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Used Notation

Symbol Meaning
T The n-tuple (z1,...,x,) where n € N is given.
o f) The leading coefficient of a given polynomial f.
c(f) The constant term of a given polynomial f.
alb a divides b.
ged(a, b) Greatest common divisor of a and b.
P(R?) The projective real plane.
Cy The algebraic curve defined by f(z,y) = 0.
al|lb a|bandb|a.
R(C) The set of rational points of a given curve C.
fo The partial derivative of f with respect to x.

z(P),y(P) The = and y-coordinate of the point P.

ord(P) The order of the element P in a given group.
p(q) Prime affinity of the rational number q.
R;(C) The points (z,y) € R(C) that p(x) < —2v and p(y) < —3v.

t(P),s(P) The t and s-coordinate of the point P.
R, The subring of rational numbers that p(q) > 0.



Preface

The main subject of the thesis is to acquaint the reader with the basic theory
of Diophantine equations and how the study of rational algebraic curves leads to
potential solutions thereof.

Most of the facts presented and elucidated in this text are inspired by or based
off of books Silverman and Tate| [2015], Washington| [2008] and [Fulton| [2008].
Nonetheless, unless explicitly cited, these sources were used solely as a medium
to tighten my grasp of the subject, rather than followed step by step. For instance,
sections and [2.1] were almost entirely conceptualized by myself and present
ideas not borrowed from any specific source. Furthermore, many claims and
proofs thereof were modified to better suit the needs of this text. [Lemma |3.1.2|
or [Lemma [3.2.2| make two examples. All the examples and problems, save one,
located at the end of each chapter also sprang from my head and were tailored
to show the computational side of presented theory.

I have always valued insight above rigorousness. Owing to that, many passages
in the text are deliberately vague, offering facts or explanatory remarks without
complete proofs. None of these are meant to progress the study, only to bring
light upon subjects which may, if first met, escape one’s reason, so to speak.
I implore you, dear reader, should you not share this sentiment, to overlook and
tolerate it.



1. Introduction

1.1 A Diophantine Equation

Let us start strong with arguably the most important definition of the thesis.
Although DiophantineE] equation is a well-known term, it is often associated with
integers. Since we are interested (most of the time) in rational equations and
their rational solutions, we define it as follows.

Definition 1.1.1 (Diophantine equation). The equation of the form

f(@)=0 (1.1.1)

where f € Q[zy,...,x,] for any non-zero n € N is called Diophantine. The
solution to a Diophantine equation is any rational n-tuple T € Q" satisfying

(1.1.1). We call deg f the order of equation (1.1.1)).

One of the most famous Diophantine problems is Fermat’f] Conjecture, also
known as Fermat’s Last Theorem, which states that for any natural n > 2 there
are no natural solutions to the equation

n

if every one of x,y, z is non-zero.

In the case n = 1, it is evident that there are infinitely many solutions. This
holds for n = 2 as well. This fact is less obvious but still fairly straightforward
to prove using modular arithmetic. We will discuss the solutions (existence and
number thereof) to a more general equation

az? +by? +c2* =0

in First general proof of Fermat’s Last Theorem was given by Sir
Andrew Wiles in 1985 and is well beyond the scope of this thesis.

However, since this would be a sad note to finish our introduction to Diophantine
equations on, we are now going to take a look at a rather famous problem wherein
a Diophantine equation arises naturally and which we will be able to (at least
partially) solve.

Problem 1.1.1 (A pile of cannonballs. Borrowed from |Anglin| [1990]). Imagine
a pile of (hopefully unused) cannonballs forming a square pyramid with each
floor having one less cannonball in each dimension. The question is: how many
cannonballs do we have to use as a base for the pyramid so that when the pyramid
collapses all the cannonballs can form a perfect square?

!Diophantus of Alexandria (between 201 and 215 AD - between 285 and 299 AD), Hellenistic
mathematician, author of Arithmetica. [Heathl [2009]

2Pierre de Fermat (1607 - 1665), French lawyer and mathematician. [Pellegrinol [2000]

3The story behind Wiles’s proof was made into a book by Simon Sings. |Singh/ [1997]
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Figure 1.1.1: Pyramid of cannonballs.

Omitting the fact that Diophantus of Alexandria most likely did not have can-
nonballs at his disposal, there is no obvious way this problem leads to an equation
such as (1.1.1]). Let us formalize it first.

Let n € N denote the number of balls on one side of the pyramid’s base, that is,
n? is the number of cannonballs forming the base. According to our assumption,
the next floor is made of (n — 1) balls, the next of (n — 2)?, etc. All in all, we
have

n+n—-172+...+1

balls forming the pyramid. We want all the balls to form a square, say, of side
m € N when the pyramid collapses. So, we are looking for such a pair of natural
numbers m, n that

n+n—-172+...+1=m’

We are almost there. For us to be able to solve this equation, the left side
must be in a form that we can work with comfortably, that is, in a form of an
expression whose number of elements is independent of n. One can easily prove
using induction that

_n(n+1)2n+1)

n+n—17>%4+... +1= c .

Since it is customary to write Diophantine equations using x and y, in order to
prevent confusion, we restate our problem as finding all natural solutions to the
equation

z(x + 1)6(21* +1) )2 (1.1.2)

We will solve equation ([1.1.2]) using geometry. This might be a weird approach
but it serves to illustrate a method which we are going to employ again and again
when working with elliptic curves in later sections. If we plot the curve defined

by (1.1.2) in the real plane, it looks like [Figure 1.1.2|

Remark. Later, we will call these types of curves elliptic. In case you are wonder-
ing, the name elliptic is purely historical and their connection to ellipses helps us
in no significant way/]]

We will now use our two trivial solutions (0,0) and (1,1) to try to find other
points of natural, or at least rational, coordinates on the curve. Arguably the

4The naming was influenced by the fact that elliptic curves arise when calculating the length
of the arc of an ellipse. See |Barsagade and Meshram| [2014].



Figure 1.1.2: The curve y* = z(x + 1)(2z + 1)/6.

most straightforward way to do so is to find the line connecting said points and
take the third point where it intersects the curve.

Obviously, the line connecting (0,0) and (1, 1) is y = . The a-coordinate of the

intersection is found by solving

s w(r+1)(2r+1)
x° = 6 :

Rearranging terms gives

ZL’3 IQ X

4+ 2o
37276

Since we know two of the solutions, 0 and 1, we can factor out the corresponding
linear factors to obtain
x(xr—1)(2x—1) _0
6 - Y

from which we easily deduce that the z-coordinate of the third intersection is 1/2.
Substituting into yields points (1/2,1/2) and (1/2,—1/2). The intersec-
tion we were looking for is clearly (1/2,1/2) but it is obvious that (1/2,—1/2)
lies on the curve as well due to symmetry. We could say the same about (1,1)
and (1,—1).

Now that we have another point on the curve, we are getting closer to the so-
lution to our problem. Half a cannonball is hardly a satisfying answer if one is
concerned about applications in warfare, but we can use the new points to get
other points on the curve, again by intersecting. We could use the line pass-
ing through (1/2,—1/2) and (1/2,1/2) but that is a vertical line and does not
intersect the curve in any third point.

Remark. As a side note, in the future we will need every line to intersect a cubic
curve in exactly three points so we are addressing this issue in [Section [1.3

Let us use another line. For example, take y = 3z — 2, the line passing through
(1,1) and (1/2,—1/2). To get the third intersection, we solve

(31— 2)? z(zr + 1)6(2x + 1).



Without indulging in detailed algebraic manipulation, we kindly spare you the
act and present the solution, namely x = 24. There - it is natural! If we have
24 balls forming the base of the pyramid, then y must be natural as well. Truly,
another substitution gives y = 70. So we have gotten a non-trivial solution to our
|Cannonballs Problem|, 24 balls at the side of the base and 70 in the final square.

We shall stop here. With our ultimate goal being to find all the natural solutions,
we disclose the secret that there are no other natural solutions besides (0, 0), (1, 1)
and (24,70). The proof of this fact is not trivial but not exceedingly difficult,
either. It can be found in |Anglin| [1990].

The purpose of this problem was to present the method of intersecting a rational
line with a cubic curve to obtain previously unknown rational points. Since a line
intersects any cubic curve in exactly three points (a remark soon to be formalized
and proven), connecting two rational points on a curve has a chance to yield a
third one. Even better, drawing a tangent line to some rational point is often
enough to get another.

We now digress a little and take a look at simpler Diophantine equations to show
that Diophantine equations in two variables of order three are in a sense the
simplest type that is not yet fully understood.

1.2 Lines and Conics

As promised, in this section we shall study Diophantine equations in one variable
of any order or in two variables of orders one and two. Let us start with the
former. If f € Q[z], deg f = n € N chosen arbitrarily, there exists an elementary
algorithm of finding all rational solutions to

f(z) = 0. (1.2.1)

The algorithm consists of trying all possible combinations of numerators and
denominators from a finite set determined by the following lemma. Before we
state it, we note that we can assume the polynomial f in to have integer
coefficients if we multiply the equation by the greatest common multiple of the
denominators of the coefficients of f.

Lemma 1.2.1 (Gauss’s lemma). Let n € N be non-zero. Let f € Z[z], deg f =n,
p/q € Q where ged(p,q) = 1. If p/q is the root of f, then p | c(f) and q | £(f).

The proof of Gauss’s lemma can be found in probably every beginner book about
algebra but let us do it nonetheless since it is fairly trivial, thus a good warm-up
as the first proof of the thesis.

Proof. Let p/q € Q be the root of f. Let ag,...,a, € Q and



Multiplying by ¢" and rearranging a little yields
a0q" +a1pg" Tt . anap" g = —anp”.

Since p divides the right side, it must divide the left side as well. Obviously, p
divides every one of a;p'q" " for i = 1,...,n — 1. Tt follows that p | ag since
ged(p, ¢) = 1 by assumption. The conclusion ¢ | a,, follows analogously from

aﬂDq”_1 + ...t ap" = —apq". O

This is everything we need to solve ([1.2.1). It is sufficient to try every rational
number p/q satisfying p | ¢(f) and ¢ | £(f).

With polynomials in one variable out of the way, time is nigh to step up and add
a new variable. We set the order of the equation to be 1, to talk about lines. The
general equation of a rational line is

ar +by+c=0 (1.2.2)

for a,b,c € Q and at least one of a, b non-zero.

Unsurprisingly, every rational line has infinitely many rational points. For exam-
ple the tuple (¢, (—c—aq)/b) (or (—c/a,q) for b = 0) is evidently rational for any
g € Q and does indeed lie on a line defined by . Given that we want to
make ample use of intersections, let us convince ourselves that two rational lines
truly intersect each other in a rational point. It may sound trivial, and it is. For
the sake orderliness, however, we formulate it as an unnamed claim and prove it
in utmost brevity.

Claim 1.2.2. Two non-parallel rational lines intersect at a rational point.

Remark. As we have stated in the previous section, the 'non-parallel’ condition
is only temporary. We will have a way of making certain that every two lines do
intersect, including parallel ones.

Proof. Let

ar +by+c=0,
dr+ey+ f=0

where a, ..., f € Q be our two rational lines. Substituting y = —(c¢ + ax)/b into
the second equation gives

dw—e(aﬂC;C)—i-f:O

which after elementary manipulation reduces to

x_bf—ce
 ae—bd’

Since we assumed the lines to be non-parallel, the vectors (a,b)” and (d, e)T are
linearly independent. A basic claim from linear algebra states that in such case

a d
det =ae — bd # 0,
b e



thus the fraction is well-defined. Substituting back to az + by + ¢ = 0 gives us

the second coordinate
_ —af+cd

ae —bd
This completes the proof for the point (x,y) is obviously rational. O

Finally, we are ready to move to conics, that is, curves defined by Diophantine
equations

flz,y) =0

where deg f = 2. If we wished to write the equation more explicitly, we would be
left with
ar’ + by’ +cay+dr+ey+ f =0, (1.2.3)

where a, ..., f € Q and at least one of a, b, ¢ non-zero.

Let us start with the easy part. We shall prove that when there is at least one
rational solution to ((1.2.3)) then there are infinitely many. One way to do so is
by projecting the curve defined by (1.2.3]) onto a line.

Let P be the rational solution to , hence a rational point on the conic that
we style C'. Take a rational line L given by kxz + ly +m = 0 for k,[,m € Q, k or
[ non-zero, such that P ¢ L. If we take any rational point on L, say @, the line
connecting P and () will be rational. We will call it Lpg. Since a line meets a
conic in two points, there exists another intersection point of Lpg and C besides
P. We are aiming to prove that this point is rational as well. This is actually
quite easy and requires no additional calculations. Nonetheless, we formulate it
as a claim, yet again.

Claim 1.2.3. Let P be a rational point on C' and Q) a rational point on L. Then
all the intersection points of Lpg and C' are rational.

Proof. Lpq is a rational line, hence its equation is
kx+ly+m=20

for k,1,m € Q, k or [ non-zero. If [ # 0, then plugging y = (—m — kx)/l into our
conic equation ([1.2.3)) yields a quadratic equation in one variable, which we very
well know how to solve. The exact solutions are irrelevant but we know they are

of the form
a+ VA
r=—,
s
where «, 3, A are rational terms dependent on a,..., f,k,[. Since one of the
solutions is P, a rational point, it immediately follows that v/A € Q. Then the

other solution is necessarily rational as well.

The case k # 0 is handled similarly, only the substitution z = (—m — ly)/k is
required. ]

It is not hard to see that this way we get a (almost) one-to-one correspondence
between the rational points on the conic C' and the rational points on the line L.
Since L is by assumption rational, there are infinitely many such points. We do



not really need to limit ourselves to rational points, either. We can project any
point on the conic C, save the one point P’ wherefor Lpp: is parallel to L, onto
a chosen line L. So, with this we have taken care of the number of solutions to
(11.2.3)).

Figure 1.2.1: Projecting the curve C' onto the line L.

We further take a glimpse at how to check whether a given conic even has a
rational point or not. We are going to prove a theorem by Legendreﬂ which gives
us a satisfying condition for the equation

ar’ +by* +c2> =0, abcel (1.2.4)
to have a rational solution. But first, we have to ’link’ the solutions of ([1.2.3) to

the solutions of (1.2.4]). This will occupy us for a few paragraphs.

The following construction is partially adopted from Lee| [2012], p. 1 - 2. Less de-
tailed parts of proofs were completed and numerous explanatory remarks added.

We have to do some algebraic manipulation. First, let us introduce a new variable
z and let x = z/z, y == y/z. After substituting into and multiplying by
2% we get

ax? + by? + cxy + drz +eyz + f22 = 0. (1.2.5)

Remark. Later, we will call this process of introducing a new variable to even the
degrees of terms in a polynomial, homogenization.

First of all, we will prove a rather simple lemma that shows the connection
between rational solutions to ([1.2.3) and integer solutions to (|1.2.5]).

Lemma 1.2.4. Equation (1.2.3)) has a rational solution if and only if the equation
(1.2.5) has a non-trivial integer solution.

Proof. 1f (x,y) = (p1/q1,p2/q2) is the rational solution of ((1.2.3]) then

(,y,2) = (P1G2, D215 01 G2)
5 Adrien-Marie Legendre (1752 - 1833), French mathematician. [Duren| [2009)
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is the solution to (|1.2.5]).

On the contrary, if has a non-trivial solution then at least one of z,, z
must be non-zero. If z # 0, we have finished because (z/z,y/z) is a rational
solution to . If z =0, we can assume without loss of generality that x # 0.
After dividing by 2% and setting v/ := y/x and 2’ := z/x, transforms into

a+by) +cy +d +ey'd + f(2)? =0.

However, there is the rational solution (y/z, z/x) to this equation corresponding

to the solution (z,y,z) of (1.2.5). By and the discussion below,

there are infinitely many rational points on the conic defined by the equation
above. However, at most two of them can have z’ = 0 since substituting z’ = 0
leads to a quadratic equation in ¢, hence an equation with two distinct solutions
at most. Let (v/,2') = (y/z, z/x) be the solution with 2’ # 0. Then (z,y, z) is a
non-trivial solution to with # # 0 and z # 0. This implies that (x/z,y/2)
is a non-trivial rational solution to . O

Remark. 1t’s obvious that ([1.2.5)) has a non-trivial integer solution if and only if it
has a non-trivial rational solution. If (p1/q1, pa/q2, p3/q3) is a non-trivial rational
solution, then multiplying (1.2.5)) by ¢?¢3¢3 gives us a non-trivial integer solution.

We must now transform the equation (|1.2.5)) into ([1.2.4)). After some elementary
manipulation, (1.2.5) becomes

ales Sys s 2+ b—i 2+ f—d—2 I P P
2a7 " 24 1a )Y 4a 2 )V~

Y=ty + iz
o 2¢7 " 24

and further compute
A\ ?\ cd
B b_ci +2ae—cd2 2+ f_d:_i 2ae — cd\’ 2
N 40 ) \Y T dap— 2 4a  4a \ 4ab — 2 '

Thus, ultimately, we let

, 2ae — cd ,

y::y+m2, z =2z

and V', ¢ € Q their corresponding coefficients to obtain the equation
a()? + V() + () =0. (1.2.6)

We can easily see that a,l, ¢ are rational numbers and the mapping (z,y, z) —
(2',y/, 2') and its inverse are rational as well. It follows that (z,y, z) is a rational

solution to ([1.2.5)) if and only if (z/,¢/, ') is a rational solution to ([1.2.6].

11
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Remark. We should note that the mapping (z,y,2) — (2,9, 2') is indeed well-
defined. It could happen, for instance, that @ = 0 in (1.2.5)). Then the fraction
¢/2a would make no sense. That is true, however, to solve this problem, we can
introduce another rational mapping - for example y + y + x - to introduce an z?
into (|1.2.5) with a non-zero coefficient. Thus, without loss of generality, we can
assume all fractions in our definitions of a/,1/, 2’ exist.

There is one last step remaining before we can formulate Legendre’s theorem. We
can obviously assume that a, ', ¢ are integers if we multiply by a common
denominator. We can also assume that a,b’, ¢ are square-free. Indeed, let for
instance a = k?{ for some non-zero k,l € Z. We can get rid of the factor k? by
setting o’ := kx” and substituting back to ((1.2.6)). That is a rational transforma-
tion and as such alters not the existence or number of rational solutions. Finally,
we can assume that a,b’, ¢ are pairwise coprime. Obviously, if a,b’, ¢ share a
common factor, we can simply divide by it. Let us imagine that there exists a
factor n € Z such that n | a,b’ but n{ . We can set 2’ := nz” and by replacing
a = na” b = nb", we can divide the equation by n which eliminates the factor.
This procedure necessarily ends within a finite number of steps since each time
we divide the equation by a common factor reducing the product ab’c = n?a”b"c
to na”b”c. Hence, in a finite number of steps, we end up with a, b, ¢ pairwise
coprime.

With all the tiresome technicalities out of the way we shall now state Legendre’s
theorem about the existence of solution to (|1.2.6)). Nevertheless, we shall not
prove it here as the proof is in itself quite lengthy and technical.

Theorem 1.2.5 (Legendre’s). Let a,b,c € Z be non-zero, square-free and pair-
wise coprime. Then the Diophantine equation

az® +by? +c2* =0
has a non-trivial rational solution if and only if

(1) a,b,c do not all have the same sign,

(2) —ab, —bc and —ca are quadratic residues modulo ¢, a and b, respectively.
Proof. See Grosswald| [1985], chapter Legendre’s Theorem, Theorem 1. ]

With this, I daresay, we have taken care of conics, too. We know how to check
whether a given conic contains a rational point and once we have one rational
solution, we can find every other.

One last topic remains to be touched upon before we are equipped to tackle the
theory of elliptic curves, and that is projective geometry.

1.3 The Projective Plane

In the previous section we mentioned we would use the projective plane to ensure
that every two lines intersect at exactly one point, including parallel ones. Since

12



most of the time we will be working in the real plane, we define the projective
plane as an ’extension’ thereof. The complex construction is analogous.

Obviously, the projective plane must contain all the points that the real plane
does, for the simple reason that non-parallel lines can intersect at any point
whatsoever. However, we also need to add the points where parallel lines would
intersect. Notice that I have used the plural points, for we need to add many.
Infinitely many, in fact. It would make little sense from algebraic or geometric
standpoint should every two parallel lines intersect at the same point. So, for
every direction parallel lines share, we add a point to the real plane. And that
is it, that is the principal idea behind the construction. Without bathing in
formalities just yet, we can define the projective real plane as

P(R?) = R* U {the directions of lines in R*}. (1.3.1)

This definition, however, is not very precise or useful for computational purposes.
We know that the direction of a line in R? given by

ar +by+c=0
is determined by the numbers a,b € R. Nonetheless, the line
2ax + 2by +d = 0,

for instance, has the same direction as the previous one. It is obvious that one
point in P(R?) must correspond to both lines. In light of this, we define relation
~ on the set of real triples by

(a,b,¢) ~ (d ¥, d) €5 INeR: (d,V, ) = Aa, b, o).

Our "official” definition of P(R?) will be the quotient set of R? by ~ excluding the
point (0, 0,0) since no line has the direction of (0,0).

Definition 1.3.1 (Projective plane). The projective real plane is defined as
P(R?) = B\ {(0,0,0)} (1.3.2)
We shall denote
[a:b:c]={(d,V,d)eR*| (d,V,c)~ (a,b,c)A (a,b,c)#(0,0,0)}.

The projective complez plane, P(C?), is defined exactly the same, with complex
numbers in lieu of the reals in all related definitions.

In other words, P(R?) is the set of all triples [a : b : ¢]. We will briefly elucidate
why definitions (1.3.1]) and (|1.3.2)) are equivalent.

It is easy to see that to each tuple (z,y) € R? we can assign the point [z :y: 1] €
P(R?). On the other hand, if [z : y : z] € P(R?) and 2z # 0, we can divide by z
to get [x/z : y/z : 1] which is by definition equal to [z : y : z]. Thus, there is
a one-to-one correspondence between points (z,y) of the real plane and points
[z :y : 1] of the projective plane. Then what about points [x : 3 : 0]7 These are,

13



[a:0:0]

ar +by +d =0

ar+by+c=0

Figure 1.3.1: Two parallel lines intersecting at ’infinity’.

again, in one-to-one correspondence with the directions of lines in R?. Indeed,
by definition [z : y : 0] = [Az : Ay : 0] for any non-zero A € R which is wholly in
accordance with the fact that the directions of lines given by

t+y+c=0 x+Iy+d=0

are the same.

We have shown that points (z,y) € R? correspond to points [z : y : 1] € P(R?)
and directions of lines in R? given by tuples (a,b) € R? correspond to triples
l[a : b : 0] € P(R?*). The last thing we need to look at is how Diophantine
equations translate to the projective plane.

Take the equation

f@'y,2") =0
where f € Q[x, vy, z|. What does it mean that a triple [¢/ : 3/ : 2’| € P(R?) satisfies
such an equation? Since we have [z' : ¢/ : 2| = [A2/ : Ay : A\2/] for all A € R,
the point (Az’, A\y’, A\z’) must be the root of f for all real A, too. This occurs if

f is homogeneous, that is, all terms of f share the same degree. Indeed, if f is
homogeneous and (2’,%/, 2’) is a root of f, then for any real A\ we have

f2 My N) = A f(a o, 2) =0,
so (Ax', Ay, A2') is the root of f as well.

Provided we would like to work in the projective plane and we have the bijective
mapping (z,y) — [z : y : 1] at our disposal, we must, for a given f € Q[z,y|, find
such a polynomial g € Q[z,y, z| that

fl,y) =0 < g(Az, Ay, A) = 0.
for all A € R. This necessity is in the heart of the following definition.

Definition 1.3.2 (Homogenization). For a given f € Q[x,y], degf = n, we
define its homogenization f* € Qlz,y, z] by

fr(z,y,2) =2"f (x, y) .

Z Z
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It is elementary to check that f* is homogeneous and that f*(z,y,1) = f(x,y).

If we take the curves C, Cy defined by f and f* respectively, it follows directly
from the aforewritten definition that [z : y : z] for z non-zero is a rational point on
Cy~ if and only if (z/z,y/2) is a rational point on Cy. Compare this fact with our
findings about rational points on conics, especially the transformation of
to . Hence, if we wish to study the rational solutions to f(z,y) = 0 in the
real plane, we can instead study the rational solutions to f*(z,y,z) = 0 for z
non-zero in the projective plane.

At this point you might (and you should) be wondering why we went through all
this for. What is the advantage of working in the projective plane instead of the
real one?

The main reason we will be working in the projective plane is Bézout’f] theorem.
It is not only that parallel lines intersect in the projective plane (by definition
at the point defined by their shared direction) but any two curves defined by
coprime polynomials f, g € Q[x,y], of degrees dy, d, respectively, cross each other
exactly dy - dg times, including the multiplicity of such intersections.

We have not defined multiplicity of intersection (or intersection number, the
formal term) and we do not mean to. It would be going too deep into technical
details for a theorem whereof we will only have employed a very special case.
What we need is that a line intersects a cubic curve generally in three points.
There exist the special cases of tangent lines and inflexion points which count as
multiple intersections but we shall touch upon this topic in the next chapters.
Before we state Bézout’s theorem, we (finally) properly define a rational algebraic
curve.

Definition 1.3.3 (Rational algebraic curve). Let f € Q[z,y], deg f =n € N, be
a polynomial irreducible over Q. The set of real (complex) tuples (z,y) € R?(C?)
satisfying

flx,y) =0

is called a rational algebraic curve. If f is the defining polynomial, we denote C
the curve defined by f. In the following, the attribute rational algebraic will be
in most cases omitted. Unless specified otherwise, the term curve stands for a
rational algebraic curve defined over R.

Remark. Why do we want f to be irreducible? Because if f = gh for some
polynomials g, h of lower degree, then the set of rational points on Cy is the
union of the set of rational points on C; with the set of rational points on C}.
As such, there is no benefit in allowing f to be reducible.

In a similar fashion, we define a rational projective curve as the set of triples
[z :y: 2] € P(R?) (or P(C?)) satisfying

fla,y,2) =0

if f € Q[z,y, 2] is irreducible and homogeneous. It is not hard to prove that if f
is irreducible, then so is f* (see Fulton| [2008], Section 4.3, Proposition 3. for

6Etienne Bézout (1730 - 1783), French mathematician. |Grabiner| [1970-1980], p. 111 - 114
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a more general result). It follows from our findings in previous paragraphs that
Cy~ is a rational projective curve and Cy = Cp« N R? (we formally identify (z,y)
with [z : y : 1]). We will scarcely call Cy the affine part of Cp-.

Let us now formulate Bézout’s theorem, the very last piece of equipment we need
for the theory of rational points on elliptic curves.

Theorem 1.3.1 (Bézout’s). Let f,g € Q[x,y,z|, f N g be irreducible homoge-
neous polynomials, of degrees n and m respectively. Then the complex curves
Cy, Cy intersect in exactly mn points, in the projective plane and counting multi-
plicities.

Proof. See [Silverman and Tate| [2015], chapter Projective Geometry, p. 242 -
251. ]

Remark. We need to assume Cf, C, are defined over C since Bézout’s theorem
only works in algebraically closed fields. This, however, is not an issue because
we will only ever intersect cubic curves with lines that already have two other
real (even rational) intersections with the curve. Given that two intersections are
real, the third must be real as well because complex solutions to a cubic equation
always come in conjugate pairs.

Henceforth, we always assume our curves C are defined in the projective plane
but will omit the z-coordinate. That is, instead of the formal f*(z,y, 1), we only
write f(z,y) if not contextually appropriate otherwise.

1.4 Examples and Problems

Problem 1.4.1. Show that the ellipse 322 + 5y — 4 = 0 has no rational point.

Solution. We shall use [Legendre’s theorem| We first homogenize f(z,y) =
322 + 5y?> — 4 = 0 to obtain

322 + 5y — 422 = 0. (1.4.1)

We have a = 3,b = 5,¢c = —4. Obviously, ¢ has a different sign than a and b do.
However, c¢ is not square-free. We must first substitute 2’ := 2z and solve

322 +5y° — (/) = 0.
We have gotten a new coefficient ¢ = —1. We see that
ged(a, b) = ged(a, ) = ged(b, ') = 1.

The remaining step is to check the quadratic residue condition. It is obvious that
any integer is a quadratic residue modulo ¢ = —1, so

—ab=-15=0> (mod —1)

holds. Next in the line are —bc = 5 and a = 3. We are trying to find an integer
k € Z such that
5=Fk* (mod 3).
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Since 5 = 2 (mod 3) and

=0, 1’=2°=1 (mod 3),

we see that this congruence has no solutions. According to|Legendre’s theorem),,
there are no rational solutions to ((1.4.1)) and thus, there are no solutions to our
original equation, either. X

Problem 1.4.2. Find all the rational solutions to
Y+ 3y +2r —3y—1=0. (1.4.2)

Solution. We first introduce the term 22 into the equation by setting y := y + .
We get
4 + oy +5xy —x—3y —1=0.

Next, we homogenize and obtain
4a* + y? 4+ bry — w2z — 3yz — 22 = 0.
In accordance with , we have
a=4,b=1,¢c=5d=—-1,e=-3, f=-1.

We substitute

1
r=x+ gy — gz,
N 19
= —z.
Yy=9 9
We determine the corresponding coefficients
9 13
=4, b=—— = —.
“=n 160 ‘" 9
We shall transform the equation
9 13
A2 — D2 222
T + 92

to get a, b, ¢ integral, pairwise coprime and square-free. Multiplying by a common
denominator 9 - 16 gives

5762% — 81y% + 20822 = 0.

Obviously (we multiplied the equation by 9 and 16), none of 576, 81, 208 is square-
free. Hence, we introduce another substitution

rx=24x, y=9, =z:=4z

and end up with
? — 2 + 1322 = 0.

We could now apply |[Legendre’s theorem|and check for the existence of rational
solutions. However, since our equation looks somewhat easy this time around,
we are first going to try some random guessing, for good measure.

17



Remark. You might have noticed that [Legendre’s theorem| gives us no clue
about the value of rational solutions to . So, even if we know that a
solution exists, guessing is the only option available without further developing
the theory of rational points on conics and searching for adequate algorithms.

We first let z := 1 and try to guess a rational solution to
2 =y® —13.

It is quite evident that © = 6,y = 7 is one possible solution. To find the corre-
sponding solution to our original equation (|1.4.2)), we have to follow the chain of
substitutions in reverse.

Doing the calculations, in the background this time, we reach the solution

1 3
T=5, Y=g
Alas, we are not done yet. Our goal was to find all rational solutions to (|1.4.2]).
We are going to use our technique of projecting onto a rational line. Since we
already have a rational point P := (1/2,3/2), the best choice would be to take a
line parallel to the tangent line at P. That way, every point, save P, of the conic
has its projection.

We let f denote the polynomial from ([1.4.2]). The tangent line at P is given by

3) 13 3 11

We can choose any rational line parallel to the tangent one at P but let us
preferably choose one that crosses not the conic at any point. That way, we can
avoid special cases. The direction is given, let

132 +3y+q=0
for ¢ € Q be our line. We want the equation
13z +3y+q=y*+3vy+22 -3y —1

to have no real solutions. If we view it as a quadratic equation in y, its roots are

3:Ui\/4q+9x2+8x+40

Yy=—4

3.
2 2 *

Hence, we need
4q + 9% + 8x + 40

to be always negative. Solving this as a quadratic equation in x yields

L 2/ 86 4

9 9
Thus, for example, the choice ¢ = 0 gives no real solutions for x and it can be
easily checked that the function

z — 922 + 8x + 40
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if negative for every x € R. We have obtained our projection line
L: 13z + 3y = 0.

Every rational point on L is of the form (¢, —13¢/3), ¢ € Q. The line connecting
Q) = (q¢,—13¢/3) and P is expressed as

Lpg : (6g — 3)y + (26¢ + 9)x — 22¢ = 0.

And finally, its second intersection with the given conic is obtained from the
quadratic equation

(8q + 18)y* — (24q + 21)y + 18¢ — 9 = 0.

Its solutions are

3 _ 6g—3

27 Yo = 4(] + 9

The solution y; corresponds to the point P and the solution ys corresponds to
the second rational point on the conic with coordinates

nh =

_ 524* 423499  6g—3
T 1042 1 270¢ 181 VT aq+ 9

There, we have found all the existent rational solutions to (1.4.2]). With that we

7]

close the curtain on the problem and on the chapter. X
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2. Elliptic Curves

This chapter we shall dedicate to the basic theory of cubic curves. We will explain
the concept of a singular point on an algebraic curve, the usefulness, almost
necessity, of working with cubic curves in a simpler form and the construction of
a group law on its set of rational points.

First and foremost, a rational algebraic curve (see [Definition [1.3.3]) with defin-
ing polynomial of degree three is called a rational cubic curve. We will often omit
the modifier 'rational’ and - to further promote laziness of expression - even the
noun ‘curve’ and will simply call such algebraic curve, a cubic.

The explicit equation for a rational cubic taketh the form
az® + by + cax®y + dy*x + ex® + fy* + gry +he +iy+ 5 =0 (2.0.1)

fora,...,j € Q.

The sole image of working with such a thing in absolute abstraction should send
shivers down your spine. Just as we did with conics in the previous chapter, we
have to find a curve defined by a simpler equation whose set of rational points
corresponds to the set of rational points of (2.0.1)). This kind of relation is called
birational equivalence. We will occasionally use this term in later sections and
chapters as well so we define it properly here. There is just one preparatory step.

Definition 2.0.1 (Rational mapping). If C, C" are two curves, we call the map
p:C —C'

rational if there exist f, g € Q[z,y| such that u(c) = f(c)/g(c) for all ¢ € C where
g(c) # 0.

Now comes the topping.

Definition 2.0.2 (Birational equivalence). We call two curves C, C birationally
equivalent if there exist finite sets N,,, N, C C, M,,, M,, C C" and injective rational
maps p: C\ N, = C'\ M,, v:C"\ M, — C\ N, such that ppov and v o u are
identities on C'\ (N, U N,) and C"\ (M, U M,), respectively.

So, without all the gobbledygook, birational equivalence is a rational mapping
that works well for almost all points on C' and C’. Let us think of them as affine
curves for a second. As an example, imagine the map C' — C’, y — y/z. It is
clearly rational and, by our definition, C' is birationally equivalent to C” since the
points with their y-coordinate equal to zero (of which there are finitely many)
do not get mapped to any point on C’. On the other hand, all the points on
C" with their z-coordinate equal to 0 (again, finitely many) get mapped to one
point, (0,0), on C.

Remark. Since we will often talk about the set of rational points on a curve, it
would be a good idea to establish some notation. As it stands, for a given curve
C, we denote R(C) the set of rational points of C.
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Before we move on to play with in order to make it just a little less
frightening, we are obliged to note that there is, as of yet, no known algorithm
to check whether a given cubic contains a rational point or not, nor do we have
knowledge about the number of rational solutions to (2.0.1). There may be
infinitely many and there may not. For further details, see |Silverman and Tate
[2015], chapter Introduction, p. 4 - 6.

It also behooves us to mention that the technique of projecting onto a rational
line cannot work in the case of cubics. According to |Bézout’s theorem| a line
meets a cubic in three points. Because of that, even if we do find a rational
point on our cubic, the line connecting it with a rational point on another line
generally crosses the cubic at two other points which are not necessarily rational,
considering they are solutions to a quadratic equation. The intersection number
plays a role here, more on that in the next section. Hence, in the general case,
we could have a two-to-one correspondence at best, which is hardly satisfactory
regarding solutions to an equation.

By way of these few paragraphs we ought to have already established the idea
that cubics are not easy. That, however noble a deed in itself, does not satisfy
us, though. We move on to the next section where we deal with the problem of
singular points.

2.1 Singular Cubics

It is fair to first define what a singular point is before deciding we do not like
them.

Definition 2.1.1. Given an irreducible polynomial F' € Q[z,y], we say that a
point P is a singular point of the curve C if

F,(P)=F,(P)=0.
A curve that has at least one singular point is also called singular.

An equivalent definition would be that P is a singular point if a tangent line to
Cr at P does not exist.

Remark. We will briefly clarify why we need a tangent line at every (rational)
point of our cubic. In we define a group law on R(Cr) by getting
the third intersection (guaranteed by [Bézout’s theorem)) of the curve with a
line connecting two of its rational points. So, when we need (and we will) to
"double’ a point, we must cross the cubic with a tangent line at the given point.
Thus, for us to be able to define a group law on the entirety of R(Cr), a tangent
line must exist at every rational point.

For the sake of further discussion, we need to confuse you, forgiving reader, a
bit and fast forward in time to the next section. There we show in detail that
every non-singular curve given by is birationally equivalent to a curve of
the form

y? =2 +azx +b, (2.1.1)
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for a, b rational.

We will now classify the singular cubic curves given by (2.1.1) and see that they
are the one amongst few special cases of cubic curves for which we can express
all the existent rational solutions in utter explicitness.

If we let F(x,y) = 23 + ax + b — y?, we can take the partial derivatives of F' to
get

F(z,y) = 32" + a,

Fy(xay) = _2y
It follows that any singular point on C'r must take the shape (z,0) for x € R.
We further let f(z) := F(z,0) and note that f'(z) = F,(z,y). Hence, a singular
point (z,0) on C satisfies f'(z) = 0. However, (x,0) also satisfies f(z) = 0 since
it lies on Cr. This means that x is a double or triple root of f. Therein lies the

heart of our characterization of singular cubics. More precisely, a cubic of the
form

y* = flx)
is singular if and only if f has at least a double root. Formally, we have only
shown that when CF is a singular point then f has a multiple root. However,

the backward implication is easy to see. If f has a double root «, then f(«a) =
f'(a) = 0. Then we also have

y* = fla) =0,
so the point corresponding to « is («,0). It follows that
Fy(,0) = f'(0) =0 and F,(«,0) =0,

which in turn proves that (a,0) is singular.

On our path to see exactly why the set of rational points of such cubics is express-
ible explicitly, we are to experience the utter joy of some additional calculations.

We easily compute that

fll@)=0 — z=4= —%. (2.1.2)

To spare some space and to make the following expressions clearer, we shall
assume that x = /—a/3. The other case demands the linear substitution x = —z
where appropriate. In order for (x,0) to lie on Cp, substituting back to f(z) =0
tells us that the condition

2V/3

b="5"(~a)2

2
must also be satisfied. By factoring out (x —/—a/ 3) from f, we get

flz) = (:c— \/—73)2 <x+2 —g) (2.1.3)

We denote r := /—a/3 and substitute 2’ = x — r to obtain
f(2") = (")’ + 3r).
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The mapping = — x — /—a/3 is obviously bijective, hence every singular cubic
is given by
y? = 2%(x + 3r) (2.1.4)

for r € R.

First of all, we will show that r» must be rational. By expanding terms in (2.1.3),
we see that
f(z) = (z —7r)*(x+2r) = 2° — 3riz + 20>

Since f was assumed to be rational, we see that r? and r must both be rational,
too. Ergo, either r = 0 or r = r3/r? is rational by the argument above. This
further implies that x —r — x is a rational mapping and by it the rational points
on transform to rational points on ([2.1.4]).

We will first study the special case 7 = 0. The polynomial f(z) = 2® has a triple
root = 0 and thus the cubic y? = 2 has only one singular point, (0,0). For
any ¢ € Q, we see that (¢2, ¢%) is a rational solution to y? = 2®. It is evident that
all rational solutions are of this form.

Now, if  # 0, we are free to dismiss the points (0,y) € R(Cr). How so? Notice
that the point (0,0) lies on (2.1.3) only if » = 0. As a result, only the cubics
given by (2.1.1) of the already discussed form y? = 3 have a singular point at
0,0).

We can thus make use of the rational mapping y — yx (which is bijective since
x # 0). Substituting to (2.1.4]), we get

y2::13+37“.

Since r € Q, (¢* — 3r,q(¢* — 3r)) are all the rational points on (2.1.4). Also, the
mapping x — r + x is rational, making every such point correspond to another
rational point on our original cubic.

Remark. You might have noticed that rational points behave similarly on singular
cubics as they do on conics. It is enough to have one rational point (the singular
one) to find infinitely many more. The natural question arises. Could a singular
cubic also be projected onto a line? Without partaking a glassful of rigorousness,
the answer is yes. Once given a singular rational point on a cubic curve, we can
project any other point on the curve onto a chosen line. This works because a
line connecting the singular point and any other point on the cubic intersects the
cubic twice in said singular point. The number of intersections remains three, as
it must, but we still get a birational equivalence between a rational line and a
singular cubic by means of such projection.

Now that we have hopefully convinced ourselves that singular cubics are little
sisters to the non-singular ones, we move on to pay what we owe. That is, we
proceed to show that every non-singular cubic is birationally equivalent to a cubic

given by (2.1.1).

Before that, however, "Sound the fanfare!” as we finish the section with grace
and finally, after more than a dozen pages of preparation, define the second main
subject of the thesis.
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L (0,0)

(a) The curve C : y? = 2% intersecting 'thrice’ with L : y = 0.

\

(b) Projecting C': y? = 2%(z +4) onto L : y = 4z — 15.

Figure 2.1.1: Examples of singular cubics.

Definition 2.1.2 (Elliptic curve). A non-singular rational algebraic curve defined
by
y* = 2° + ar + b,

where a,b € Q is called elliptic.

2.2 Weierstrass’s Normal Form

We start with a general rational cubic curve given by and we assume we
are given a rational point P on it. First of all, we will show that we can assume
P to be non-singular. This does not mean that we assume the cubic itself to be
non-singular, just yet. We simply assume that this particular rational point is
not singular. We are about to prove two statements:

(1) Any line passing through a singular point intersects the curve at least twice
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at that point.

(2) If the singular point is rational and the intersection is double, then the third
intersection is also rational.

Before that, unfortunately, we need to somewhat formalize the multiplicity of
intersection, at least in the case of a line intersecting a cubic. If C'y, is given by

L(z,y) =kx+1ly+m=0
and [ # 0, we can substitute y' := (—m — kz)/l and produce the equation
F(x,y')=0

where F' is the polynomial in (2.0.1). Thus, F(z,y’) is a polynomial in one
variable which decomposes, by the fundamental theorem of algebra, into three
linear polynomials over the field of complex numbers. Hence, for P € CrNC7,, we
define the multiplicity of intersection of C'r with C'; at P as the multiplicity of the
factor that vanishes at P (formally at the z-coordinate of P) in the decomposition
of F(z,y').

Now we can jump into proving our two statements from before. Again, we let F

be the defining polynomial in (2.0.1]).

Lemma 2.2.1 (Ad (1)). Let P be a singular point on Cp. Then any line passing
through P intersects Cr at least twice at P.

Proof. We can assume P = (0,0), otherwise we translate Cr by means of the
linear mapping (z,y) = (z — p,y — q), supposing P = (p, q).
The equality F'(0,0) = 0 implies that the constant term of F', j, is 0. F,(0,0) =0
and F(0,0) = 0 imply A = 0 and ¢ = 0, respectively. Our cubic, thus, is none
other than

az® 4+ by® + cxy + day® + ex? + fy* + gxy = 0. (2.2.1)
If our line is given by

ur +vy +w =0,

its passing through (0, 0) forces w = 0. We surmise v # 0 since substituting z = 0

into (2.2.1) gives

by’ + fy* =0,
which has the obvious double solution y = 0. Then we have

u
y=——1.
v

To maintain clarity of expression as much as possible, we let v’ := —u/v. Plugging
the aforewritten equality into (2.2.1]) produces

az® + b(u')?z® + cu'x® + d(u')?2® + ex® + f(u')*2® + gu'z? = 0.

Sharp eyes certainly unveil the possibility of factorization hidden deep inside this
polynomial. Indeed, factoring out 2%, we get

v (az + b(u' )’z + e’z + d(u)*x + e+ f(u)? + gu') = 0.

This proves our lemma for this equation has the double solution x = 0. O]
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Remark. In a very similar fashion, it can be proven that any tangent line crosses
the cubic twice at the point of tangency. If we assume, just as in the previous
lemma, that P = (0,0) is a non-singular point on Cr, then the tangent line to P
is given by

F.(0,0)z + F,(0,0)y = ha + iy = 0.

Because P is non-singular, either h # 0 or ¢ # 0. Let us assume that h # 0.
Since F'(0,0) = 0, necessarily j = 0 in (2.0.1)). Substituting = = —iy/h gives

— ai®y® + bhPy? 4 chi®y® — dh2iy® + ehi®y® + fh3y? — gh*iy?
= —y? (ai3y — bhdy — chi’y + dh*iy — ehi® — fh3 + ghQi) = 0.
Thus, the factor y? corresponding to P is of multiplicity two.

It awaits us to prove that if the intersection of Cp, and Cr at P is only double,
then the third intersection point is rational.

Lemma 2.2.2 (Ad (2)). If P is a singular rational point on Cr and CL, is a
rational line passing through P which intersects Cr twice at P, then the third
intersection point is also rational.

Proof. Again, we assume P = (0,0) and

F(z,y) = ax® + by® + ca’®y + daxy® + ex® + fy* + gy,
L(z,y) = uzx + vy.

If v = 0, then, from the computations performed in the previous lemma, we get
x =0 and

S
et 0 = — —
) or y b’
both obviously rational. Supposing v # 0 and setting v’ == —u/v, we get y = v’z
and

e+ f(u)?+ gu
a+bu)3 + cu' 4+ d(u')?
It is easy to see that (z,u'z) is rational in both cases, which concludes the proof.

]

r=0 or z=—

Remark. What happens should the fractions defining the third intersection be
undefined? Would we have no third intersection, then? No. Recall that we only
work with the affine parts of Cr and C}. If we instead take the projective curves
Cp+ and Cp+, then, by [Bézout’s theorem| if they do not intersect in the affine
plane, they intersect at some point at infinity.

In the former case, v = 0, it would be the point
0:—f:0]
and in the latter we are looking at

e+ f(u')? + gu' (e + f(u')? + gu') - a+b(u')’ + cu’ + d(u')?).
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One last useful fact to observe: if P a singular point on C, only a specific class
of lines intersect C'r at P thrice. It is either the line z = 0 if f = 0 or the lines
which satisfy

"2 / u\? u
e+ f(u) +gu =e+ f =)~y = 0.
Having solved this as a quadratic equation in u, we have obtained

Y g:l:\/—4ef+92v
— 27 .

Most importantly for us, this means that if we want another rational point on C'r
besides P, the singular one, we can simply choose a rational line which intersects
CF twice at P and take the third intersection, ). ) is then non-singular either
by calculations done in the proof of |[Lemma [2.2.1| or by [Bézout’s theorem)|
due to which the intersection of C}, with Cr at () must be simple.

Remark. Perceptive readers will have certainly noticed that we have just proven
our vague remark about projecting singular cubics onto rational lines from the
previous section. Our two lemmata prove that this can be done and even give a
slight computational advantage to anybody brazen enough to attempt it.

With the problem of singular points out of the way, we can now proceed to the
transformation of C into Weierstrass’d!] form.

Because we will be working with tangent lines in the projective plane for a while,
we should formalize what a tangent line in the projective plane is and that a
tangent line to an affine point in the projective plane corresponds to a tangent
line at the same point (by means of [z : y : 1] = (x,y)) in the real plane.

If P:=[p1:p2:ps] € Cp« is a non-singular point, then the tangent line to Cp~
at P is given by (see Gathmann| [2018], Chapter 3, Proposition 3.25)

Fy(P)x+ F;(P)y+ F(P)z = 0. (2.2.2)

If p3 = 0, then this point is not affine. If, on the other hand, ps # 0, then it is by
definition equal to [p;/ps : p2/ps : 1]. For brevity of expression, we assume that
P = [py : po : 1]. In order to connect affine tangent lines to projective ones, we
need to show that

Fo(p1,p2) (@ — p1) + Fy(p1,02)(y — p2) = F; (P)p1 + F;<P)p2 + F7(P).
Fortunately, it holds and is easy to check with direct calculation that
F;(P) = Fy(p1,p2) and F;(P) = Fy(p1,p2)'
From this and the fact that F;(P)py + F;(P)ps + F;(P) = 0, we get
F;(P) = =p1F(P) — p2Fj(P) = —p1Fe(p1, p2) — p2Fy(p1, p2)

which begets the desired equality.

IKarl Theodor Wilhelm Weierstrass (1815 - 1897), German mathematician, often cited as
‘the father of modern analysis’. [Kleiner and Knobl| [2015]
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So tangent lines work as expected in the projective plane.

There is one last caveat to take care of before we bend our curve unrecognizable.
The multiplicity of intersection in the projective plane. This one is a little trickier
but it can be shown that we can transfer our definition almost directly.

More precisely, if Cr+ is a projective rational cubic and Cp« a rational projective
line given by
L*(z,y,2) =kx+1ly+mz=0

we can substitute z = (—kx — ly)/m into
F*(z,y,2) = 0.

Just as before, if m = 0, we simply substitute a different variable. We obtain a
homogeneous polynomial of degree three in two variables, x and y. By [Fulton
[2008], chapter Affine Varieties, Corollary to Proposition 5, this polynomial
decomposes into three linear factors over C. It can be shown that each of these
factors corresponds to one point of intersection of C'p+ with C'p«. We shall not do
that here, but it can probably be found in any book properly defining intersection
number, for example Fulton [2008], chapter Local Properties of Plane Curves, p.
36 - 40. For our purpose, it is satisfactory to know that a projective tangent line
crosses a projective curve twice at the point of tangency, just as in the real plane.

Let, again, P be a non-singular rational point on Cr. We will now present
a somewhat standard construction based chiefly on |[Silverman and Tate| [2015],
chapter Geometry and Arithmetic, p. 22 - 27. Details left out in the original text
were added.

First of all, we homogenize our curve to work in the projective plane. Thus,
F*(z,y,2) = ar®+by* +eay+doy*+ex’ 2+ fy* sgryz+ho® +iy2*+52°. (2.2.3)

We first take the tangent line to C'r« at P. We define this to be the axis z = 0 in
the new coordinate system. Formally speaking, if

ur +vy +wz =0
is the tangent line at P, we use the mapping
[x:y:z]l=[x:y:ur+ oy +wzl.

Remark. We can assume w # 0 here. Since at least one of u, v, w must be non-
zero (P is non-singular), say u # 0, we could instead take ux + vy + wz = 0 to
be the axis z = 0. As F* is homogeneous, the entire transformation process is
symmetrical with respect to any interchange of coordinate axes.

Next, we let () be the intersection of z = 0 with the curve C'r«. This intersection
is necessarily simple since z = 0 (as the tangent line) passes twice through P.
We let the tangent line to Cp« at @ be the axis x = 0.

Remark. If the tangent line at P passes thrice through P, that is, P is an inflection
point of Cgs, we let x = 0 be any line that does not contain P.
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Finally, for y = 0 we can choose any line passing through P, different from z = 0.

Due to our choices of axes, the point P is now [1 : 0 : 0] in the new coordinate
system, and @ = [0 : 1 : 0]. We will show that in these coordinates we have
a=>b=c=0in (2.2.3). Since F* vanishes at P, we immediately get

F*(P) = F*(1,0,0) = a = 0.

Similarly, it follows from F*(Q) = 0 that b = 0. Finally, the axis z = 0 intersects
Cp+ twice at P and once at (). Provided that the intersections are gained as the

solutions to
F*(z,y,0) =0,

plugging in a = b = 0, we obtain
cxy + dry* = 0.

After factoring out the term zy, the equation becomes
zy(cx + dy) = 0.

Since P does not satisfy £ = 0 and the intersection of z = 0 with Cp« is double
at P, we get that P must satisfy

y=0 and cxr+dy=0.
It then follows from the second equality that ¢ = 0. Our projective curve is thus
F*(z,y, 2) = doy® + ex’z + fy’z + gryz + haz® +iy2® + j2° = 0,

where the coefficients d, ..., are generally different than they were before the
projective transformation.

We now dehomogenize to work with the affine part of Cp« again. We want to
stay projective only as long as we must. Setting z := 1 we return to

F(z,y) = F*(2,y,1) = dvy®* + ex® + fy* + gry + ha + iy + j.

We divide the equation by d, letting further

(... j) = (22) (2.2.4)
which further transforms the equation into
zy® 4 ex? + fy? + gry + hx +iy +j = 0.
We map x — = — f, which yields
vy* + (g +i— fg)y = —ex® + (2ef —h)x + fh—ef? — ;.

Although this equation does not look very simple yet, with the introduction of
new coefficients, we get the much more transparent form

vy + (px + q)y = ra® + sv + t,
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where p,...,t € Q are the adequate substitutions. We are very much nearing
the end of the thorny path. The last important step remaining is to multiply the
equation by x, which gives

(xy)? + (pr + q)wy = ra® + sa* + ta,

substitute y := yx and complete the square on the left side. We compute

1 p? pq ¢
v+ (pr+qy = (y+ 5(p:v +q))? - Z‘TQ —T-

Thus, through the substitution y := y+(1/2)(pz+¢) our equation finally becomes

2 2
2 3 p 2 pq) q
— - t - .
Yy =1z —|—<s—i— )x —l—(—i— T+

Grouping the coefficients each under one (rather packed) letter, we can write
y* =ra® + s2? +to + u. (2.2.5)

We finish by two more, somewhat cosmetic, improvements. Firstly, we replace z
by rx and y by r2y to attain

r4y2 = ri2® + sr?2? + tra + w.
Further division by r* gives
R L L
2 BT
Secondly and ultimately, we replace x by x — s/3r? which gets rid of the term z?

and produces
9 3. t s st n 253 n u
=z ——— |- —4+ =+ —.
Y r 3r5  27r6 -t

Once again grouping the coefficients, we end up with our desired equation
y* =2 +ax + b,

which is typically called Weierstrass’s normal form.

Remark. A keen eye has surely noticed that we didn’t consider the case of r =0
in equation (2.2.5) or d = 0 in substitution (2.2.4). These crimes have been
committed with clear intent. Notice that in the former case, the equation

y2:sx2+m+u

describes a conic. Hence, if r = 0, the curve CF is birationally equivalent to
a conic, thus singular. We’ve already discussed singular cubics given in Weier-
strass’s normal form in the previous section. As such, we can gracefully omit
this case because singular cubics are of no use in furthering the theory. Case
d = 0 leads to an analogous situation as zy? is the only term of degree 3 in the
dehomogenized polynomial.

30



We tried to make it as clear as possible that all the transformations applied to
reshape the original equation into Weierstrass’s normal form were rational.
It should also be noted that had we not been given any rational point on the cubic,
we could have carried out the transformation exactly as is with any real point.
However, since cubics with no rational points are of no relevance to the purpose
of this text, we could safely assume that a rational point had been given.

Remark. As far as any semblance of the original curve with its Weierstrass’s form
goes when plotted in the real plane, there is generally none. See [Figure 2.2.1|
for an example of the "picture deforming’ effect the transformation entails.

Aty =2

Y= —-r——=

3 27

N

Figure 2.2.1: The curve a® + 3> + 2y*> + v +y = 2 and its Weierstrass’s form
y? = 2® — (7/3)x — 884/27.

We have shown that any cubic that cannot be put into Weierstrass’s normal form
through the procedure above is already birationally equivalent to a rational line.
Also, since singular cubics are things of days bygone (more precisely, of
7 we see that the study of rational points on elliptic curves encompasses the
study of rational points on all non-singular cubics.

Now, we put our algebraic cells, which have remained asleep for far too long, to
work when we define a group law on the set of rational points of an elliptic curve,
in the succeeding section.

2.3 Group Law on An Elliptic Curve

In this section we shall take a closer look at how a group law can be defined on
the set of rational points of an elliptic curve that transforms it into an abelian
group. The presented method is loosely based on [Silverman and Tate [2015],
chapter Geometry and Arithmetic, p. 15 - 22 and 28 - 32.

As always, we assume our elliptic curve C' is given by the equation
y* =2 +ax + b,

where a,b € Q and 2% 4+ ax + b has no multiple root. The idea behind the
definition is the following: given two rational points (which are not singular by

31



assumption) we can intersect the line that passes through them with C'. This, by
IBézout’s theorem| produces a third intersection. We will view this procedure
as a binary operation on R(C'). So, given P,Q € R(C), we denote P x @) to be
the third intersection of Lpg with C. We have not formally proven that the third
intersection lies in R(C'). This fact, however, is quite trivial. But, just in case
you do not take our word for it, we shall go out of our way to prove it.

The intersections of Lpg with C' are obtained by solving a cubic equation in one
variable. If q1,qs € Q are two its rational solutions, we can factor them out to
get an equation in the form

alr —q)(x—q)(z—1r)=0,

where o € Q, r € R. To the term 22, for example, belongs the coefficient
—a(q1 + g2 + ) which is not rational when r ¢ Q. That cannot be for both Lpg
and C' are given by equations with rational coefficients. So, we have that r € Q,

as well. Hence, P x Q € R(C) for any P,Q € R(C).

Alas, * is not the right candidate for our group law. It is obviously commutative
but it can be shown that it is not associative. That is, in general

(P+Q)*R#Px(QxR).

We hope you will forgive us this one time for not proving this fact rigorously and
instead referring you to [Figure 2.3.1] wherefrom it can be easily inferred. As
you will soon see, this section is quite heavy in terms of expression manipulation
and we do like to savour our freedom while we can.

Figure 2.3.1: A ’proof’ that * is not associative.

Thankfully, we know how to get around the non-associativity of *. Let us fix
an arbitrary rational point 0 € R(C). We will define a new binary operation

32



+:R(C)* - R(C) by

P+Q=0%(PxQ).
Expressed in a more transparent manner, given two rational points P and @),
we take the third intersection of Lpg with C, P * (), and then take the third

intersection again, this time of Lg p.g with C. We denote this point P + Q. If
you, like we do, believe that visualization is a good method of grasping new ideas,

check [Figure 2.3.2]

Figure 2.3.2: Illustration of the binary operation 4.

Remark. You might wonder why we decided to label our arbitrary point 0. That
is because it acts as the neutral element to operation +. We will prove this
completely later in the section for a special choice of 0. Right now, we give you
just a taste: the point P + 0 is defined as 0 * (P % 0). We join the points P
and 0 to get the point P %0 on C'. Then we join P % 0 with 0. But this line
passes through P since that was how we defined P * 0 in the first place! Thus,
P=0%(Px0)=P+0.

Just as it was with x, it is obvious that 4 is commutative. Indeed, for any choice

of P,Q € R(C), we have
P+Q=0x(P+xQ)=0%(Q+«P)=Q+ P.

However, it is not nearly as easy to prove that + is associative. We wish not to
prove this fact for any choice of 0 but for a very special point on the curve which
has, as you will hopefully soon acknowledge, numerous geometric and algebraic
advantages.

Although our definition of 4 seems to work just fine, it is heavily dependent
on the location of 0 on the curve. Also, spare a thought to how numerically
complicated it is to determine P + (). Let us reiterate the method as series of
steps to accomplish:

(1) For a given P, € R(C) find Lpg, the line passing through them.
(2) Determine P (), the third point of intersection of Lpg with C.

(3) Calculate the equation of a line passing through 0 and P * Q.
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(4) Determine P + @, the third point of intersection of Lg p.g with C.

Steps (1) and (2) are independent of 0 so there is no way to make them any easier
by changing the coordinates of 0. However, for steps (3) and (4), there is a way.
What if the line passing through 0 and P* () were vertical? Due to the symmetry
of C, P+ () would just be the reflection of P % () about the z-axis. This would
allow us to get rid of steps (3) and (4) entirely! The last thing to ponder is to
what choice of 0 could possibly accomplish that.

Recall that C' is actually projective, so the easiest method to find the best of
the best 0, is to take a point P € R(C) and find the third intersection of Lpp:
(where P’ is the reflection of P about the z-axis) and C. Such point clearly lies
at infinity because if we substitute x = ¢ for some constant ¢ € Q, that is, an
equation of a vertical rational line, into (2.1.1]), we get at most two solutions,

namely
y =tV +ac+b,

in the affine plane. Therefore, we need to homogenize C' to find the third solution.

Since C' is defined by
y* = 2° + ar + b,
homogenization gives
Yz = a® + avz? + b2t
The points at infinity are defined as the intersections with z = 0. Substitution

yields
0=z
We see that the line z = 0 intersects C' thrice at the point [0 : 1 : 0] and thus C

has only one point at infinity. We ought to ascertain that this point is truly the
intersection of C' with any vertical line. A homogenized vertical line looks like

T = cz,

for c € Q. It is clear that z = z = 0 satisfies this equation. So, we have unearthed
our savior of computational power, the point [0 : 1 : 0], which we denote 0 and
henceforth consider the neutral element with respect to +.

With a partially informal introduction to the concept of group law on R(C'), we
now proceed to formalize it. We are going to find explicit formulae for the sum
of two points and consequently prove that + is indeed associative.

Firstly, we should prove that for every P = (p1,p2) € R(C), the equality

0P = (p17 _p2)
holds. The vertical line passing through P is x = p;. Substituting into (2.1.1]

yields
y = £\/p? +ap; +0b.

However, we know that one of these solutions is equal to ps. It follows immediately
that the other must be equal to —p,. It is also somewhat apparent that if we let
—P = (p1, —p2), then P + (—P) = 0. Indeed, we can write

P+ (—P)=0x(Px(—P))=0%x0=0.
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The second equality holds because Lp_p is a vertical line which intersects C' at
P, —P and 0. The final equality uses the fact that the intersection of z = 0 with
C' is triple. This suggests that the third intersection of Lg o, which is exactly the
line z = 0, with C is 0 again. Now that we have a formula for the inverse of a
point, we move on to find one for the sum of points.

Let @ = (q1,92) € R(C) be another rational point on C. A simple calculation
tells us that the equation of Lpq is

P2 — @2 P1q2 — P21

P —q1 Pr—q

If p1 = q1, then due to symmetry, either () = P or () = —P. In the former case,
P + @) = 2P and doubling a point unfortunately requires an exclusive formula
which we will deduce later. The latter case implies P 4+ () = 0 which has already
been thoroughly discussed. Hence, temporarily, we assume p; # ¢;. In order for
the expressions to remain readable, we let

_ D2—4q . D192 — p2q1
u=——" v=—-
P —q1 P1—q1
Substituting into (2.1.1]) produces
(uz +v)* = 2° + ax + b.
Grouping coefficients we obtain
23— u*2? + (a — 2uv)z + (b —v?) = 0.

Two of the roots of this cubic equation are p; and ¢;. If we denote the third root
r1, we know thanks to Viéte’sﬂ formulae that the coefficients of the polynomial
satisfy

pP1+qr+nr = u’.

As a consequence, we get
.2 _
rL=u—p1r—qi, T2=ur+ov,

where R = (r1,79) = P % Q. Thus, P+ @ = (1, —7r2). The last thing remaining
is the formula for 2P. To get P x P, we need to find the line that intersects the
curve twice at P, in other words, the tangent line to C' at P. We denote

F(r,y) = 2° + ax + b — 3
and calculate
Fo(P)(x —p1) + Fy(P)(y — p2) = (a +3p})(x — p1) — 2pa(y — pa) = 0.
Expanding the right side, we obtain

a+3p?x+ 2p3 — 3p; — ap:.
2po 2p

2Francois Viete (1540 - 1603), French mathematician and astronomer.|O’Connor and Robert-
son| [2000]
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For now, let us suppose py # 0; we will deal with this special case shortly.
If we substitute
_a+3pi  2p5—3pi —ap
u = . V=
2p, 2p2

we can once again use Viete’s relations and get

)

2
ry=u"—2p, Tro=ury+ov,

where R = (ry,ry) = P * P. Then, again, 2P = —R. Finally, if p, = 0, we get
the tangent line
Tr = Pi1.

However, this is a vertical line so the other point of intersection of this line with C
is 0. This means that if P = (p;,0), then 2P = 0. In terms of group theory, P is
an element of order 2 in (R(C), +,0) (we have not yet proven that (R(C),+,0)
is a group but we soon shall). We are going to dedicate the entirety of the
succeeding chapter to points of finite order in R(C') and see that points (p1,0)
truly hold a special place on our curve.

P+P

Figure 2.3.3: Doubling the point P.

With the explicit formula for the sum of any two points from R(C') at our disposal,
we set off on the journey of proving that + is associative. Let us formulate it as
a claim since we have not had one for a while.

Claim 2.3.1. The equality
P+(Q+R)=(P+Q)+R

holds for all P,Q, R € R(C).

Proof. 1f any of P, @, R equal 0, then the equality holds trivially. We will assume
that all the points are non-zero. We will calculate the left side first and for now
surmise that we are not doubling a point anywhere. More specifically, we assume

Q#R and P#Q+R.

36



We should note, that if ) + R = 0, or symetrically P + ) = 0, associativity is
quite straightforward to prove. Let’s suppose @ + R = 0 or () = —R. Then, we
are to show that

P=(P+Q)+(-Q)

We'll use the symmetry of our curve with respect to the z-axis to that end. The
third intersection of the line L pg passing through P and ) with C'is defined to be
P x Q. We denote this point S. Since P + () is the reflection of S over the x-axis
and —@ is the reflection of @), it is clear that Lp,g ¢, the line passing through
P + @) and —@ is the reflection of Lgg = Lpg. But, then, the third intersection
of Lpig,—g with C is necessarily the reflection of P, the point —P. In symbols,
(P + Q) x (—Q) = —P, which immediately implies (P + Q) + (—Q) = P. So, if
@+ R=0or P+ @ =0, we have no problems.

In the other case, using our hard-earned formula, we get
Q+R= (W —q —r,—u(u?—q —r)—v),
where u, v are defined as

Q2= T U_Q17’2—Q27’1

u b
g1 — " g1 — "

We denote S = (s1, 52) = @ + R and write
P+S= () —p —s,—u () —p—s1)—),
where
;. D2 — S2 ;. P1S2 — P2S1
u = , U=
pP1— 51 P1— 51

We will denote z(P), y(P) the first and second coordinate of P, respectively.
After much simplification and substitutions wy = q; — 1, wy == ¢a — r9, We get

2 3 _ 2 2 o 2 3 2
4 = = (22 (P 0020 2ot )
w1 wi((pr + ¢ + m)wi — w3)

In a similar fashion, if we assume

P#Q, P+Q#R,

we can write
P+Q=—p—q,—uu®—p —q)—v),
denote T':= P + @ and

TH+R= ()=t —ry,—u' (W)=t —7r) =)

for the appropriate choices of u, v, u’,v'. Simplifying yields

2
w2>2+ <p2wi)) + (qqu - 2q17"2 + 2(]2711 _ 7”17’2)’[1)% _ wg)

2(T+R)=—p1—w —<
( ) b=t wy wi((p1 + qi + r)wi — w3)
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which is exactly the same expression as x(P + S). Since P + S and T + R have
the same first coordinate, they can be either the same or opposites of each other.
If they are the same, we are finished with this case. Let us suppose that

T+R=—(P+025).
Then, however, we have
(P+8)+(T+R) = (P+(Q+R)+((P+Q) +R) =0,

The points P, (), R, for which this equality holds would only have to comply by
the assumptions made at the start of the proof. To elaborate, since we have
already checked that the z-coordinates of (P + @) + R and P + (Q + R) match
for a nearly arbitrary choice of P, () and R, the y-coordinates of these points are
either equal or opposite. Since we're trying to prove the former case holds for all
points, we surmise the latter and using the fact we can choose P, () and R nearly
as we wish, we let P := R. Thanks to the commutativity of +, we obtain

(R+(Q+R))+((R+Q)+R) = ((R+Q)+R)+((R+ Q)+ R) =2((R+ Q)+ R).
We further let R := —@Q), which gives

2R+ Q)+ R) =2((-Q+ Q)+ (=Q)) =2(0+ (-Q)) = 2(-Q).

It is obvious that 2(—@) = 0 does not hold for every € R(C). In order for
the proof to be complete, we’d have to specifically consider the case 2(—@Q) = 0.
However, to spare both time and space, we borrow a result from the following
chapter, namely |Lemma|[3.1.1] the proof whereof does not depend on the formula
for the sum of points at all. It says that there are at most three points () satisfying
2() = 0. Thus, this case can be checked manually with relative ease and we’ll
omit it here.

Tracing back, we get that our original supposition was wrong as well and we thus
have
T+R=P+S.

Next, we deal with the case of a double point. If P = () = R then the equality
apparently holds. Due to the symmetry of the equality, all cases of a double point
can be gotten from only two, for example, P = ) and P = @ + R. Indeed, if we
suppose P = (), we attain

P+ (P+R)=2P+R.

With a simple swap of letters, thanks to the commutativity of +, this can be
written as

P+2Q=(P+Q)+Q.

which is the same equality we would have obtained had we substituted R = @
into the original expression. Similarly, the case R = P + @ is clearly the same as
P = Q@ + R, if one swaps P and R. As it stands, we only need to have studied
two cases to have proven all of them.

Nevertheless, the task of proving the equality for a double point will be delegated
to you, kind and hard-working reader. The proof has already gotten fairly long
and this other case comprises exactly the same machinery we have witnessed so
far. No new insights are gained, only a different formula used. n
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With this we finish our definition of the group law on R(C'). Henceforth, we
will always mean the group (R(C),+,0) when writing R(C). Should you still
found the number of complicated expressions in this section unsatisfactory, worry
not, as we tread ahead to the section of examples and problems where long and
senseless computations are ubiquitous.

2.4 Examples and Problems

Problem 2.4.1. Determine all rational singular points of the cubic
F(z,y) = 22° + y° + 42% — 4zy — 62 — 8y + 16 = 0.

Solution. We start by calculating the partial derivatives of F'. Doing the compu-
tations, one gets

F,(z,y) = 62° + 8z — 4y — 6,

F,(z,y) = 3y* — 4z — 8.

We have to solve the system F(z,y) = F,(z,y) = 0. Solving F,(z,y) = 0 as a
linear equation in x, we get

3 9
=—y° -2
T =Y
Substituting into F,(x,y) = 0, we meet the wandering beauty

27
§y4— 1292 — 4y +2 = 0.

Despite knowing how to solve quartic equations, engaging with one would be far
too lengthy. Instead, we pretend we did not know the solution beforehand and
make a lucky guess, namely y = 2 seems to be one solution. Factoring out the
corresponding linear term, we get

27 27 3
—2) (=P + 2 4 = —1): :
(y )<8y+4y+2y 0
We are still left with a cubic equation, though. Multiplying by a common de-

nominator, we will attempt to solve
27y + 54y + 12y — 8 = 0.

It comes to mind that there is one particular lemma we stated but have never
actually utilized in practice. Yes, we are talking about [Gauss’s lemmal Since
we, naturally, have a strong feeling that there is at least one more rational solution
to our equation, we shall try to search for them. By |Gauss’s lemmal|, if p/q is a
root of a polynomial f, then ¢ | ¢(f) and p | ¢(f). The only divisors of 8 are 1,2,4
and 8 and the divisors of 27 are 1,3,9 and 27, but we must also count negative
numbers. After a while of trying out different combinations (whereof there are
32 if we are not mistaken), we hit on the solution y = —2/3. One more factoring

then gives
2\ /27 9 3
y ><y+3)<8y+2 5) =!
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By taking the discriminant

81

A=—

2
of the remaining quadratic term, we see that y = 2 and y = —2/3 are the only
rational solutions. The corresponding solutions for z are x = 1 and x = —5/3.

Thus, (1,2) and (—5/3, —2/3) are our two candidates for rational singular points.
By plugging these into our original equation, we see that

F(1,2) =0,
256
Hence, only (1,2) lies on the cubic and is indeed a rational singular point.

Remark. Recall that we claimed that every singular point on a cubic curve has its
second coordinate equal to zero. This is, however, only true for cubics in Weier-
strass’s form, which Cr is most certainly not. If we had put Cr into Weierstrass’s
form using the method described in we would have mapped (1,2)
to a point (p,0) for some p € Q. We will leave the calculations to you, should
you wish to compute p explicitly.

It might seem that we are done but we are not. Our cubic, C, is projective.
That means it could potentially have a singular point at infinity. We did not
need to bother checking that for cubics in Weierstrass’s form because they only
have one point at infinity whereat there is the tangent line, z = 0.

We must further homogenize F' to get the equation
F*(z,y,2) = 22° + 9° + 42’2 — dayz — 622" — Syz* + 162° = 0.
We now calculate the partial derivatives with respect to all three variables:

Fi(x,y,2) = 62° + 8z — dyz — 62,
* o 2 2
Fy(x,y,2) = —dxz + 3y~ — 827,
Fr(x,y,2) = 42 — 4oy — 1202 — 16yz + 4827,

Since we are only looking for points at infinity, we set z = 0 and get

F¥(x,y,0) = 627,

. 2
Fy(z,y,0) = 3y7,
Fi(z,y,0) = 42® — 4y,

It is obvious that the only point where all partial derivatives vanish is [0 : 0 : 0].
However, this point does not lie in P(R?) by definition. In the end, we still have
only one rational singular point, (1,2). X

Problem 2.4.2. Transform the cubic curve
Flz,y) =2+  +ay* +or+y—-2=0

into Weierstrass’s normal form given the rational point P = (1,0).
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Solution. We will follow the series of steps described in We first
homogenize F' to get

F*(z,y,2) = 2* +y* + ay® +22° +y2* —22° = 0.
We calculate the tangent line at P = [1: 0 : 1] defined by
Fy(P)(x—1)+ F;(P)y+ F(P)( = 1) =4z +y — 42 = 0. (2.4.1)

This calculation also confirms that P is not singular. We find the intersection of
Cp« with 4z +y — 4z = 0. After substituting y := 4(z — x) and expanding terms,
we arrive at

—472% + 1602%z — 17922% 4 662° = 0.

We know the tangent line at P intersects C'p« twice at P and once in a rational
point Q. Ergo, we can factor out (z — 2)? corresponding to the intersection at P.
Through a little exercise in polynomial division we acquire

(z — 2)*(—47x + 662) = 0.
Substituting z := 1 and x = 66/47 back into (2.4.1) yields

16
47
Hence, QQ = [66 : —76 : 47]. We calculate the tangent line at Q:

y:

21053z + 9505y — 14194z = 0.

Thus, we map x +— 21053z 4+ 9505y — 14194z. Finally, for the line y = 0 we
choose any line passing through P different from 4x + y — 42 = 0, for example,
x+y — 2z = 0. The last mapping is then y — = + y — z. In order to transform
our curve, we need to find the inverse mapping. This is most easily done through
matrix notation. Our mapping is

T 21053 9505 —14194)\ [ =z
yi=] 1 1 -1 ||y
2 4 1 —4 z

If we strain ourselves (or our computers in this case), we compute the inverse
mapping to be
1 22 1563 /

xr 6859 19 6859 x
_ 4 1 /
yl=1| 0 3 3 Y
147 11548 /

< 6859 57 20577 ) \*

Substituting back to F*(x,y, z) = 0 yields an equation of the form
F*(2,y,2) = vy* + ar’z + bryz + cy’z + doz® +eyz® + f2° =0,
where a,...,g € Q are very long fractions. We dehomogenize and get

F(z,y) = vy* +ax® +bay +cy* +dr +ey + f = 0.
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With a further change of variables which copies the steps described in
exactly, we end up with

v =2 -2 —2r —32=0.
One last substitution x = = + 1/3 yields

which is the desired form. X

Example 2.4.1 (Borrowed from Silverman and Tate| [2015], chapter Geometry
and Arithmetic, Exercise 1.18). On the cubic curve

=2+ 17
lie the rational points
b = (_273)7 Py = (_174>7 P3 = (275>, Py = (479>7 P5 = (8723)

Each one of P,, P, and P5 can be expressed as mP; + nP; for an appropriate
choice of m,n € Z.

Proof. In order to calculate m P, we first need to double the point. We have our

doubling formula
2P = (u* — 2py, —u(u® — 2py) — )

where P = (p1, p2) and

a+3pi _ 2p5—3pi—ap
2py 2py '

Plugging in a = 0,p; = —2,py = 3, we get

u=2 and v=7T.

And consequently
2P1 == (8, —23) = —P5,

so we have already found one relation, P; = —2P;. If we now make use of the
new relation and compute the sum of P; and Ps, we get

Py + Ps = (u* — 2(P3) — a(P5), —u(u® — 2(Py) — 2(P5)) — v)

where

u— y(5s) —y(s) and v = z(Ps)y(Fs5) — y(Ps)x(Fs)
T(P3) — x(F5) T(Ps) — x(Ps)
Substituting the adequate values, we obtain v = 3, v = 1 and thus

P+ Ps=(—1,4) = Ps.
We have just discovered the second relation:
P,=P;+ Py =—-2P, + Ps.

It remains to express P, as mP; + nPs;. After a while of toying with the sum
formula, we have obtained

P, — Py =(4,9) = P,.

With this relation, we have expressed all the points P, Py, P5 as linear combina-
tions of P, and P3, which concludes the proof. n
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3. The Nagell-Lutz Theorem

You might have noticed that we did not make too much progress on Diophantine
equations in the last chapter. True, we did demonstrate that rational solutions to
any cubic equation correspond to the rational points on a curve in Weierstrass’s
form but we did not get any closer to the number or nature thereof. This chapter’s
main aim is to give some insight into exactly that.

Most of the content of this chapter is adopted from [Silverman and Tate| [2015],
chapter Points of Finite Order. Although the exposition of facts was largely
restructured, the ideas behind many, albeit not all, concepts and proofs belong
there.

In the previous chapter we hit upon the points of order two in R(C'), specifically
the points with their second coordinate equal to zero. This was not a coincidence.
In fact, all points of order two lie on the z-axis. There exist a precisely defined
criteria which the points of finite order in R(C) satisfy. Their formulation is the
subject of Nagell-LutA'| theorem and the proof of their correctness, the essence of
this chapter. We will not leave you in the dark for long, as we state the theorem
right here, to give you a precise idea what we shall be working on.

Theorem 3.0.1 (Nagell-Lutz). Let
v = fx) =2 +ar+b (3.0.1)
be an elliptic curve and a,b € Z. We denote
A = —4a® — 270

the discriminant of f. If P € R(C) and ord(P) < oo, then x(P) and y(P) are
integers and either y(P) = 0, in which case ord(P) =2, or y(P)? | A.

Remark. Authors of Silverman and Tate| [2015] prove the weaker criterion y | A
instead of y* | A. We have chosen to prove the latter, which is also computation-
ally more efficient. The proof of the stronger criterion was left as an exercise in
the original book (see the same source, chapter Points of Finite Order, Exercise
2.11).

You might ask, "How does this theorem help with anything?” It is true that this
theorem does not help us find any rational solutions in the first place. Sadly, as
we already stated, there is as of yet no general method to accomplish this feat.
It, however, does help in identifying equations with infinite number of solutions.

Just as the theorem states, if P is a rational point whose coordinates are not
integers, then there are infinitely many points in R(C') or, said differently, in-
finitely many rational solutions to ([3.0.1). We can even generate these solutions
by adding P to itself again and again. Since, ord(P) = oo, the points

P,2P,3P,...

ITrygve Nagell (1895 - 1988), Norwegian mathematician & Elisabeth Lutz (1914 - 2008),
French mathematician. [Ellingsrud| [2009], Knapp| [1999]
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all lie in R(C') and are never equal to 0. The general "algorithm’ is to find all the
points of finite order by adding points with integral coordinates to themselves or
to one another. If there exists any other rational solution that is not on the list,
then there are infinitely many more.

Among others, there is one more thing the [Nagell-Lutz theorem|is good for,
especially from the perspective of group theory. It aids in determining what
is traditionally called the torsion part of R(C), that is, the subgroup of R(C)
generated by the elements of finite order. In this regard, it is often coupled with
Mazur’&ﬂ theorem which determines the structure of the torsion part of R(C)
precisely. We will state Mazur’s theorem at the end of the chapter as a bonus
fact but intend not to prove it.

With our goal clear and the path leading to it very much not, we start off by
studying the points of orders two and three, which are somewhat easier to cata-
logue than the rest.

3.1 Points of Order Two and Three

We have already met the points of order two when we derived the explicit formulae
for +. We saw that all points of the shape (p,0) are of order two. However,
the backward implication also holds. Every point of order two must have its
y-coordinate equal to zero. Indeed, we can rewrite the condition

2P =0

into a more translucent
P=-P

One obvious solution is P = 0 but, for this point is by definition of order one,
we can exclude it and henceforth suppose P # 0. Since —(p1, p2) = (p1, —p2), we
get po = —po, which only occurs if p, = 0. Substituting y = 0 back to (3.0.1f), we
get

2 +axr+b=0.

This means that there are at most three rational points of order two. Provided
that we also forbade f to have multiple roots and complex solutions to a cubic
equation are always conjugates of each other, there are always three, one or
zero rational solutions to the equation above. The case where there are three is

illustrated in [Figure 3.1.1|

We have thus proven one half of the following lemma.
Lemma 3.1.1 (Points of order two). The following statements hold.
(a) If P € R(C) and P # 0 then ord(P) = 2 if and only if y(P) = 0.

(b) The set of points of order lower or equal to two forms a subgroup of R(C)
with one, two or four elements.

2Barry Charles Mazur (born 1937), American mathematician. |O’Connor and Robertson
[2009)
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Figure 3.1.1: Three points of order two.

Proof. We have proven part (a) above. As for part (b), there is always one
element of order one, namely 0. Depending on the number of rational solutions
to the equation f(x) = 0, we either get zero, one or three other rational points of
order two. It is obvious that the sum of any such two points gives the third since
they all lie on the line y = 0. Hence, the points of order two or less truly form a

subgroup of R(C). ]

Remark. We can hear you, group theorists, shouting at us from your desks. Yes,
the subgroup just mentioned is in all three cases isomorphic to a very well known
group. If it is trivial, then it is of course isomorphic to Z;. If there is only one
rational point of order two, then we have the isomorphism with Z,. In the last
case, when there are three points of order two and one point of order one, the
subgroup is isomorphic to Zs X Zs. One possible mapping is

0'-)(0,0), P1'—><O,1>, P2|—><1,0), P3'—>(1,1)

Right now, you might be getting the feeling that if everything goes as smoothly
as it has, we are done with the points of finite order before dinner. Worry not,
though, since the points of order three are not nearly as easy to deal with, not to
mention the higher orders.

A point P € R(C) is of order three if
3P=0

or, equivalently,
2P = —P.

We need to solve this last equation. Let us start with the z-coordinate. Thanks
to our formulae derived in [Section [2.3] we can calculate the xz-coordinate of 2P,
where P = (p1,p2), as

(a + 3p3)°

2
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For better readability, we let x := p;, y := ps and solve the equation

+ 32?)?
_QHWZI

Expanding terms and putting everything on the left side, we get
9z* + 62%a — 122y% + a® = 0.
We can further substitute y? = 23 4+ ax + b to produce
3t + 6ax® + 12br — a* = 0. (3.1.1)

We could find the roots of this quartic polynomial but it is unnecessary. Of true
importance to us is the fact that there are at most four rational roots. We could
now determine which points satisfy the equation

y(2P) = y(—P)

but we also need not. Since z(2P) = z(—P) there are only two possible options.
Either y(2P) = y(—P), in which case we are done, or y(2P) = —y(—P). However,
—y(—P) = y(P), which would mean

2P = P

or, in other words, P = 0, a case which we excluded at the start. Consequently,
we have y(2P) = y(—P) and it follows that all rational roots of (3.1.1)) are points
of order three.

Contrariwise, if z(P) satisfies (3.1.1) for some P € R(C), then z(2P) = z(—P)
and, again, either
2P=P or 2P=-P.

With the first case leading to P = 0, which we prohibited, we have 3P = 0. Once
again, we have proven one part of the lemma characterizing points of order three,
which we now bring to light in all its glory.

Lemma 3.1.2 (Points of order three). The following statements hold.

(a) A point P € R(C), P # 0 is of order three if and only if x(P) satisfies
B11).

(b) The set of points of order one or three forms a subgroup of R(C') which has
one or three elements.

Proof. As in the previous lemma, (a) is already proven.

Let us denote g the quartic polynomial in (3.1.1]). To prove (b), we unfortunately
need to study the nature of the roots of g a little. First of all, we are going to
prove that g has two real roots at most. For that, it is most convenient to study
the discriminant of g. Since g is a repressed quartic (the term z? is missing),
according to Rees |1922], if the discriminant, A, is negative, then g has two real
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and two imaginary roots, all distinct. Sparing you the lengthy computation, we
have reached the result

A(g) = —110592a°® — 1492992a°b* — 5038848b*.

It might not look like it but this number is a actually a multiple of a square.
Indeed, you can verify that

2
A(g) = —110592(a® + 47b2)2.

This means that A < 0 for any a,b € Q. It remains to show that A # 0.

For that, we need to notice a not at all obvious relation. Doing the calculations,
we see that
g () = 122° + 12az + 12b = 12f(z).

So, if any x is at least a double root of g, it would have to be the root of f as well.
However, the points P = (x,y) where z is the root of f have their y-coordinate
equal to zero. We have just proven that these are of order two. This leads to
a contradiction since, according to (a), if g(x) = 0, then (x,y) has order three.
Hence, we have A < 0.

To reiterate, for any point (z,y) € R(C) we know that y = 0 if and only if
ord((x,y)) = 2, thus the two real roots z1, x5 of g correspond to four points -
(x1,11), (z2,y2) and their negatives.

However, it is easy to see that points of order three, together with 0, form a
group. Indeed, if Py, P, € R(C), ord(P;) = ord(P,) = 3, then

3(—P1):—3P1:0 and 3(P1+P2):3P1+3P2:O

Since this group contains an element of order three, by Lagrange’ﬂ theorem, its
order must be divisible by three. Nonetheless, we have just proven that g has
zero, one or two real roots. All in all, we see that, since 3 1 5, two of these roots
must correspond to points with a complex y-coordinate. If the other two points
have rational coordinates, then there are two points of order three in R(C') and
if they do not, there are none. This is what we wished to prove. O

Remark. Both |Lemma [3.1.1]and [Lemma [3.1.2|are stated differently here than
they are in [Silverman and Tate| [2015]. We did not wish to include points of real
and complex coordinates as the original authors did. The proof of the former
lemma stayed more or less the same but the proof of the latter, especially part
(b), thus required a very different approach.

Before we march forward and leave points of two and three in the dust forever, we
mention a, to us not very important but still interesting, property of the points of
order three. They are in reality points of inflection on C'. Indeed, the condition

2P=-P

implies that if we take the tangent line at P and then connect the third intersec-
tion with 0, we get —P. That, however, can only happen if the third intersection

3Joseph-Louis Lagrange (1736 - 1813), French mathematician and astronomer. Struik| [2020]
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is the point P again. Since this fact does not help us study the points of finite
order with the approach we have chosen, we leave it unproven and instead rely
on geometrical intuition.

With points of orders two and three completely characterized, we enter the next
section where we talk about the importance of the discriminant (which we used
as the upper boundary for points of finite order in |[Nagell-Lutz theorem)) and
how it connects to the order of rational points.

3.2 The Discriminant

We have been mentioning discriminants here and there throughout the chapter
but have never really defined them properly. We shall not do so in complete
generality but instead shall only focus on discriminants of cubic polynomials.

Definition 3.2.1 (Discriminant). If f € Z[z,y], deg f = 3 and x4, 29, x5 are its
(generally complex) roots, we define the discriminant of f as the quantity

A(f) = (21— x2)* (21 — 23)* (12 — 23)*.

We will write A instead of A(f) where the corresponding polynomial is clear from
context.

We believe you have noticed this definition of the discriminant is different from
the number we used in [Nagell-Lutz theoreml| Since both definitions of the dis-
criminant come to be important later on, we are going to show their equivalence,
at least in the case of

f(z) =2 + azx +b.

Before that however, we notice that by substituting x := x/d?, y == y/d> into the
equation above and multiplying by d, we end up with

y? = 23 + d*ax + d°.

So, if we choose d € 7Z large enough, for example such that it is divisible by both
the denominator of a and the denominator of b, we can transform our equation
into one with integral coefficients. Hence, because we need to make vast use of
the criterion of divisibility between integers, we assume our elliptic curve to be
given by an integral equation.

Lemma 3.2.1 (Discriminating). If f € Z[z,y| is an irreducible polynomial of
degree three in the form
fx)=a2"+ax+b

and x1, T, x3 are its complex roots, then
A = —4a® — 271,

Proof. If we let
27b n V108a3 + 72902

SN 2 ’
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then, by [Kurosh| [1972], chapter Evaluating Roots of Polynomials, p. 226 - 230,
roots of f can be written as

a \S/EGZTI'UC
T Ywermk T T3

After much simplification, we get

Tk

V3i(27a® + w?
(Il — SL’Q)(.Tl — I’g)(l’g — .1'3) = ( )
Yw
Elevating to the second power gives
_27(16 Cogb wa
w? 27

Finally, undoing the substitution and, yet again, simplifying, one gets
—4a® — 27,

which completes the, arduously technical, proof. O

If, for now, we assume the trustworthiness of[Nagell-Lutz theorem| then thanks
to our definition of the discriminant, we are sure that there is a limited number
of rational points of finite order in R(C'). When the roots of f are distinct, which
we always implicitly surmise, it follows that A ## 0. Thanks to that, there is
only a finite set of integers y € Z that satisfy y*> | A. When we substitute these
integers into the equation

y? = flx),

we end up with an equation in one variable and in the shape

where h(z) = f(z) — y*. The polynomial h has integral coefficients, thus, by
|Gauss’s lemmal if = € Z is the root of h, then z | ¢(h) for ¢(h) = 1. We see
that there is only a finite number of integral pairs (z,y) which satisfy the criteria.

We were happy to share an algorithm based on an unproven hypothesis. Now
that you were acquainted with the way points of finite order can be found, the
time is nigh to show that [Nagell-Lutz theorem|can actually be proven, albeit
using non-trivial methods.

Before we finally prove at least one part, the easier one, we need to bury ourselves
in some additional computation, which will prove itself to be helpful later in the
section. The duplication formula for a point P says that

x(2P) = u* — 2x(P),
where

- 3z(P)*+a
o y(P)
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We let P = (z,y) and will aim to rewrite the formula purely in terms of z. We
note that for f(x) = 2 + ax + b we have f/(z) = 32 + a. Thus

W
i

Further calculations give

1002 ") — Sz ") — 8
v(2P) =1 4(52) =1 (1’)4y2 vy® _f (w)4f(x;:f(flf)
z* — 2ax? — 8bx + a®

423 4+ dax + 4b

Let us denote the polynomial in the numerator ¢(x). Hence, we have

z(2P) = j;c((xx)) :

Ultimately, we need to share with you the fact that we can write A(f) as

A(f) = (32° — bax — 27b) f(x) + (=32? — 4a)d(z). (3.2.1)

One can easily verify this formula and the level of entertainment paired with the
amount of gained insight would be matched perhaps only by the all-encompassing
ILemma [3.2.1| but we implore you to trust us with its correctness, this one time.

What we needed this formula for, is the following lemma. If we assume the
first part of [Nagell-Lutz theoreml namely that points of finite order have
integral coordinates, we can prove the second part. Also, it is quite evident that
ord(P) < oo implies ord(2P) < oc.

We decided to style this lemma rather poetically in respect to the common saying,
"The sky’s the limit,” as it can be interpreted to limit the ’height’ of points of
integral coordinates.

Lemma 3.2.2 (The discriminant’s the limit). Let P € R(C), P # 0 such that
P and 2P have integral coordinates. Then either y(P) =0 or y(P)* | A.

Proof. We may assume that y(P) # 0 , otherwise ord(P) = 2 and 2P = 0.
Since for any point P

y(P)? = f(x(P)),
obviously y(P)? | f(z(P)). Thanks to the preparation we did above the lemma,

we know that P P
sop) = PEP) _ x(P))
4f(z(P))  4y(P)
We assumed z(2P) to be integral, so it follows that y?(P) | ¢(x(P)). Taking
(3-2.1)) into consideration, we have ascertained that y(P)* | A. O

With the easier part of [Nagell-Lutz theorem| successfully proven, we are very
much on our way to prove the fact that each point of finite order has integral
coordinates. The proof is long and difficult enough to make the content of its
own section.
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3.3 The Proof of Nagell-Lutz Theorem

Even though we have already proven the easier part of [Nagell-Lutz theorem)|
the main part about points of finite order having integral coordinates remains
veiled by the robe of uncertainty.

Now, and for the rest of the section, let P := (p1,p2) be a point of finite order in
R(C). We shall employ a very peculiar approach in proving that p; and py are
integers. We are going to prove that there are no prime numbers dividing the
denominators of p; and ps. That leaves us with the only option available - that
the denominators of p; and py are equal to 1, which is tantamount to claiming
they are both integers.

To such end, we choose an arbitrary prime number p and define the prime affinity
of a rational number g € Q (with respect to p) as the number v € Z such that

m .,
q=—p,
n

where m, n, p are pairwise coprime. In such case, we denote p(q) = v.
Remark. We should note that prime affinity is indeed well-defined. If ¢ = ¢1/¢q,

then there are unique numbers m,n, o, 8 € 7Z such that

G =mp®, q = npﬁ

and m,n,p are pairwise coprime. Then we have

@ mptm o
qz np? n .
We let v :=a — 3.

The next step is to see what happens if the number p divides the denominator of
p1 or po. That is,

p(p1) = —p and p(p2) = —0

for some p, 0 € N. We will now show that u, o cannot be arbitrary.

Lemma 3.3.1. Let P € R(C), P # 0 and ord(P) < co. If p,0 € N are such
that p(p1) = —p, p(p2) = —o, then there exists a natural number v € N that

w=2v and o=3v.

Proof. We let

m k
) P2 = —
Ip°

for the adequate choices of m,n, k,l € Z. Plugging x = p;, y = p into (3.0.1)),
we obtain

am m3 k2

npt n3p3u - l2p20‘

Putting terms over a common denominator, we further get

amn®p* + bnPp* +m* k2
n3p3# o l2p20'
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By assumption, ged(p,!) = ged(p, k) = 1, so

k2
p <l2p20> = —20.

Since p t m, we also know that

ptamn?®p* + bnp +m?.

However, this implies

amn?p** 4+ bn3p3* +m?
p n3p3,u

= —3/.

This proves that 20 = 3u and, consequently, 2 | i, 3 | 0. Thus, g > 0 if and only
if o > 0 and, in this case, there exists a non-zero natural number v € N such that
1 =2vand o = 3v. [

Similarly, had we assumed that ¢ > 0, by the same chain of calculations we
would have reached exactly the same result. As it stands, whenever p divides the
denominator of p; or ps, it necessarily divides the denominator of the other; and
the powers are 2v and 3v for some natural number, respectively.

Since we so painstakingly defined the group law on R(C), it is time to employ
our undoubted proficiency in group theory, yet again. The just proven lemma
inspires the succeeding definition.

Definition 3.3.1. For a given prime number p and natural number v > 0, we
denote

R,y (C) ={(z,y) € R(C) | p(x) < —2v Ap(y) < =3v},

that is, the set of all the rational points (z,%) such that p? divides the denom-
inator of x or, equivalently, p* divides the denominator of y. We include the
point 0 in every such set by convention.

Remark. Do notice that for any p < o natural, we have the inclusion

RE(C) D RY(C).

Hence, in our newly defined notation, the problem of the denominator not being
divisible by a prime number p was transformed into the task of showing that no
point of finite order can lie in ’R[l,(C’). Firstly, nonetheless, we are to show that
each one of R (C) is a subgroup of R(C).

Remember that when p divides the denominator of p;, then a higher power of p
divides the denominator of p,. We also defined R (C') as the set of rational tuples
whose coordinates’ prime affinity is lower than some multiple of v. We wish to
turn this around, or, in other words, we would like to apply a transformation
to our curve such that when (z,y) € R}(C), then instead the numerators of the
coordinates of the transformed tuple would be divisible by p to the power of some
multiple of v. Thus, we apply the mapping

T 1
— =t —s
) )
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and shall for the moment be working with our curve in the (¢, s) plane. Now, if
(z,y) € Ry(C) for some v, then we can write

m k

L= np2+) ¥y= 13+

where ¢ > 0. Applying the aforementioned mapping, we produce

ml .. [ ‘
= — v+i § = — 3(1/—1—1)'
Count our objective accomplished since now p*** divides the numerator of ¢ and
3+ divides the numerator of s.

Remark. We are certain you have noticed that the mapping is not bijective, or
better said, it is bijective almost everywhere. There is a finite number of points
wherefor their image is not defined, namely the points with y = 0. However, as
we have proven in [Section [3.1] these points are of order two and we already
studied those thoroughly. Thus, we do not need to include them in the (¢, s)
plane.

It is evident that (7,y) € R, (C) if and only if

p(t) = p” and p(s) > p™.

To verify that R (C') are subgroups, we need to ascertain that for every two
points P, P, € R} (C) their negatives and their sum lie in R (C). Unfortunately,
this entails finding the formula for the sum of points again the (¢, s) plane. We
promise it will be worth the time and effort in the end, though.

There is another way to look at the mapping ¢ = z/y,s = 1/y. If we visit the
projective plane for a minute and, as always, we identify the point (z,y) with
[z : y : 1] € P(R?), then, if y # 0, this point is by definition equivalent to
[z/y:1:1/y] =1[t:1:s]. So, from the projective perspective, we have not really
done much at all. We have simply chosen to identify the point (z,y) for y # 0
with [t : 1 : s], instead of [z : y : 1].

"What happens with the points where y = 07” you ask. Those get mapped to
points [t : 0 : s], that is, to points at infinity. However, as we have already
stated, this is of little matter to us since those are of order two and we came to
understand them not long ago. It also follows from the identification of (z,y)
with [t : 1 : s] that lines get mapped to lines and cubic to cubics. It should be
noted, too, that the mapping has the additional advantage of bringing 0 down to
earth, literally, since 0 = [0 : 1 : 0] is the point (0,0) in the (¢, s) plane.

For further calculations, we state, and it can be verified by simple substitution,
that a rational line in the (¢, s) plane is given by

at +b+cs =0,

if az + by + ¢ = 0 was a rational line in the (z,y) plane. Also, our elliptic curve
unfortunately does not stay elliptic but it is still a cubic curve. That is, with the
substitutions performed, we now work with

s =t + ats® + bs®. (3.3.1)
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(a) The curve y? = 2% — 52 + 3. (b) The curve s = 3 — 55%t + 3s°.

Figure 3.3.1: The 'same’ curve in two different planes.

There is more thing left before we put or calculators to use again. For further
developments, it is advantageous to define a special ring R, as the ring of rational
numbers whose denominator is not divisible by p. To put it in prime affinity terms,
a rational number ¢ lies in R, if and only if p(¢) > 0. Notice that R, is indeed
a ring, and thus a subring of the field of rational numbers. If ¢1,¢2 € R,, then
the denominator of their sum and product is not divisible by p, either, so they lie
in R,. It is also rather apparent that the ideals p”R, consist of all the rational
numbers whose prime affinity is higher than p”. In other words, for a point P
in the (t,s) plane to lie in R (C') is the same as require that t(P) € p"R, and
s(P) € p* R,, where t(P), s(P) denote the t and s-coordinate of P, respectively.

In the following text, we will need one particular property of R,. It is, in fact, a
unique factorization domain with exactly one prime element - p. First of all, every
element of R, can be written as mp”/n for some natural v € N where m, n,p are
pairwise coprime. It follows that the only invertible elements (units) in R, are
rational numbers of prime affinity 0. Indeed, if mp”/n € R,, then its inverse in
Q is n/mp” which, however, lies in R, if and only if ¥ = 0. As a consequence,
the only primes in R, are of the shape mp/n. In other words, p is the only prime
in 17, up to multiplication by invertible elements.

The fact that R, is a unique factorization domain stems from the following lemma.

Lemma 3.3.2. Let R, be the subring of rational numbers with denominator prime
top. Then R, is a principal ideal domain.

Proof. To show that R, is a principal ideal domain, as the we need to check that
every ideal is principal, that is is generated by just one element. We will first
make use of the fact that every subring of rational numbers is noetherian. This
result can be found for example in Gilmer| [1970]. Thus, we know that every ideal
I < R, is finitely generated. Let for instance

I =(ay,as,...,a,).
Since each one of g; lies in R, it can be uniquely written as a; = m;p* /n;. Now, if

we let v = min{y; | i < n}, then I = p”R,. Indeed, if, without loss of generality,
a; = myp”/ny, then for every other i < n, we have that

v
m;pt nim; Vi
a; = = — aq.

n; min;
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The fraction nym;p”~"/min; lies in R, because v; > v. This completes the
proof. ]

It is a well-known fact, and not too demanding to prove, that every principal
ideal domain is also a unique factorization domain. Thus, we have that R, is a
unique factorization domain with only one prime element.

We will make ample use of this fact after we derive the formulae for addition
of points in the (t,s) plane. We denote Py = (t1,51), P2 = (t2,52) € Ry (C),
P, # P,. For now, we assume that t, # t; and deal with this case later. Then
the line connecting P, and P; is given by

s=ut+v
where
81— S2 t1S2 — S1t2
U= , V= —r =
ty —to b1 —to

Substituting into (3.3.1)) and collecting powers of ¢ gives
(au2 + bud + 1) 3+ (Zauv + 3bu2v) 2+ (a112 + 3buv?® — u) t+bv® —v=0.

Let us denote P x Py = (t3,53). We know that the roots of this polynomial are
t1, to and t3. By Viete’s relations

2auv + 3bu’v

e 7 B

Now that we acquired the formula for P; x P, finding P; + P, is easy. It is easily
verifiable by substituting into that whenever (¢,s) € C, then (—t,—s) € C.
So, the line passing through P; % P, and 0 = (0, 0) meets the cubic at (—t3, —s3),
which is by definition P, + Ps.

To make any progress, we must prove that of u € p* R,. Why? Because then
we will prove that t3 € p”R,. This stems from the fact that both ¢; and ¢, lie in
p” R, and also the numerator of

2auv + 3bu’v
au? +bud +1

lies in p* R,. Since au?® + bu? also lies in p* R, we have that 1+ au® + bu? is a
unit in R,. Thus, the whole expression lies in p* R, and, in turn, t; lies in p”R,,.

Furthermore, we notice that
V=81 —uty

since the line s = ut 4+ v passes through P, = (¢1,s;). If we keep supposing
u € p*R,, then, provided that s; € p* R,, we get s3 € p* R, as well. This is
indeed true, because if u € p* R, and also t; € p”R,, then obviously ut; € p* R,,.
As a consequence, v € p* R,

Summarizing our thoughts, if we prove that u € p*’R,, then t3 € p'R, and
s3 € p* R, which is exactly the condition for a point in the (¢, s) plane to lie in
R;(C). We would then prove that R}(C) is closed under addition.
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At the start, we assumed that P, and P, were distinct. However, we will soon
see that one formula can be used for adding two points and for doubling a point.

To show that u € p* R, we first rewrite u a little. If we substitute s; and sy into
(13.3.1]), we get (after some factorization)

s1— So = (8] — 13) + a(sity — s3ta) + b(s} — s3)
= (t] — t3) + a((t1 — t2)s] + ta(s] — s3)) + b(s] — s3).

Putting all terms on the right side and factoring t; — ¢, and s; — s9 from terms
divisible by these quantities, we get

0= (tl — tg)(t% + tltg + t% + (IS%) + (81 — 82)(t2(81 + SQ) + b(S% + S1S82 + Sg) — 1)

We rewrite this as
0= a(ty —t2) + B(s1 — s2)

where «, 8 are the corresponding expressions. We thus get

S1 — S9 . «
ti—t; B
Substituting back, we arrive at
§1— S t2 4 tity + t2 + as?
w="1—22— L1272 " (3.3.2)

n tl — tQ n 1-— a/t2(81 + Sg) - b(S% + 5189 + 8%)
You might wonder why we exchanged a simple formula for a way more florid one.
There are two reasons, with one of them becoming apparent promptly.

Rules of differential calculus dictate that the slope of a tangent line at P, = (¢4, $1)
to our curve C' is given by

ds ds ds
a(Pl) = 325% + GS% + 2atlsla(P1) + BbS%E<P1)
Factoring out and dividing gives
ds 3t2 + as?
7(P1) = ! - PR
dt 1 — 2at;s1 — 3bsy

Notice that this formula is exactly the same as (3.3.2)) when we substitute ¢; = t5
and s; = $».

Now, for the second reason we employed our intricate formula for u. Do you
see the term 1 in its denominator? Of course you do. This little insignificant 1
ensures that the denominator of u is a unit in R,. That is because

—ato(s1 + S2) — b(s% + 5189 + s%)

lies in p* R,. Also, in the numerator of u, there is a sum of products of terms
all belonging p”R,. Which means that the numerator of u lies in p* R,. Since
we have just observed that the denominator of v is a unit in R,, we have that
u € p* R,. But that is precisely what we wanted! Now, there remains only the
case of two distinct point sharing the same ¢-coordinate.
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Ift(P) = t(P,) then the line connecting P; with P, is a vertical line t = t(Py) = t;.
We denote (t3, s3) the third intersection of t = ¢; with C'. It is obvious that t3 = ¢,
thus t3 € p”R,. We show that s3 € p* R, by a series of expression transformations
akin to the ones afore. We denote t := t; = t, = t3 and look at as a cubic
equation in s, that is

bs® +at? — s+ 3 = 0.

Since t; = ty = t3, this polynomial has the roots sq, so and s3. By Viete’s relations

—at
§1+ 82+ S3 = —.
b
From (3.3.1)) we substitute
t3 — sz + bs’

as3

t=
Plugging this into our relation, we get

—t3 4 s3 — bs3
bs?

81+52+83:

We also know (again, from Viete’s relations) that
815283 = t3.
Substituting s3 = t*/s1s9 and simplifying yields

—t3s3s3 + 135753 — bt?

bt28182

81+82+S3:

Using the final relation

1
5182 = —g — 5183 — S$2S53

and then substituting s3 = 13/s;s, again, gives, after straightforward computa-
tion,
—155‘%5‘2L + tSSi’sg — bt”

1+ bt3s; + bt3sy

Since b € Z, definitely p(b) > 0. Owing to that, the expression bt3s; + bt3sy €
p* R,. Hence, the denominator is invertible in R,. The numerator most certainly
lies in p* R, and together with the fact that sy, so € p* R, we get that s3 € p* R,
Thus, we have shown that (t3,s3) € R;(C), which rids us of the special case
because Py + Py = —(t3, s3).

81+ So + 83 =

With the special case resolved, we have now proven that every R, (C) is closed
under addition of any two points on the plane, that it is a subgroup of R(C').

A good question that should arise right now is, "What is all this good for?” For
a lot, mind you. To jump right to the first application of our findings, if we take
a look back at the formula for the sum of two points, we have

2auv + 3buv

HP) +UP) + tP o By) = = T

We already observed that the denominator of this expression is invertible in R,,.
We know that u € p* R, and v € p** R,. Upon closer inspection, we see that the

o7



numerator lies in p°” R, and thus the whole fraction lies in p° R,. Hence, we have
that
t(Pl) + t(PQ) + t(Pl * PQ) c p5VRp.

Since t(P; + P») = —t(P, x P;) we also get, using everyone’s favorite congruence
notation, that
t(Pl) + t(PQ) = t(Pl + PQ) (mod p5VRp).

This congruence is important because of the fact that it relates the operation +
in R;(C ), which is a geometrical operation on the set of rational points, and the
operation + in p® R,, which is a traditional addition of two rational numbers.

One is then prompted to define the map
L Ry(C) = p'Ry, P t(P).

This map does not, unfortunately, define a homomorphism, since in general
t(Py) +t(P) # t(P + P) in p”R,. However, this relation ¢s true in the quotient
group p”R,/p” R, as we have just observed. Thus, the map

v YR
RP(C) 4 i’Vp5VRp

is a homomorphism. Its kernel are obviously all the points P with p(¢(P)) > p®,
that is, all points in R}”(C). Hence, finally, founding ourselves in the principles
of group theory, we have found a monomorphism

L Rp<c)/RZV<C> — ple/p5uRp.

We send 0 — 0 by convention.

Remark. It is not too demanding to prove, but we shall not do it here, that
p'R,/p™ R, is a cyclic group of order p*. Thus, through the monomorphism ¢,
RZ(C’)/R;?”(C) is a cyclic group of order p? for some 0 < o < 4v.

All of the work will see its fruits, when we now prove the main part of
[Lutz theoreml and also the final claim of the thesis.

Claim 3.3.3 (Points of finite order). For every prime number p, the group R;,(C’)
contains no non-zero points of finite order.

Proof. Let P € R(C), P = (p1,p2), ord(P) = m € N. Since P # 0, we know that
m # 1. We assume that P € R}(C) and arrive at a contradiction.

Although P can also lie in some smaller R} (C), it obviously cannot lie in every
group Ry (C) since that would imply that the denominator (P is in the (z,y)
plane) of p; would be divisible by p” for arbitrarily large v. Hence, we find the
number v > 0 such that P € R/(C) but P ¢ Ry (C). We will study two cases,
depending on whether p divides m or not.

First, we assume that p { m. We have seen that the congruence

t(P)+t(P)=t(P+ P) (mod p”R))
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holds. By its repeated application m-times, we get
mt(P) =t(mP) (mod p™R,).
However, since p t m, m is invertible in p° R,. This congruence thus becomes
t(P)=0 (mod pR,),
whiclh implies P € R2(C) and in return contradicts the assumption that P ¢
R;H(CO).

Let us now suppose that p | m. We can thus write m = np for some n € N.
We shall instead study the point P’ = nP. Since ord(P) = m, it follows that
ord(P’) = p. Because R (C) is closed under addition, we have that P' € R}(C).
Just as in the previous case, we find a number v > 0 such that P’ € R;(C) but
P" ¢ Ry(C). We have the congruence

0 =t(0) =t(pP") = pt(P') (mod p"’R,).

We thus have
t(P)=0 (mod p™ 'R,),
which, again, implies P’ € R>*~'(C) and contradicts P’ ¢ R, (C).
Since both cases led to a contradiction, we have proven that P ¢ R} (C). O

With this, we have completely overcome the ordeal of proving [Nagell-Lutz the-|
forem| When P is a point of finite order, then no prime divides the denominator
of the coordinates of P. This can only occur if both coordinates are integral.

Before we march away once and for all, we state the promised Mazur’s theorem,
which classifies the points of finite order with greater precision.

Theorem 3.3.4 (Mazur’s). If C' is a non-singular cubic curve, then all the ra-
tional points of finite order form a subgroup of R(C) which assumes one of the
following forms:

(1) a cyclic group of order n for 1 <n <10 orn = 12,

(2) the product of a cyclic group of order two with a cyclic group of order 2n for
1<n<4.

Proof. See for example Kamienny and Mazur [1995], p. 81 - 100. ]

3.4 Examples and Problems

Since the chapter was chiefly dedicated to points of finite order, it seems appro-
priate to include a concrete example of how the search for all points of finite order
on an elliptic curve actually goes.

Problem 3.4.1. Find all the points of finite order on

y* = f(x) = 2° — 43z + 166.
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Solution. We first calculate the discriminant of f. We have
A = —4a® — 27" = —425984.

When testing the divisibility of A by different integers, it is beneficial to factorize
it. A computational software or a lot of patience yields

425984 = 215 .13,

We start with the points of order two. If y = 0, then we are looking for the
integral solutions to
2® — 43z + 166 = 0.

Since any integral solution must by (Gauss’s lemmal divide 166 = 2 * 83, we do
not have many options. The only divisors are 1,2,83,166 and their negatives.
Having tried these options, we have reached the conclusion that there are no
points of order two on our curve. Hence, we proceed to find points of higher
order.

Since y? must divide A, y must be a power of 2, lower than 27. The options
are thus 1,2, 4,8, 16,32,64 and 128, together with their negatives. We deal, for
the sake of randomness, explicitly with 8 and —1. The rest is left to computing
enthusiasts. If y = 8, we need to find all integral solutions to

22 — 432 + 166 — 64 = 2° — 432 + 102 = 0.

The divisors of 102 are 1,2,3,6,17,34,51 and 102, again, with their negatives.
Repeated substitutions declare that x = 3 is the only integral solution. Thus,
we have found the point (3,8) on our curve. We will determine its order. By
repeatedly doubling the point, we reach the conclusion that

thus, ord((3,8)) = 7.

Now, if y = —1, the process is analogous. We are now looking at the integral
solutions to
2® — 43z 4 165 = 0.

The divisors of 165 are 1,3,5,11,15,33,55 and 165. Plugging those numbers in
reveals that there are no points of finite order with y-coordinate equal to —1.

Had we continued in this fashion for quite a while longer, we would have ascer-
tained that there are only six points of finite order on our curve, namely (3,8),
(11,32), (5,16) and their negatives. Since ord((3,8)) = 7, thanks to Lagrange’s
theorem and [Mazur’s theoreml we now know that the rational points of finite
order on our curve form a cyclic group of order 7. X
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Conclusion

We have introduced the theory of Diophantine equations and shown how the
study of algebraic curves leads to potential rational solutions. We have dealt
with the theory of rational conics, having shown that the nature of their set of
rational points is fully understood.

Furthermore, we thoroughly studied cubic curves, showed that cubics with sin-
gular points are understood just as well as conics and that every cubic curve is
birationally equivalent to a cubic curve in Weierstrass’s normal form, which we
called elliptic. On the set of rational points of an elliptic curve, we defined a
commutative group law by intersecting lines passing through the points of the
curve with the curve itself.

Finally, we pondered the structure of the torsion part of the set of rational points
of an elliptic curve and proved the important Nagell-Lutz theorem which deter-
mines the set of rational points precisely.

All in all, the theory of elliptic curves and algebraic geometry in general is a
mathematical discipline which has yielded many non-trivial results throughout
the last century and also one which I incline towards the most. The preparation
for the thesis, mostly involving attempts to understand difficult concepts, and
its writing, often met with caveats which took time to overcome, have in times
of success brought me sincere joy and I hope this is not the last bit of algebraic
geometry that is seen written by my hand.
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