way). The letters A, D and E come from the classification of more general
Dynkin diagrams, which uses the letters B, C, F and G for the not-simply-laced
ones.
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2. The algebraic correspondence

2.1 Introduction to the representation theory of
finite groups

Definition 2.1.1. Let G be a finite group. A representation of G over a field K
is a group homomorphism ρ : G → GL(n,K) for some n ∈ N. The number n
is called the dimension of the representation and denoted dim(ρ). An invariant
subspace of the representation is a vector subspace V ⊆ Kn, such that for all
g ∈ G and v ∈ V holds ρ(g)v ∈ V . A representation is said to be irreducible (or
simple) if it does not have any invariant subspaces other than 0 and Kn. It is
said to be faithful if ρ is injective.

Definition 2.1.2. Let ρ1, ρ2 be two representations of G over a field K. A
homomorphism (resp. isomorphism) of vector spaces f : Kdim(ρ1) → Kdim(ρ2) is
said to be a homomorphism (resp. isomorphism) of representations ρ1 → ρ2 if
for every g ∈ G and v ∈ Kdim(ρ1) it holds f(ρ1(g)v) = ρ2(g)f(v).

Definition 2.1.3. Let ρ1, ρ2 be two representations of G over a field K. The
direct sum ρ1 ⊕ ρ2 is defined as a representation of dimension dim(ρ1) + dim(ρ2)

assigning to g ∈ G a block diagonal matrix
(︄
ρ1(G) 0

0 ρ2(g)

)︄
. The tensor product

ρ1 ⊗ ρ2 is defined using the tensor product (sometimes called Kronecker product)
of matrices as a representation of dimension dim(ρ1)·dim(ρ2), g ↦→ ρ1(g)⊗ρ2(g).
For iteration of these operations we will write nρ = ρ⊕ · · · ⊕ ρ, ρn = ρ⊗ · · · ⊗ ρ.

Proposition 2.1.4. Up to isomorphism, the direct sum and the tensor product
are both commutative and associative and the tensor product is distributive over
the direct sums.

Proof. The proof is done just by rewriting definitions and (in case of commuta-
tivities) permuting indices of rows and columns of the resulting matrices.

Theorem 2.1.5. (Mashke) Let G be a finite group and K be a field, such that
char(K) does not divide the order of G. Then every representation of G over K
is isomorphic to a direct sum of irreducible representations. This decomposition
is unique up to permutation and isomorphism of the irreducible representations.

The proof can be found in Singh [2010] (Chapter 3).

Theorem 2.1.6. Let G be a finite group, K algebraically closed with character-
istic not dividing |G|. Then the number of irreducible representations of G over
K (up to isomorphism) is the same as the number of conjugacy classes of G.

The proof can be found in Singh [2010] (Chapter 11).

Theorem 2.1.7. Let G be a finite group, K algebraically closed with character-
istic not dividing |G| and ρ1, . . . , ρn be representatives of its irreducible represen-
tations. Then ∑︁n

i=1 dim(ρi)2 = |G|.

The proof can be found in Singh [2010] (Chapter 11).
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Definition 2.1.8. The character χρ of a representation ρ is defined as a map
G → K, g ↦→ tr(ρ(g)). The dual representation ρ∗ is a representation of the same
dimension defined as g ↦→ (ρ(g)−1)T

Proposition 2.1.9. Let ρ1, ρ2 be two representations of a finite group G over
the field K. Then the characters have following properties:

1. χρ1⊕ρ2 = χρ1 + χρ2

2. χρ1⊗ρ2 = χρ1 · χρ2

3. χρ∗
1
(g) = χρ1(g−1)

4. If K = C, χρ1(g−1) = χρ1(g).

5. If K = C, |χρ1(g)| ≤ dim(ρ1).

Proof. The properties 1. and 3. follows straight from the definitions. For property
2. suppose ρ1(g) has elements d1, . . . , dn on the diagonal and ρ2(g) has elements
e1, . . . , em on the diagonal. Then the diagonal of (ρ1 ⊗ ρ2)(g) consists of the
elements of the form diej, from which it follows that χρ1⊗ρ2(g) = ∑︁

i,j diej =(︂∑︁
i di
)︂(︂∑︁

j ej
)︂

= χρ1(g) · χρ2(g). For the proof of property 4. find a Jordan
canonical form of ρ1(g). The elements on the diagonal must be complex numbers
ci of the absolute value 1, otherwise the matrix couldn’t satisfy ρ1(g)|G| = I.
Therefore ρ1(g−1) = ρ1(g)−1 has eigenvalues c−1

i = ci and χρ∗
1
(g) = ∑︁

i ci = χρ1(g).
5. follows from triangle inequality and the fact that the eigenvalues of ρ1(g) have
absolute value 1.

Theorem 2.1.10. Let G be a finite group, K algebraically closed with charac-
teristic not dividing |G| and ρ1, . . . , ρn the list of all simple representations up to
isomorphism. Then ∑︁

g∈G χρi
(g)χρj

(g−1) = δij|G|.

The proof can be found in Singh [2010] (Chapter 10).

Corollary 2.1.11. Let K be an algebraically closed field with characteristic zero,
ρ1, . . . , ρn be the list of irreducible representations up to isomorphism and ρ be any
representation with decomposition ρ = ⨁︁

aiρi. Then ai = 1
|G|
∑︁
g∈G χρi

(g)χρ(g−1).

Proof. ∑︁g∈G χρi
(g)χρ(g−1) = ∑︁

j

∑︁
g∈G χρi

(g)ajχρj
(g−1) = ∑︁

j δijaj|G| = ai|G|

Corollary 2.1.12. Let K algebraically closed with characteristic zero. Then the
character uniquely determines the representation (up to isomorphism).

2.2 McKay graphs and the algebraic correspon-
dence

In this section, all representations will be considered over C.

16



Proposition 2.2.1. Let G be a finite group, ρ1, . . . , ρn be the list of its irreducible
representations up to isomorphism and ρ be a representation satisfying ρ∗ ∼= ρ.
For i, j ∈ {1, . . . , n} define numbers aij as ρi ⊗ ρ ∼=

⨁︁
j aijρj. Then aij = aji.

Proof. From Corollary 2.1.11 it follows that

aij = 1
|G|

∑︂
g∈G

χρj
(g)χρ⊗ρi

(g−1) = 1
|G|

∑︂
g∈G

χρj
(g)χρ(g−1)χρi

(g−1) =

= 1
|G|

∑︂
g∈G

χρj
(g)χρ(g)χρi

(g−1) = 1
|G|

∑︂
h∈G

χρ⊗ρj
(h−1)χρi

(h) = aji,

where the middle equality on the second line is using a substitution h := g−1.

Definition 2.2.2. Let G be a finite group. A self-dual representation is a repre-
sentation satisfying ρ ∼= ρ∗. The McKay graph of G and self-dual ρ is a multi-
graph, whose vertices are the irreducible representation of G and its adjacency
matrix consists of the coefficients aij.

Proposition 2.2.3. Let (V,E, f) be a McKay graph of a group G and a self-dual
representation ρ, let M be its adjacency matrix. Then ||M || = dim(ρ).

Proof. Define a vector x ∈ RV componentwise as xi = dim(ρi). For any i ∈
{1, . . . , n} from ρi⊗ρ ∼=

⨁︁
j aijρj it follows that dim(ρi) ·dim(ρ) = ∑︁

j aijdim(ρj),
therefore xidim(ρ) = ∑︁

j aijdim(ρj) and therefore dim(ρ)x = Mx. The statement
then follows from Corollary 1.2.11.

Definition 2.2.4. Let G be a finite group. Its trivial representation ρtriv is the
constant homomorphism G → GL(1,C), g ↦→ 1. Let G be a finite subgroup of
SL(2,C). Its canonical representation is the embedding G → GL(2,C), g ↦→ g.

Theorem 2.2.5. (Burnside) Let G be a finite group, ρ a faithful representation
of G and ρi an irreducible representation. Then there exists ni ∈ N such that ρi
is contained in the decomposition of ρni into irreducible representations.

Proof. In other words, we want to show that ∑︁g∈G χρi
(g)

(︂
χρ(g)

)︂ni

> 0 for some
ni ∈ N. Lets assume the converse, ∀n ∈ N : ∑︁g∈G χρi

(g)
(︂
χρ(g)

)︂n
= 0. Since

all group elements are of finite order, the matrices ρ(g) are diagonalizable and
have eigenvalues of the form e

2kπi
|G| , therefore |χρ(g)| ≤ dim(ρ). Let γ = {g ∈

G|dim(ρ) = |χρ(g)|}. Then for g ∈ γ, ρ(g) must have only one eigenvalue,
otherwise the triangle inequality |λ1 + · · · +λdim(ρ)| ≤ 1 + · · · + 1 = dim(ρ) would
be strict. Therefore ρ(g) = λgI for some λg = e

2kπi
|G| . From ρ being faithful it

follows that for distinct elements of γ are the numbers λg distinct. Let us now
choose k ∈ Z and define a sequence of functions fk,n : G → C, g ↦→ χρ(g)|G|n+k

dim(ρ)|G|n+k .
As n → ∞, this sequence is constant at g ∈ γ and decreases exponentially (in the
absolute value) at g ̸∈ γ, therefore it has a pointwise limit fk, which has the value
λkg at g ∈ γ and 0 otherwise. When we view maps G → C as vectors in CG, the
assumption ∑︁

g∈G χρi
(g)

(︂
χρ(g)

)︂n
= 0 tells us that fk,n and χρi

are orthogonal.
From continuity of the dot product it follows that fk and χρi

are orthogonal.
For a vector v ∈ CG define its restriction ṽ ∈ Cγ by omitting the components
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outside γ. Since fk are zero outside γ, it means that f̃k and χ̃ρi
are orthogonal.

If we name the elements of γ as g1, . . . , g|γ|, we can combine the equations for
k ∈ {0, . . . , |γ| − 1} into one matrix equation.⎛⎜⎜⎜⎜⎜⎜⎜⎝

1 1 1 . . . 1
λg1 λg2 λg3 . . . λg|γ|

λ2
g1 λ2

g2 λ2
g3 . . . λ2

g|γ|
... ... ... . . . ...

λ|γ|−1
g1 λ|γ|−1

g2 λ|γ|−1
g3 . . . λ|γ|−1

g|γ|

⎞⎟⎟⎟⎟⎟⎟⎟⎠ ·

⎛⎜⎜⎜⎜⎜⎜⎜⎝

χρi
(g1)

χρi
(g2)

χρi
(g3)
...

χρi
(g|γ|)

⎞⎟⎟⎟⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

0
0
0
...
0

⎞⎟⎟⎟⎟⎟⎟⎟⎠
In the matrix on the left we recognise the Vandermonde matrix, which is regular,
since λgi

are pairwise. This means that χρi
is zero on γ, but since the neutral

element e is in γ and χρi
(e) = dim(ρi), this is a contradiction.

Corollary 2.2.6. Let G be a finite group and ρ a self-dual faithful representation.
Then the McKay graph of G and ρ is connected.

Proof. By induction, we will prove that if the decomposition of ρn contains irre-
ducible ρ̃, then there exist a walk from ρtriv to ρ̃. For n = 1 the statement holds,
since if ρ̃ is contained in ρ = ρ ⊗ ρtriv, it is a neighbor of ρtriv by definition of
the McKay graph. Suppose the statement holds for n and ρ̃ is contained in ρn+1.
When we decompose ρn as ⨁︁ aiρi, we learn that ρ̃ is contained in ⨁︁

aiρi ⊗ ρ.
From uniqueness of the decomposition it must be contained in some ρi ⊗ ρ such
that ai > 0. When we take a walk from ρtriv to ρi and extend it by a vertex ρ̃
(and some suitable edge between ρi and ρ̃), we get a walk to ρ̃. Now, to get a
walk between general vertices u, v, one can take a walk from u to ρtriv and follow
it by a walk from ρtriv to v.

Proposition 2.2.7. Let G be a finite group, ρ be an irreducible representation
of G and g be an element of the center of G. Then ρ(g) = λI for some λ ∈ C.

Proof. We know that ρ(g) is diagonalizable, let λ be an eigenvalue and V the
corresponding eigenspace. We want to show that V is an invariant subspace of ρ.
Let v ∈ V , h ∈ G. Then ρ(g)ρ(h)v = ρ(h)ρ(g)v = λρ(h)v, therefore ρ(h)v ∈ V .
Since ρ is irreducible, this means V = Cdim(ρ).

Corollary 2.2.8. Let G be a finite abelian group. Then all of its irreducible
representations are one-dimensional.

Proof. Since all matrices ρ(g) are of the form λI, any subspace of Cdim(ρ) is
invariant.

Proposition 2.2.9. Let G be a finite group with a nontrivial center, ρi an irre-
ducible representation and ρj a faithful irreducible representation. Then ρi does
not appear in the decomposition of ρj ⊗ ρi.

Proof. Suppose it does. Let g ̸= e be an element of the center. From Propo-
sition 2.2.7 it follows that for any irreducible ρk, χρk

(g) = λkdim(ρk) for some
complex unit λk. Let ⨁︁ akρk be the decomposition of ρj ⊗ ρi. When we apply
the absolute value to the equality
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λiλj
∑︂

akdim(ρk) = λiλj
∑︂

akχρk
(e) = λiλjχρj⊗ρi

(e) =

= λiλjdim(ρj) · dim(ρi) = χρj⊗ρi
(g) =

∑︂
akχρk

(g) =
∑︂

akλkdim(ρk),
we get ∑︁ ak dim(ρk) = |∑︁ akλk dim(ρk)|. On the other hand, the statement∑︁
ak|λk| dim(ρk) ≤ |∑︁ akλk dim(ρk)| follows from the triangle equality, which

is an equality if and only if all of the nonzero summands have the same argument
arg(z) = z

|z| . This means λk is the same for all k satisfying ak > 0. Since there
exists a loop from ρi to ρi, we know that ai > 0, therefore

λiλj
∑︂

akdim(ρk) =
∑︂

akλkdim(ρk).

We can cancel out λi
∑︁
akdim(ρk) in and get λj = 1, which is in contradiction

with ρj being faithful.

Proposition 2.2.10. Let G be a nontrivial finite subgroup of SL(2,C) and ρ be
its canonical representation. Then ρ is self-dual and the McKay graph of G and
ρ has no loops.

Proof. Since for every g ∈ G the eigenvalues of ρ(g) are complex conjugates of
each other, the character χρ is real-valued. Therefore χρ∗ = χρ and from Corol-
lary 2.1.12 ρ ∼= ρ∗. If ρ is irreducible, then the proof follows from Proposition 2.2.9
(all nontrivial finite subgroups of SL(2,C) have a nontrivial center). If not, it
decomposes into two one-dimensional representations ρ1, ρ2. Since eigenvalues of
matrices in SL(2,C) are inverse to each other, ρ1 and ρ2 must be dual. From this
follows that both ρ1 and ρ2 are faithful, since if g ∈ Ker(ρ1), then g ∈ Ker(ρ2)
and g ∈ Ker(ρ1 ⊕ ρ2), which contradicts the fact that canonical representation
is by definition faithful. If ρi is now any irreducible representation, it does not
appear in the decomposition of (ρ1 ⊗ ρi) ⊕ (ρ2 ⊗ ρi) ∼= ρ ⊗ ρi, which is what we
wanted to prove.

Corollary 2.2.11. Let G be a nontrivial finite subgroup of SL(2,C) and ρ its
canonical representation. Then the McKay graph of G and ρ is an extended
Dynkin diagram.

Proof. Follows from Proposition 2.2.3, Corollary 2.2.6 and Proposition 2.2.10

Proposition 2.2.12. Let G be a nontrivial finite subgroup of SL(2,C). Then
the dimension vector x used in the proof of Proposition 2.2.3 is the same as the
eigenvector xM for the corresponding extended Dynkin diagram used in the proof
of Theorem 1.2.16 :

1 1
,

1

1 1
,

1

1 1 1
,

1

1 1 1 1
, . . .

1
1 2

1
1 ,

1

1
2 2

1

1
,

1

1
2

2
2

1

1
,

1

1
2

2 2
2

1

1
, . . .

1

1

2

2 3 2 1
,

1 2

2

3 4 3 2 1
,

12

3

4 6 5 4 3 2
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Proof. Both of these vectors are eigenvectors of the adjacency matrix with positive
components, from Proposition 1.2.13 follows x = αxM for some α ∈ R. Since
components of x are positive integers, α ∈ N. Since the trivial representation is
an irreducible representation with dimension 1, α ≤ 1.

Theorem 2.2.13. The extended Dynkin diagrams corresponding to nontrivial
finite subgroups of SL(2,C) are:
Group: Diagram:
Cn Ãn−1

BD4n D̃n+2

BT Ẽ6

BO Ẽ7

BI Ẽ8

Proof. From Theorem 2.1.6 the diagram determines the number of conjugacy
classes, from Proposition 2.2.12 and Theorem 2.1.7 it determines the order of the
group:
Diagram: |G| Conjugacy classes
Ãn−1 n n

D̃n+2 4n n+ 3
Ẽ6 24 7
Ẽ7 48 8
Ẽ8 120 9

Therefore for a given nontrivial finite subgroup of SL(2,C), the diagram in the
statement of the Theorem is the only possible one.
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3. The geometric correspondence

3.1 Introduction to algebraic geometry
In this chapter, the reader is expected to know the basics of commutative algebra
and algebraic geometry. All algebras in this chapter are considered associative,
commutative and unital and over the field C.

Definition 3.1.1. By the n-dimensional affine space An we mean Cn as a set
(later equipped with a topology). Let S ⊆ C[x1, . . . , xn]. The common zero set of
S is the set V (S) := {a ∈ An|∀f ∈ S : f(a) = 0}. Subsets of An of the form
V (S) are called affine algebraic sets. Let X ⊆ C[x1, . . . , xn]. Then the ideal of X
is the ideal I(X) := {f ∈ A[x1, . . . , xn]|∀x ∈ X : f(x) = 0}.

Proposition 3.1.2. The intersections and finite unions of algebraic sets are al-
gebraic sets. The empty set and the set An are algebraic sets. The complements
of algebraic sets therefore form a topology on An.

Proof. Straight from the definition follows V (⋃︁Si) = ⋂︁
V (Si) and V (S1S2) =

V (S1) ∪ V (S2) (where S1S2 = {st|s ∈ S1, t ∈ S2}). The empty set is equal to
V (1) and the set Cn is equal to V (0).

Definition 3.1.3. The topology from the previous Proposition and the induced
topologies on subsets of Cn are called the Zariski topology. Unless stated otherwise,
open and closed sets will be from now on considered with respect to the Zariski
topology.

Definition 3.1.4. Let (X, τ) be a topological space. If for any two closed subsets
X1, X2 satisfying X1 ∪ X2 = X holds X1 = X or X2 = X, X is said to be
irreducible (alternatively, if every nonempty open of X subset is dense in X). A
subset of X is said to be irreducible if it is irreducible as a topological space with
the induced topology. Nonempty irreducible affine algebraic sets are called affine
varieties.

Definition 3.1.5. Let X ⊆ An be an affine algebraic set. The coordinate algebra
of X is the algebra C[X] = C[x1, . . . , xn]/I(X) (which can be considered as an
algebra of polynomial functions X → C).

Definition 3.1.6. Let X ⊆ Am, Y ⊆ An be affine algebraic sets. A map X → Y ,
(x1, . . . , xm) ↦→ (f1(x1, . . . , xm), . . . , fn(x1, . . . , xm)) is a morphism of varieties if
the functions f1, . . . , fn are polynomial.

Example. As a set, the coordinate algebra of X is therefore the set of all mor-
phisms X → An.

Theorem 3.1.7. The coordinate algebra of an affine algebraic set is finitely gen-
erated and does not contain any nontrivial nilpotent elements. This assignment
between the category of affine algebraic sets and the category of finitely algebras
without nontrivial nilpotents is a contravariant equivalence of categories, which
maps the morphism of varieties f : X → Y to a morphism of the coordinate
algebras f̃ : C[Y ] → C[X], g ↦→ g ◦ f .
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Proof. The coordinate algebra is finitely generated, because it is a quotient alge-
bra of finitely generated C[x1, . . . , xn]. It does not contain nontrivial nilpotents,
since it consists of valued functions with operations defined pointwise. The proof
of equivalence of categories can be found in Wallach [2017] (section 1.2.1) or Smith
et al. [2000] (section 2.5). Both of these books differ in the terminology, their
definition of an affine variety correspond to our definition of an affine algebraic
set. In the book Wallach [2017], the symbol O(Z) stands for the local ring of a
set Z ⊆ An, which for closed sets is the same as the coordinate algebra.

3.2 Geometric invariant theory
Definition 3.2.1. Let G be a finite group and X be an affine variety. By a group
action on X we mean a group homomorphism φ : G → Aut(X). The equivalence
of the categories lets us view this as a group homomorphism φ̃ : G → Aut(C[X]),
φ̃g(f) = f ◦ φg−1. The algebra of invariant polynomials is the algebra C[X]G =
{f ∈ C[X]|∀g ∈ G : φ̃g(f) = f}. If this algebra is finitely generated, we denote
the corresponding affine variety X//G and call it the GIT-quotient of X. The
equivalence of categories then lets us view the inclusion i : C[X]G → C[X] as a
morphism π : X → X//G.

Theorem 3.2.2. Let G ⊆ GL(n,C) be a finite group acting on An by multiplying
the coordinate vector:

φg

⎛⎜⎜⎝
x1
...
xn

⎞⎟⎟⎠ = g ·

⎛⎜⎜⎝
x1
...
xn

⎞⎟⎟⎠
Then C[X]G is finitely generated. Moreover, the ideal I ⊆ C[X] generated by all
homogeneous invariant polynomials is generated by finitely many homogeneous
invariant polynomials and these polynomials also generate C[X]G.

Proof. The proof can be found in Wallach [2017] (section 3.1.4).

Proposition 3.2.3. Let G be the group Cn < SL(2,C). Then the affine variety
A2//G is isomorphic to V (ab− cn) ∈ A3.

Proof. WLOG assume Cn = ⟨M⟩, where M =
(︄
e

2πi
n 0
0 e− 2πi

n

)︄
. A polynomial is in-

variant, if and only if it is invariant under the action of the generators of the group.
Since M is diagonal, its action on the monomials changes only the coeficient of
the monomial. A polynomial is therefore invariant if and only if all of its mono-
mials are invariant. The matrix M sends xkyl to (e− 2πi

n x)k(e 2πi
n )l = xkyle

2πi(l−k)
n ,

therefore the monomial is invariant if and only if k ≡ l (mod n). The ideal I
from the previous Theorem is therefore (xn, yn, xy) (since these polynomials are
invariant and any nonconstant invariant polynomial is divisible by at least one
of them). Let ψ : C[a, b, c] → C[X]G be a homomorphism defined by ψ(a) = xn,
ψ(b) = yn, ψ(c) = xy. Since the generators of C[X]G are in the image, the ho-
momorphism is surjective, therefore C[X]G ∼= C[a,b,c]

Ker(ψ) . Clearly ab − cn ∈ Ker(ψ),
therefore A//G is some subvariety of V (ab − cn). The projection morphism is
defined as (x, y) ↦→ (xn, yn, xy). If for (a, b, c) ∈ V (ab − cn) holds a ̸= 0, then
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π( n
√
a, c

n√a) = (a, b, c). If a = 0, then π(0, n
√
b) = (a, b, c). Therefore π is sur-

jective, therefore Ker(ψ) = V (ab − cn) and A//G is the whole affine variety
V (ab− cn).

3.3 Singularities
Definition 3.3.1. Let

Some difficulties arise when one is working with singular varieties. To avoid these
problems, we may want to find some different variety, which is nonsingular, but
still carries some information about the original variety. It can also help us better
understand the singularities. The simplest method of finding these resolutions is
blowing up points. However, the result of it usually isn’t an affine variety (even
if the original variety is), but a more general object. This object can be embed-
ded into the projective space, however, we will follow a more abstract approach
and think of it as a topological space (with some additional structure), which is
covered by affine varieties, analogously to the way how differential varieties are
covered by Euclidianly open subsets of Rn. We will call these objects abstract
varieties or just varieties. The precise definition can be found in Wallach [2017]
(section 1.4.3)

Definition 3.3.2. Let X be a variety. A resolution of singularities is a nonsin-
gular variety Y together with a morphism f : Y → X, such that:

• The morphism f is proper, i.e. if we equip X and Y with Euclidean topology,
the preimage of a compact set is compact.

• When restricted, f is an isomorphism of varieties f−1(Xreg) → Xreg, where
Xreg is the open subvariety of X consisting of all regular points.

An exceptional locus of the resolution is the set f−1(Xsing), where Xsing is the set
of all singular points X \Xreg.

Remark 3.3.3. If X ⊆ An is an affine variety, it can be equipped with the
Euclidean topology induced from the by the inclusion X → Cn. For abstract
varieties, the topology can be constructed locally the same way. More about this
in Neeman [2007] (chapter 4).

Definition 3.3.4. Let p be a point of an affine variety X ⊆ An. The blowup of
X at the point p is the closure of

Γ = {(x, y) ∈ (X \ {p}) × Pn−1|[x1 − p1 : . . . : xn − pn] = [y1 : . . . : yn]}

in X × Pn−1. This variety is denoted Blp(X) and there is a canonical morphism
π : Blp(X) → X, (x, y) ↦→ x. Again, the set π−1({p}) is called the exceptional
locus.

Remark 3.3.5. A blowup can be defined even for abstract varieties as in Hauser
[2014]. For our purposes suffices to know that the blowup of an abstract variety,
looks on the affine cover as the blowup of affine variety if the covering affine
variety contains the point p and is an isomorphism otherwise.
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Example. Let X = V (x3
1 + x2

1 − x2
2) ⊆ A2 and p = (0, 0). We can cover the

projective space by two open subsets, on which y1 ̸= 0, resp. y2 ̸= 0. Since the
closure commutes with finite unions, we can use the closures of the sets in the
open cover to find the closure of Γ. The first can be parameterized by x1, x2
and x̃2, where [y1 : y2] = [1 : x̃2]. The corresponding subset of Γ is therefore
parameterized by

{(x1, x2, x̃2) ∈ A3|x1 ̸= 0, x3
1 + x2

1 − x2
2 = 0, x2 = x1x̃2} =

= {(x1, x2, x̃2) ∈ A3|x1 ̸= 0, x1 + 1 − x̃2
2 = 0, x2 = x1x̃2}.

By taking the closure of this set in {(x, y) ∈ X × Pn−1|y1 ̸= 0}, we remove the
condition x1 ̸= 0 and therefore get two new points points (x1, x2, x̃2) = (0, 0,±1).
Since x2 can be expressed from x1 and x̃2, it is not needed for the parameterization
and the covering affine variety is isomorphic to V (x1 + 1 − x̃2

2) ⊆ A2.
We could similarly parameterize the open set y2 ̸= 0, however, in this particular
example it is not necessary, since the first parameterization covers the whole Γ.
The morphism π : Blp(X) → X is given by (x1, x̃2) ↦→ (x1, x2) = (x1, x1x̃2)
This process can be generalized to an algorithm for finding affine cover of any
blowup of hyperplane, i.e. any blowup Blp(X) of a variety of the form X =
V (f) ⊆ An.

• cover Pn−1 by n open subsets Ui defined by yi ̸= 0.

• parametrize every X×Ui by x1, . . . , xn, x1,i, . . . , xi−1,i, xi+1,i, . . . , xn,i, where
[y1 : · · · : yn] = [x1 − p1 : · · · : xi−1 − pi−1 : 1 : xi+1 − pi+1 : . . . , xn − pn].

• express the coordinates x1, . . . , xi−1, xi+1, . . . , xn in f using the coordinates
x1,i, . . . , xi−1,i, xi, xi+1,i . . . , . . . , xn,i.

• divide the transformed f ∈ C[x1,i, . . . , xi−1,i, xi, xi+1,i . . . , . . . , xn,i] by the
highest possible power of xi − pi

• find the closure in X × Ui, i.e. add the points with xi = pi

• on the intersections of multiple maps, find the transition map
Proposition 3.3.6. The restriction of the blowup morphism is an isomorphism
of the varieties π−1(X \ {p}) → X \ {p}
Proof. The set Γ ∪ (p×Pn−1) is closed, therefore this restriction of π is injective.
The map

X \ {p} → (X \ {p}) × Pn−1, (x1, . . . , xn) ↦→ (x1 . . . , xn, [x1 − p1 : . . . : xn − pn])

is the inverse morphism.
Proposition 3.3.7. The blowup morphism is proper.
Proof. Let C ⊆ X be a compact subset of X (with respect to Euclidean topology)
Since X is covered by affine varieties, we can find a compact neighborhood U of
p ∈ X. Let V = X \ U . Since on (X \ {p}) × Pn−1 is π an isomorphism, V ∩ C
is homeomorphic to π−1(V ∩ C), therefore π−1(C ∩ V ) is compact. Since Pn−1

is compact (Wallach [2017], Lemma 1.29), the set U × Pn−1, therefore the closed
subset π−1(U ∩C) is also compact. Therefore π−1(C) = π−1(U ∩C)∪π−1(V ∩C)
is compact.
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Corollary 3.3.8. We can construct a sequence Xn → Xn−1 → · · · → X1 →
X0 = X, in which Xk+1 is a blowup of Xk at some singular point. If Xn is a
nonsingular variety, then the composition of the blowup morphisms Xn → X is a
resolution of singularities.

Theorem 3.3.9. Let G be a nontrivial finite subgroup of SL(2,C) and X =
A2//G. Then we can get a resolution of X by consequent blowups at singular
points. If we then construct a multigraph, whose vertices are the irreducible com-
ponents of the exceptional locus and the number of edges between components U
and V is |U ∩ V |, we get a non-extended version of the extended Dynkin diagram
from Theorem 2.2.13.

Proof. We will show this for each group separately.

C2: The variety X = A2//G is isomorphic to V (xy − z2). The only singular
point is the point p = (0, 0, 0). The blowup is covered by affine varieties Ui. Using
the algorithm at the beginning of the section, we get the affine cover of Blp(X):

• Blp(X)∩(X×Ux) is covered by V (ỹ−z̃2) with the morphism πx : (x, ỹ, z̃) ↦→
(x, ỹx, z̃x, [1 : ỹ : z̃]).

• Blp(X)∩(X×Uy) is covered by V (x̃−z̃2) with the morphism πy : (x̃, y, z̃) ↦→
(x̃y, y, z̃y, [x̃ : 1 : z̃]).

• Blp(X)∩(X×Uy) is covered by V (x̃ỹ−1) with the morphism πz : (x̃, ỹ, z) ↦→
(x̃z, ỹz, z, [x̃ : ỹ : 1]).

All three varieties V (ỹ− z̃2), V (x̃− z̃2) and V (x̃ỹ− 1) are nonsingular, therefore
Blp(X) is nonsingular, therefore it is a resolution of singularities. We will now
study the exceptional locus, i.e. π−1(p). In the first set of the affine cover,
the preimage of p = (0, 0, 0) consist of the points parameterized by (x, ỹ, z̃) =
(0, z̃2, z̃), which is an irreducible set. Similarly for Uy, π−1(0, 0, 0) is parameterized
by y = 0 and x̃ = z̃2 and for Uz it is parameterized by z = 0 and x̃ỹ = 1. Again,
these are irreducible sets. On the intersection of the covering sets, we can use
the transition maps to find out which of these irreducible subsets are in the same
irreducible component of π−1(0). For example, for t ̸= 0, the point parameterized
by πx as (x, ỹ, z̃) = (0, t2, t) is the point (p, [1 : t2 : t]) in X × P2, which is the
same point as (p, [ 1

t2
: 1 : 1

t
]) parameterized by πy as (x̃, y, z̃) = ( 1

t2
, 0, 1

t
), which is

the same point as (p, [1
t

: t : 1]) parameterized by πz as (x̃, ỹ, z) = (1
t
, t, 0). Since

these sets are all dense in their respective π−1
i (p), we can conclude that they form

a single irreducible component of the exceptional locus.

C3: The variety A2//G is isomorphic to V (xy − z3). The blowup is covered by
nonsingular affine varieties ỹ− z̃3x (for Ux), x̃− z̃3y (for Uy) and x̃ỹ− z (for Uz).
The respective parametrizations of the subsets of exceptional locus are V (x, ỹ)
(for Ux), V (y, x̃) (for Uy) and V (z, x̃ỹ). Notice that the first two affine algebraic
subsets are irreducible, but the third one decomposes as V (z, x̃) ∪ V (z, ỹ). After
applying the maps πi, we can see that the exceptional locus is the set of points
{(p, [x′ : y′ : z′])|x′y′ = 0}, which decomposes into two irreducible components
{(p, [x′ : y′ : z′])|x′ = 0} ∪ {(p, [x′ : y′ : z′])|y′ = 0}. We can see that these two
components intersect in one point (p, [0 : 0 : 1]).
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Cn: We will firstly prove by induction on n that the singularities of X = A2//G
can be resolved via blowups. For n = 2 and n = 3 the statement holds, assume
n ≥ 4. The variety A2//G is isomorphic to V (xy − zn). The blowup is covered
by nonsingular affine varieties ỹ − z̃3xn−2 (for Ux), x̃ − z̃3yn−2 (for Uy) and a
variety x̃ỹ − zn−2 (for Uz), which is singular at (0, 0, 0). Analogically to C3, the
exceptional locus decomposes as

{(p, [x′ : y′ : z′])|x′y′ = 0} = {(p, [x′ : y′ : z′])|x′ = 0} ∪ {(p, [x′ : y′ : z′])|y′ = 0}

with the intersection point q = (p, [0 : 0 : 1]). However, the point q is sin-
gular, therefore Blp(X) is not a resolution of singularities. Therefore we need
to construct another blowup Blq(Blp(X)). Luckily for us, in the affine cover
of Blp(X), the singularity is covered by the affine variety A2//Cn−2, there-
fore we already know we can resolve the singularity at q by blowups. Let
f : Y → Blp(X) be the resolution. Then Y with the composition of mor-
phisms π ◦ f (where π is the blowup morphism Blp(X) → X) is a resolu-
tion of singularities of X. Firstly, the exceptional locus of this resolution is
the set f−1({(p, [x′ : y′ : z′])|x′y′ = 0}). If we remove the point q from the
set {(p, [x′ : y′ : z′])|x′y′ = 0}, the resulting set lie in Blp(X)reg, therefore
is isomorphic to its preimage f−1({(p, [x′ : y′ : z′])|x′y′ = 0} \ {q}). Denote
lx = {(p, [x′ : y′ : z′])|x′ = 0}, lx = {(p, [x′ : y′ : z′])|y′ = 0}. Two irreducible
components of the exceptional locus are therefore the closures of f−1(lx \ {q})
and f−1(ly \ {q}) in Y .

We will now prove by induction on n that the Theorem 3.3.9 holds for G =
Cn and that the components f−1(lx \ {q}), f−1(ly \ {q}) correspond to the left-
most and right-most vertex of the Dynkin diagram. If we want to prove this,
we already know from the induction hypothesis how does the exceptional locus
of Y → Q look like, therefore we only need to show that f−1(lx \ {q}) and
f−1(ly \ {q}) intersect this locus the way they should. Since the resolution Y →
Blp(X) is an isomorphism outside f−1(q), we only need to resolve the affine
neighborhood V (xy − zn−2) of q (we have renamed the variables from x̃, ỹ, z
back to x, y, z, so we can use the tilded letters for the variables of the second
blowup). Therefore if we denote π̃ the morphism of the blowup Blq(V (xy −
zn−2)), we are interested in π̃−1(lx \ {q}) = {(0, y, 0, [1, 0, 0])}, π̃−1(ly \ {q}) =
{(x, 0, 0, [1, 0, 0])}. The exceptional locus of this blowup contains one irreducible
component {(q, [x′, y′, z′]) ∈ V (xy−zn−2)×P2|x′y′ = z′2} if n = 4, two irreducible
components {(q, [0, y′, z′])} and {(q, [x′, 0, z′])} if n > 4. In either case, we see
that π̃−1(lx \ {q}) and π̃−1(ly \ {q}) intersect the components of the locus as they
should. Since π̃−1(lx \ {q}) and π̃−1(ly \ {q}) doesn’t contain any singular points,
this fact is not changed by consequent blowups, therefore the statement is proven.

The resolution for the rest of the groups can be found in Hemelsoet [2018]
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Conclusion
We have classified finite subgroups of SL(2,C) using their maximal abelian sub-
groups. This gave us some restrictions on the subgroup, we have then one by one
checked the possible types of the subgroup and shown whether the subgroup exists
and its uniqueness up to conjugation. After the classification of the Dynkin dia-
grams and extended Dynkin diagrams, we have continued by showing both parts
of the classical McKay correspondence. We have shown that the McKay graph
of a subgroup of SL(2,C) is an extended Dynkin diagram and it contains enough
information to uniquely determine the group. We also gave an outline of the
geometric correspondence by computing GIT-quotients of the two-dimensional
complex space and then blowing up the singular points.
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