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Abstract: The thesis aims to present a theory about algebraic curves over complex
numbers from the topological perspective. The main result proved in the thesis
is the classical degree-genus formula which states that in the projective setting,
non-singular algebraic curves are compact surfaces whose genus depends only on
the degree of the curve itself.

The presented proof relies heavily on algebraic topology; it is shown that the curve
acts as a covering space for the projective line (without a finite set of images of
ramified points), then a suitable triangulation of a projective line is lifted to the
curve. Later, we discuss how our result relates to the popular definition of genus
as the number of handles attached to the sphere. Finally, we briefly go through
singular curves showing that the degree-genus formula cannot, in general, be
applied to them.
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Introduction

Algebraic curves played a central role in the history of mathematics, with their
rigorous study taking off in the 19th century by Bernhard Riemann, Felix Klein
and David Hilbert.

This thesis aims to provide an accessible proof of a degree-genus formula - a
classical result relating the topology of a planar algebraic curve with the degree
of a polynomial defining it.

Planar algebraic curve C' is essentially a zero set of a two-variable polynomial
P(z,y) in C2. Tt can be seen as C?, a four-dimensional vector space over R, quo-
tiented by the range of P(z,y), which is two-dimensional over R. So intuitively,
C' should be two-dimensional over R.

We will show that C' is indeed a two-dimensional manifold, i. e. a surface.
Moreover, if we are instead working in a projective space, which is a compactifi-
cation of the corresponding affine space, then C' is a compact surface.

Compact connected surfaces are fully classified up to homeomorphism - they
include orientable surfaces, which are homeomorphic to a sphere with g handles
attached to it, and unorientable surfaces. Thus, the goal of the thesis is to show
that a sufficiently general projective curve is topologically a sphere with

g=5(d—1)d~2)

handles attached to it.

To prove the degree-genus formula, we will find a triangulation of C'. The
advantage of this method is that we will get for free that C'is orientable. However,
more work is necessary to find the number of handles of C'. We will not be fully
rigorous in working out the number of handles. Moreover, we will also not be
able to prove that C is connected.

The core of the proof comes from the book Kirwan| [1992].

Section introduces the reader to projective spaces. It will be shown that
they are Hausdorff, compact and that they contain the affine space as a subspace.
Furthermore, a notion of a projective transformation of a given space will be
discussed. We will show that they are homeomorphisms that are easy to find. This
section is entirely based on |Kirwan [1992], Chapter 2 with trivial modifications
of proofs.

Section |1.2|introduces algebraic curves. Basic notions ubiquitous later on will
be defined, and the relation between affine and projective algebraic curves will
be discussed. The section is based on Kirwan! [1992], Chapters 2 and 3, although
the reader is expected to refer to Fulton| [1989] for a more general algebraic point
of view.

Section builds a complex-analytic theory that will be further required to
verify that one assumption to a crucial lifting criterion will be satisfied. The
section is based on [Kirwan| [1992], Appendix B. The proof of Theorem is a
modification of a proof of Theorem B.1 in Kirwan| [1992].

Section aims to introduce the reader to the necessary pieces of algebraic
topology. The crucial notions of covering spaces and lifting will be defined, and
a lifting criterion sufficiently general to our purposes will be proved. The lifting

criterion (precisely Theorem [1.27, Theorem and Remark [1.29)) is based on
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Kirwan| [1992], Appendix C, Section 1, however the buildup to it (the rest of the
section) is based on |Wilton [2019], Chapters 1 and 2. The first four paragraphs of
the proof of Theorem [1.27|are mine, albeit probably well-known in this generality.
The proof of Theorem [1.28|is an easy but nontrivial modification of the proof of
Lemma C.7 from Kirwan| [1992].

Chapterintroduces the setting of C' being a branched cover of P'. The notion
of a ramification point will be defined. We will then determine the number of
ramification points in a sufficiently general case and show that such a case can
always be reached. The section entirely follows Kirwan| [1992], Chapter 4, Section
2. Contrary to that, Remark is originally an exercise from Kirwan| [1992].

Chapter [3|is the core of the thesis. First, we will define the Euler number and
genus of a nonsingular planar projective curve and prove that they are topological
invariants associated with the curve. Then, the main result of the thesis, the
degree-genus formula, will be proved, showing that the genus defined from the
Euler number depends only on the degree of C' and agrees with the degree-genus
formula. Next, we will discuss that the former definition of genus agrees with the
definition of genus as a number of handles, presenting an informal argument in
Remark (this argument is my work) to support it while at the same time
referring to the literature for a fully rigorous proof. Finally, we will show in a
Remark [3.16] which was originally an exercise in [Kirwan| [1992], that the degree-
genus formula cannot be applied to singular curves. The rest of the chapter mostly
follows Kirwan| [1992], Chapter 4, Section 3 except for Claim , where the part
(i) comes from |Kirwan| [1992], Appendix C, Section 1 and part (ii) is proved in a
more general form in Proposition 5.28 in |Kirwan| [1992]. The proof of Claim
is a modification of the proof of Proposition 5.28 in Kirwan| [1992]. Additionally,
Corollary was originally an exercise in Kirwan [1992] and Remark was
given in Kirwan| [1992] without proof.

In the thesis, we will freely use knowledge from the compulsory calculus (es-
pecially partial derivatives and Euclidean topology on C"), linear algebra (linear
independence and linear automorphisms) and abstract algebra (polynomials, alge-
braic closedness of C) courses, and from the specialized bachelor general topology
course (continuous maps, homeomorphisms, compactness, Hausdorff spaces, con-
nectedness, neighborhoods). On the other hand, knowledge from the course on
the algebraic curves is explained or at least recalled. All knowledge exceeding the
bachelor curriculum in complex analysis and algebraic topology is appropriately
explained.



1. Preliminaries

1.1 Projective spaces and projective transfor-
mations

Definition 1.1. Complex projective space P" of dimension n is the set C"*1\ {0}
quotiented by the equivalence relation ~ where a ~ b if and only if there exists
A € C\ {0} such that a = \b. P™ is then given a usual quotient topology of
the Euclidean topology on C"'\ {0} (i. e. G C P" is open if and only if
7 YG) C C"\ {0} is open for the natural projection w : C"™1\ {0} — P").
Moreover, we call P the projective line and P? the projective plane.

It is easy to see that there is a bijection between equivalence classes of ~ and
one-dimensional subspaces of C"™!. We can therefore identify the elements of P"
with these subspaces.

Definition 1.2. Let x € P" be represented by (g, x1,...,x,) € C**1\ {0}. The
(n + 1)-tuple of complex numbers (g, x1,...,x,) is said to be a set of homoge-
neous coordinates for x. We write x = [xg, 1, ..., Zy].

Clearly, [xg, 1, ..., %,] represents the same element as any scalar multiple of
it.
Remark 1.3. Let
Un = {[70,21,...,2,) €P" : 2, # 0}.

Consider a mapping 60, : C* — U,, defined by
($0,.T1, s 7$n71) — [1’0, L1y Tp-1, 1] .

The map 6, is continuous because it is just a composition of an embedding of C"
into C"*! and the natural projection onto P".
The mapping ¢ : U,, — C" given by

[0, 1, ..., x| — <IL‘0,IL‘1’”.7$n_1> .
Tp Ty Tp
is an inverse to 6,. By continuity of each 7+ for every 0 < i < n — 1 the set
771 (@G)) is open in C"*'\ {0} whenever G is an open subset of C". Hence
¥~} @G) is open in P" and also in U,.
It follows that 6,, is a homeomorphism onto its image, and the affine space
C™ can be viewed as a subspace of P". The remaining part of P™ has a zero last
coordinate, hence it can be identified with P"~ 1.

Definition 1.4. A projective transformation of P" is a mapping f : P — P™, for
which there exists a linear automorphism o : C"*' — C"*! such that 7(a(z)) =
f(m(z)) for every x € C"*1\ {0}. We say that f is a projective transformation
defined by a.

Lemma 1.5. Any projective transformation is a homeomorphism.



Proof. First, we prove that any projective transformation f is continuous. Both

«a and 7 are continuous, therefore their composition for is also continuous, hence

7 f~Y@)) is open for any open G' C P". By definition of the quotient topology,

f~Y@) is open if and only if 771(f~(G)) is open. Thus f is also continuous.
Let g : P* — P" be a projective transformation defined by a~!. Then
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fogom=fomoa  =moaoa =7

holds when we restrict the domain to C*™'\ {0}. From that, it follows that fog
is an identity on P". Similarly, we get that g o f is an identity, hence f is a
homeomorphism. O

Lemma 1.6. Let py,...,p, and q be n+2 distinct points in P™ and let ug, . .., uy,
and v be any of their respective preimages in m : C"*1 — P*. Suppose that the
matriz (ug| - - - |up|v) is invertible if we erase a single column from it (no matter
which one). Then there exists a projective transformation (in fact unique) taking
pi to [0,...,0,1,0,...,0] where 1 is in the i-th place, and taking q to [1,...,1].

Proof. Let a be a linear automorphism of C"™! taking the basis (ug,...,u,) to
the canonical basis. By the rank assumption,

a(v) = (Ao, -+, An)

where Ag, ...\, are all nonzero complex numbers. Therefore the composition of
a with the linear automorphism defined by the diagonal matrix

3 0 0
0 5 0
0 --- 0 i

defines a projective transformation taking p; to

1
0,...,0,5-,0,....0[ = [0,...,0,1,0,...0

and ¢ to [1,...,1]. O

Also, note that all of py, . . ., p, and ¢ need not be explicitly defined. Indeed, we
can always produce any suitable missing values of ug, ... u, and v by completing
the basis provided that the given u; and v are linearly independent.

Claim 1.7. P" is compact and Hausdorff as a topological space.

Proof. First, let us prove the compactness. Let S, be the unit sphere in C**!
1. e.

2
Z;

Snt1 = {(z0,x1,...,2,) €C"H D

1=0

~1).

The sphere S, is closed and bounded in C"*!, therefore it is compact. The
restriction of a continuous map 7 on S,; is again continuous, hence the image
of # | S,41 is compact as well. So it remains to prove that = : S, — P" is
surjective.



Suppose [zg,z1,...,2,] € P*. Then A\ = Y |2?| > 0. Furthermore,
()\%xo, Aegy, ..., )\%xn) € S,.1 and W()\%LUO, Nezy, ..., A%xn) = [xo, 21, T2, ..., Ty,
as desired.

Next, suppose that p and ¢ are distinct points of P*. By Lemma (1.6 and
Lemma there is a homeomorphic projective transformation f : P* — P"
taking both p and ¢ inside

Up = {[xo, 21, ..., 2, € P" 1 x,, # 0}.

By Remark U,, is mapped homeomorphically onto a Hausdorff space C".
Hence there are disjoint open neighborhoods G, and G, of f(p) and f(q) respec-
tively in U,.

It remains to prove that G, and G, are open in P" as then f~'(G,) and
/71(G,) would be disjoint open neighborhoods of p and ¢ respectively. The set
U, is open in P" since m~!(U,) is open in C"*' \ {0}. By the definition of
a subspace topology, there is an open set G, in P" such that G, = G}, N U,.
Consequently, GG, is open in P" as an intersection of two open sets. Similarly, G,
is open in P" finishing the proof.

O

1.2 Algebraic curves

We will start with a definition of affine and projective curves, and then we will
examine how these relate.

Definition 1.8. Let P(x,y) be a complex non-constant two-variable polynomial
without repeated factors. The affine algebraic curve C' in C? defined by P(x,vy) is

C = {(x,y) c C*: P(z,y) :O}.

Definition 1.9. Let P(x,y,z) be a complex non-constant three-variable homoge-
neous polynomial without repeated factors. The projective algebraic curve C' in

P? defined by P(x,y,z) is
C = {[az,y,z] € P?*: Plx,y, 2] :0}.

If P(z,y,z) is a non-constant homogeneous polynomial of degree d defining
a projective algebraic curve Cp, then the polynomial P(z,y,1) defines an affine
algebraic curve Cy such that [z,y,1] € Cp & (z,y) € C4s. The only way this
process can fail is when P(z,y,1) is a constant polynomial, so it fails precisely
when P(z,y, z) is a scalar multiple of z.

On the other hand, given a P(z,y) of degree d, we can construct a projective
curve by multiplying each monomial of degree d’ by 2¢~%. Then again [z,y,1] €
Cp < (x,y) € Cy4. It is also not difficult to verify that in both ways, irreducibility
is preserved. Hence there is a natural correspondence between the sets of all
affine and projective algebraic curves (except for the projective curve defined by
the polynomial P(z,y, z) = z).



Definition 1.10. A point [a, b, c| on a projective algebraic curve C C P? defined
by P(z,y,z) is called singular if
oP oP oP

%(G,b, C) = aiy(ch ba C) = &(aab) C) =0.

We say that C' is singular if it contains at least one singular point.

Definition 1.11. A projective algebraic curve C is called a projective line if it
1s defined by a linear polynomial.
The tangent line to a projective curve C' C Py defined by a homogeneous
polynomial P(x,y,z) at a non-singular point |a,b, c| is the line
)

oP oP
a—m(a, b,c)x + 873/(&’ b,c)y + E(a, b,c)z = 0.

The following definition is the same for both affine and projective curves.

Definition 1.12. The degree of an algebraic curve C' s the degree of the poly-
nomial P defining C'. C' is called irreducible if P is irreducible. An irreducible
algebraic curve D defined by () is a component of C' if Q) divides P.

At first glance, it is not clear that the degree of C' is well-defined (there
might be another polynomial R defining C'). However, by a corollary of Hilbert’s
Nullstellensatz (see Fulton| [1989], Chapter 1, Section 7 for the affine case, |Fulton
[1989], Chapter 4, Section 2 for the projective case) R generates the same ideal
as P. Thus the degrees of P and R are the same, so the degree of a curve is
well-defined.

Projective algebraic curves exhibit many properties, in particular, the follow-
ing fabled theorem due to Bézout.

Theorem 1.13. Let C' and D be two projective curves of degree n and m re-
spectively, which do not have a common component. Then C' and D intersect
precisely at mn points (counting multiplicities).

In particular, C and D intersect exactly at mn pairwise distinct points if each
p € CN D is a nonsingular point in both C and D and the tangent lines to C
and D at p differ.

Proof. See Fulton| [1989], Chapter 5, Section 3. n
In the later chapters, we will need the following technical lemma.

Lemma 1.14. (Euler’s relation) If P(x,y,z) is a homogeneous polynomial of a
degree d then

oP oP oP
‘T%(xvy?Z) + yaiy(xvyaz) + Z@(l’,y,Z) - dP(J},y,Z)

Proof. Just a straightforward computation of partial derivatives. n



1.3 Complex analysis

In the following chapters, we will use several theorems from algebraic topology.
However, we first need to develop some complex-analytic tools which will allow
us to use this machinery. First, let us recall an important application of Cauchy’s
residue theorem.

Theorem 1.15. (The argument principle) Suppose ~ : [0,1] — C is a circle in C.
If f is meromorphic inside and on v and contains no zeros or poles on =y, then

R O
oei e =2 F

where Z and P are respectively the number of zeros and poles of f in the interior
of v (counting multiplicities).

Proof. See Krantz [1999], Chapter 5, Section 2. O

Remark 1.16. The previous theorem holds for any simple closed curve . The
formulation above was chosen to avoid the ambiguous notion of a curve since we
will only use the theorem for a circle.

Theorem 1.17. Suppose that A(z,w) is a polynomial with complex coefficients
which satisfies
A(ZD, wo) =0.

Moreover, suppose that the single-variable polynomial A(zo,w) has a zero of order
m at wy. Then for any e > 0 there exists 6 > 0 such that if |z — zy| < 0 then the
polynomial A(z,w) has at least m zeros (counting multiplicities) in the disc

{weC:|w—wy| <e}.

Proof. The polynomial A(zy,w) has finitely many zeros, therefore we can choose
¢’ > ¢ so that
S={weC:|w—w|=¢}

satisfies A(zp,s) # 0 for every s € S.
Since A is a continuous function of z and w, for every s € S there exists a
0s > 0 such that

max ([v — s/, |z — 2z|) <6 = A(z,v) #0.
The subset S is compact and contained in the union of the open subsets
{veC:lv—s|<dss €S},
and thus there exists a finite subset {si,...,s;} of S such that

Sc |J {weC:|w—-si<d}.

1<i<k

Let
d = min(d,,...,0s,) > 0.

Putting this together, if |s — wo| = &’ and |z — zo| < §, then A(z,s) # 0.

8



Define a simple closed curve v : [0, 1] — C by

2mit

Y(t) = wo + e
As the polynomial A(z, w) does not have any poles, Theorem tells us for each
fixed z satisfying |z — zo| < d that the number of zeros of the function A(z,w) of
w (counted with multiplicities) inside = is

04 w)

_ 1 7 ow
n(z) = 27ri/7 Az, w) dw.

By our assumption, A(zg,w) has a zero of multiplicity m at wg, hence we have
n(zp) > m.

As a contour integral of a meromorphic function, n(z) is clearly a continuous
and integer-valued function whenever |z — zyp| < d. Hence, n(z) is a constant
meaning that n(z) > m whenever |z — zg| < d. If ¢ = ¢/, we are clearly done,
otherwise we can choose the same ¢ as well. O

Corollary 1.18. Let A(z,w) be a polynomial with complex coefficients such that
for every fized z € C the polynomial A(z,w) in w is monic of degree n. Let
C= {(z,w) € C?*: A(z,w) = O}
and define ¢ : C'— C by
o(z,w) = 2.
Then any zy € C has an open neighborhood U in C such that each connected
component of o~ (U) contains at most one point of ¢~ (z).

Proof. If
9071({20}) = {(207 wl)? SRR (207 wk)}
then
Alzg,w) = [ (w—w;)™
1<i<k
where my, ..., my are positive integers satisfying

my A+ -+ mg = n.

Choose € > 0 so that |w; — w;| > 2¢ whenever i # j. Then by Theorem [1.17]
there exists some 0; > 0 such that if |z — 2| < ¢; then the polynomial A(z,w) in
w has at least m; roots in the disc

D;,={weC:|w—wl<e}

for each 1 <17 < k.
Let
d = min(dy,...,d) > 0.

The discs D; are disjoint and the sum of the m; is n, therefore if |z — 25| < € then
all the roots of A(z,w) lie in Dy U --- U Dy, and hence

o' ({z€C:|z—2|<6}) CCx (D U---UDy).
Thus every connected component of
e t{zeC:|z— 2| <d})

is a subset of C' x D; for some 1 < ¢ < k, so it contains at most one point of
' ({=0})- O



1.4 Algebraic topology

Notation. Throughout the rest of the thesis, I will denote the interval [0, 1].
Similarly, we define

A:{(m,y)ERQ:xzo,yzO,x—i—ygl},

Aoz{(x,y) eRQ:x>07y>(),x+y<1},
AV = AN {(0,0),(0,1),(1,0)}.

Throughout this section, any map is required to be continuous.

The exact geometrical shape of the triangle does not concern us, as we will
be interested only in the topological properties of any triangle.

We will soon see that a projective algebraic curve behaves like a covering space
for the complex projective line P! excluding a finite set of images of ramification
points. However, we must first start by developing some general theory about
covering spaces.

Definition 1.19. Let f,g : X — Y be maps between topological spaces X,Y . A
hompotopy from f to g is a map

H: XxI—=Y

such that or each © € X

H(.%,O)If(l‘), H(mvl):g(x)'

Definition 1.20. A path in a topological space X is a map v : I — X. Suppose
that v,0 : I — X are paths with common endpoints (i. e. v(0) = 6(0) and
(1) =4(1)). A homotopy from 7 to ¢ as paths is a homotopy

H:IxI—X
which also satisfies for each x € 1
H(0,z) =~(0), H(1,z) =~(1).

We can think of the interval I as time. For every ¢t € I, H(-,t) defines a map
X — Y. Therefore we can think about homotopies as continuous transformations
of maps with respect to time ¢. Additionally, homotopy between paths (as paths)
requires the endpoints to be fixed, as otherwise, any two paths will be homotopic.

Ezxample. Any path can be viewed as a homotopy, with X being the single-point
space.

Definition 1.21. If we have two paths v, from xq to x1; and vy from x; to xs,
we define their join vy - o to be

(71 72)(t) = {72(215 _ 1)

10



Definition 1.22. Suppose that m : Y — X is a map between topological spaces
Y and X such that each x € X has an open neighborhood U such that 7=1(U) is
a disjoint union of open subsets of Y each of which is mapped homeomorphically
onto U by w. Then m is said to be a covering projection and Y is said to be a
covering space for X.

Definition 1.23. Let 7w : Y — X be a covering projection and A be any topological
space. We say that a map f: A — X lifts if there exvists a map F : A —'Y such
that f = mo F. The map F is then called a lift of f.

When we have defined lifting, it is natural to ask whether lifts exist and if
they are unique. The following lemma states that in the case of A connected, the
lift of f is determined by any single point.

Lemma 1.24. Suppose that X,Y and A are topological spaces and w:Y — X
is a covering projection. Let Fy, Fy: A =Y be two lifts of f : A — X. Then

S={a€A: Fi(a) =Fa)}
is clopen (both closed and open).
Proof. See Wilton| [2019], Chapter 2, Section 2. ]

The existence of lifts is not always guaranteed, but homotopies can always be
lifted employing the following theorem. Since paths can be expressed as homo-
topies, we get path lifting as an easy corollary (again by taking the single-point
space as A), albeit it being a crucial step in the proof.

Theorem 1.25. Let m: Y — X be a covering projection, H : A x I — X be a

homotopy from f to g. Let F' be a lift of f. Then there exists a unique homotopy
H: AxI—Y which satisfies

« H(-,0)=F; and
e H is alift of H.
Proof. See Wilton| [2019], Chapter 2, Section 2. O

This looks nice, but not everything we will work with can be viewed as a
homotopy. The following theorem will provide us with a sufficient condition for
the existence of a lift based only on the properties of the space A.

Definition 1.26. A topological space X is simply connected if any two paths
v,0 : I — X with common endpoints are homotopic as paths.

Example. Any convex subset X of R" is simply connected. Indeed, H : I xI — X
given by

H(z,t) = (1 —t) - ~(x) + t6(x)
is clearly a homotopy from 7 to ¢ for any paths v,d in X. This X can be all of
A, A° AV T and (0,1).

Theorem 1.27. Let m : Y — X be a covering projection and f : A — X be
a map. Suppose that A is simply connected, path-connected and locally path-

connected (i. e. every y € A contains arbitrarily small path-connected neighbor-
hoods in A). Then:

11



(i) The map f lifts uniquely (in the sense of Lemma toF: A—=Y.

(ii) If moreover f : A — f(A) is a homeomorphism, then F is a homeomor-
phism onto a connected component of 7=1(f(A)).

Proof. (i) Suppose that a € A and y € Y are points chosen so that f(a) = 7(y)
and F'(a) =y. We will prove that F(b) is then determined for any b € A.

Since Y is path-connected, we can take any two paths 7,0 : I — A such
that v(0) = a, 6(0) = a, v(1) = b, 6(1) = b. Let I' be a lift of 7, i. e. a map
[': I — Y satisfying moI' = f o. Similarly, let A denote a lift of 9.

Because A is simply connected, there exists a homotopy H : I x I — A
from ~ to ¢ as paths. By Theorem 1.25) H lifts to H : I x I — Y such that
moH = foH.

Now, H(1,-) is again a lift of H(1,-). But H(1,-) is a constant path in A
which by Lemma lifts uniquely to a constant path in Y. Therefore

I'(1) = H(1,0) = H(1,1) = A(1), meaning that there is a well-defined map
F: A—Y defined by F(b) =T (1), where I' is chosen as above. Then

hence F' is a lift of f. Uniqueness will follow from Lemma [1.24] once we
show that F' is continuous at any given b € A.

Let W be an open neighborhood of Y containing F(b). By 7 being a
covering projection, W contains an open neighborhood V' of F(b) which is
mapped homeomorphically by 7 onto an open neighborhood U of w(F (b)) =
f(b) in X. Then f~'(U) is an open neighborhood of b in A, therefore it
contains a path-connected open neighborhood T of b, as A is locally path-
connected. For each ¢ € T there exists a path 7. from b to cin T

Let ¢ : U — V be the inverse map to the homeomorphism 7 : V' — U. By
the construction of T', ¢ o f o~. is a continuous map whose range is a subset
of V, thus it is the unique lift I, of 7. satisfying I'.(0) = F(b) = I'(1). Then
we have

F(e) = (0-T)(1) =T.(1) = (v o for) (1) €V C W,

where the first equality comes again from Lemma [1.24 Thus F(T) C W,
meaning that F' is continuous.

(ii) Now suppose that f: A — X is a homeomorphism onto its image. As the

restriction of 7 to 7 (f(A)) is again a covering projection, we may WLOG
assume that f(A) = X. Note that since A is connected, so are X = f(A)
and F(A).
Any z € X has a connected open neighborhood U, in X such that 7=1(U,)
is a disjoint union of open subsets of Y. Each of these subsets is mapped
homeomorphically by 7 onto U,. Since f is a homeomorphism, F(f~(U,))
is a connected subset of 771(U,). Therefore it is contained in one of these
open subsets, say V.
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Let ¢ : U, — V, be the inverse map to 7 restricted in its range to V. Since
¢ is a homeomorphism, it also holds that F' = ¢ o f on f~}(U,). Hence

F(f~1(Us)) = ¢(Us) = Vi

The set F'(A) contains exactly one preimage in 7 of each x € X | in particular
if x € U,, then this preimage lies in V. Hence also

FA) N7 (U,) =V, = F(f71(Uy)).

Take any y € F(A) and let = 7(y). Then V, is an open neighorhood of
y in Y contained in F'(A). Hence F(A) is open in Y. Similarly, take any
y € Y\ F(A) and let z = 7(y). Then 7~*(U,) \ V; is an open neighborhood
of y in Y contained in Y \ F(A). It follows that Y \ F(A) is open in Y.
Therefore F'(A) is a clopen connected subset of Y and hence a connected
component of Y.

We already showed that F'(A) contains precisely one preimage of each x €
X, hence F is injective. Therefore F' : A — F(A) is a continuous bijection
whose inverse is the continuous map f~'om : F(A) — A. Thus F is a
homeomorphism onto its image.

]

So far, we have only dealt with perfect covering spaces. However, in our
situation, there will be a finite set of points (we will call them ramification points)
violating our definition. The following theorem will tell us that even triangles
whose vertices are ramification points can be uniquely lifted.

Theorem 1.28. Let 7 : Y — X be a map and suppose that every v € X has
an open neighborhood U in X such that every connected component of = 1(U)
contains at most one point of 7~ (x). Suppose that' Y is compact, Hausdorff and
that V' is an open subset of X such that m: 7= *(V) — V is a covering projection.
If f - A\ — X s continuous and f~1(V) contains A\, then given T € A\ and
y €Y such that w(y) = f(7) there exists a unique map F : N — Y such that
F(r)=yandmo F = f.
In this case, we also say that F' is a lift of f.

Proof. By Theorem there is a unique lift £ of f defined on A\,

It suffices to extend F' onto the vertices of A. To do this, we will prove that
F tends to a unique limit at each of the vertices. We will deal only with (0,0)
since the arguments are analogous.

To start with, f(0,0) € X has an open neighborhood U in X such that each
connected component of 7~ !(U) contains at most one point of 771(f(0,0))). Now
we can choose d > 0 sufficiently small so that

f(B(0,0)) C U.
Hence the deleted neighborhood P(0,d) = B(0,0) \ {(0,0)} satisfies
F(P(0,6)) c = 1(U).

This way, F(P(0,0)) is connected and therefore contained in a component of
7 U), say W.
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Let t1,ts,... be a sequence in P(0,d) which tends to (0,0). Since Y is com-
pact, there is a subsequence

tnys tngs - - -

such that F(t,,) converges to some p € Y as k goes to infinity. Recall that the
limit p is unique since Y is Hausdorff. Then

7(p) = lim7 o F(t,, ) = lim f(t,,) = f(0,0)

so p € m1(f(0,0)). But since F(t,) € W for every n and W is an open and
closed subset of 71 (U), the limit p must lie in W as well, therefore p must be
the unique point of 771(f(0,0)) lying in .

For a contradiction, suppose that F'(t;) does not converge to p as k — 0.
Then there exists a subsequence

tmys tmgs - - -

and a neighborhood Z of p in y such that all elements of F'(t,,, ) lie outside Z.
Following the same argument, there exists a limit of some subsequence of F'(t,,, ),
which again must be p. But that is impossible by the construction of F(t,,, ).
We proved that the limit of " at (0,0) is unique and satisfies 7(F(0,0)) =
£(0,0), hence there exists a unique extension and the proof is complete. O
I

Remark 1.29. The theorem above holds with (0,1) instead of A\ and with
instead of A as well, the proof is exactly the same (just replace (0,0) with 0).
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2. Branched covers of P!

Notation. Let C be a nonsingular algebraic curve of degree d in P? defined by the
polynomial P(z,y,z). Throughout the rest of the thesis, ¢ : C — P! will denote
the map given by

¢lo,y, 2] =z, 2].

It is easy to see that ¢ is well-defined if and only if [0,1,0] ¢ C. Since
we are only interested in topological properties of C, we can WLOG assume
that [0,1,0] ¢ C (otherwise we can map C' by some homeomorphic projective
transformation).

Also, note that the coefficient of y? in the homogeneous polynomial is nonzero,
as it the only nonzero term in P(0,1,0) # 0.

So far, we did not assume that C is irreducible. However, this is fine as the
following corollary of Theorem tells us that this assumption can be safely
omitted.

Corollary 2.1. A nonsingular algebraic curve C in P? is irreducible.
Proof. Suppose that
C ={[r,y.2] € P*: P(2,y,2) - Q(w,y,2) = 0}

is reducible. Then by Theorem [1.13], the projective curves defined by polynomials
P(z,y, z) and Q(x,y, z) have either at least one common component or intersect
in precisely deg P(z,y, z) - deg Q(z,y, z) points (counting multiplicities). Either
way, there exists a point [a, b, ¢] € P? such that

P(a,b,c) = Q(a,b,c) = 0.
Then for each w € {x,y, 2} it holds that

8(P<I,y,2)'Q(l‘7y, Z)) _ QP(ac,y, Z) 8Q(x,y,z) _
ow - ow 'Q(ﬂ?,@/,Z)‘F ow ‘P(ﬁ?,@/,Z) -
showing that C' is singular. ]

Definition 2.2. The ramification index vy [a,b,c| of ¢ at a point [a,b,c] € C is
the order of the zero of the polynomial P(a,y,c) iny at y =b. The point [a,b, ]
is called a ramification point of ¢ if v4[a,b,c] > 1.

Let R be the set of ramification points of ¢. The image ¢(R) is said to be the
branch locus of ¢, and ¢ : C — P! is called a branched cover of P*.

In this section, we want to prove that there exists a projective transformation
mapping C to D such that the number of ramification points of ¢p : D — P! is
exactly d(d — 1). We will assume d > 1 while the case d = 1 will be considered
by the remark at the end of the chapter.

Lemma 2.3. The preimage ¢~ *([a,c]) of any [a,c] in P* contains exactly

d— > (W) -1

pegH([asd])

points. In particular, ¢~ ([a,c]) contains d points if and only if |a,c|] does not
belong to the branch locus of ¢.
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Proof. A point of C lies in ¢~ '([a, c]) if and only if it is of a form [a, b, c| where
P(a,b,c) = 0. The single-variable polynomial P(a,y,c) of degree d can be fac-
tored as

P(a7y7c) =A H (y_bl)mZ

1<i<r

where A € C\ {0}, by,...,b, are distinct complex numbers and my, ..., m, are
positive integers satisfying

miy+---+m, =d.

Hence
¢ ([a,c]) = {[a, b, c] : 1 <i<r}

and the ramification index of ¢ at
vy a, b, c] = m,.
Easy computation then finishes the proof. n

Lemma 2.4. The map ¢ has at most d(d — 1) ramification points. Moreover, if
vy la,b,c] <2 for all [a,b,c] € C then C has exactly d(d — 1) ramification points.

Proof. Consider the homogeneous polynomial Q(z,y,2) = %—g(x,y, z). The co-
efficient of y? is nonzero, therefore Q(z,y, z) has degree exactly d — 1 > 0. By
Corollary , P(z,y, 2) is irreducible, thus coprime with Q(z,y, z). This means
that the projective curve D defined by Q(z,y,2) has no common component
with C. The first claim then follows from Theorem [I.13] because the set R of
ramification points is the intersection of C' and D.
Moreover, suppose that
vgla,b,c] <2

for all [a,b,c] € C. By Theorem [L.13] it is enough to prove that if [a, b, c] lies in
R = C N D then [a,b,c| is a nonsingular point of D such that the tangent lines
to C and D at [a, b, c] are distinct. Suppose the contrary. Then

OP(a,b,c)

P(a,b,c) =0= 3y ,

as [a, b, | lies in both C' and D, and the vector describing the tangent line to D

9?P(a,b,c) 9*P(a,b,c) 9*P(a,b,c)
oxdy = Oydy = 0z0y

is either zero or a scalar multiple of the vector describing the tangent line to C'

<8P(a, b,c) 0P(a,b,c) OP(a,b, c))

or dy 0z
Either way,
OP(a,b 0?P(a,b
P(a,b,c) =0 = (a,b,¢) = (g, ’C),
dy dydy
showing that the order of zero of P(a,y,c) in y at P(a,b,c) is at least 3 (i. e.
Vg la,b,c] > 2). This is a contradiction with our assumption. O
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The following lemma states that the most general case where there are pre-
cisely d(d — 1) ramification points can always be reached. The proof follows
an intuitively appealing general position argument, where it suffices to find a
projective transformation mapping [0, 1, 0] anywhere outside the union of C' and
tangents to C' at finitely many points of inflection of C' (the points of inflection
can be seen as points where the tangent to C' has at least triple intersection with
(). The detailed proof can be found in |Kirwan| [1992], Sections 3.3 and 4.2.

Lemma 2.5. By applying a suitable projective transformation to C' we may as-
sume that
vgla,b,c] <2

for all [a,b,c] € C.

Remark 2.6. If d = 1 then always 4= # 0 (provided that [0,1,0] ¢ C), hence
Y
there are no ramification points.
Moreover, each projective line is defined by two points. Hence, by Lemma (1.6
there is a projective transformation taking C' to the line defined by the polynomial
y = 0. Then it easy to see that ¢ : C' — P! given by

[x,0,z] — [z, 2]

is a homeomorphism.
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3. The proof of the degree-genus
formula

In this chapter, we are finally ready to prove the degree-genus formula. Our
strategy will be to produce a triangulation of C' and compute the number of
vertices, edges and faces. First, we will need a technical but precise definition of
triangulation.

Definition 3.1. Let C' be a nonsingular complex projective curve in P?. A tri-
angulation of C' is a triple of nonempty finite sets (V, E, F') where:

(a) A set' V' of vertices consists of points.

(b) A set E of edges consists of continuous maps e : I — C.

(c) A set F of faces consists of continuous maps f : AN — C.
These sets have to satisfy:

(i) V. ={e(0) :e€ E} U{e(l): e € E} i.e. the vertices are the endpoints of
the edges;

(ii) if e € E then the restriction of e to the open interval (0,1) is a homeomor-
phism onto its image in C which contains no points in V' or in the image
of any other edge ¢’ € E;

(iii) if f € F then the restriction of f to A° is a homeomorphism onto a con-
nected component K¢ of C'\ T where

L= {Je()

ecE

is the union of the images of the edges. Moreover, ifr : I — I and o; : [ —
A for 1 <1 <3 is defined by

r(t)=1—t, o1(t)=(t,0), oat)=(1—t,t), o3(t)=(0,1—1)
then either f oo; or foo;or is an edge 63} for1 <i<3;

(tv) the mapping f — Ky from F to the set of connected components is a bijec-
tion;

(v) for every e € E there is exactly one face f € F such that e = f} ooy for
some i € {1,2,3} and exactly one face f; € F such that e = f; oo, o1 for
some i € {1,2,3}.

Note that our definition of triangulation additionally requires that each face
is oriented, and the orientations of the two faces intersecting at e € E disagree
on e (see Figure for better understanding). Moreover, it is natural to identify
the maps in E and F' with their images in C'.
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Figure 3.1: The orientation of faces at e € E.

<>

Definition 3.2. The Euler number of a triangulation is defined by

X =#V —#E+#F
where the symbol #S denotes the number of elements of a finite set S.
The following theorem and remark show us why the Euler number is essential.

Theorem 3.3. The Euler number x of a triangulation of C' depends only on C,
not on the triangulation.

Proof. The proof is long and involved, see Wilton [2019], Chapter 6, Section
4. ]

Definition 3.4. The genus of a nonsingular projective curve C' is

g=;(2—x)

where x is the Fuler number of C'.

Remark 3.5. Suppose that h : C' — D is a homeomorphism between nonsingular
projective curves C' and D. Let (V, E, F) be a triangulation of C'. Then, easy
but tedious verification shows that

(h(V),{hoe:ec E},{hof: feF})

is a triangulation of D.

It follows that homeomorphic curves have the same Euler number and genus,
which justifies using a projective transformation in the sense of Lemma In
other words, the Euler number and genus of a nonsingular projective curve are
topological properties, meaning that they depend only on the topology of the
curve.

In the rest of the thesis, we will work on finding a suitable triangulation of
C. The proof will make use of the results from algebraic topology. However, we
must first make sure their assumptions are satisfied. As a byproduct, we will also
get that C' is a surface.

Definition 3.6. A surface is a Hausdorff topological space such that every point
has a neighbourhood U that is homeomorphic to R2.

Claim 3.7. Let C be a nonsingular algebraic curve in P? defined by the homoge-
neous polynomial P(x,y,z) of degree d.
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(i) The map ¢ : C\ ¢~ (d(R)) — P\ ¢(R) defined as a restriction of ¢ : C' —
P! is a covering projection.

(i) The curve C is a compact surface.

Proof. Tt holds for the natural projection 7 : C*\ {0} — P? that 7~ }(C) =
P~1({0}) \ {0}, hence 7~1(C) is closed in C*\ {0}. By definition of P?, C is
then closed in P2, By Claim C' is then Hausdorff and compact as a closed
subspace of a Hausdorff space.

Suppose that [a,b,c] € C. The curve C is nonsingular so at least one partial
derivative is nonzero. Assume for now that

() 0.

Applying Lemma to P(a,b,c) yields
oP

oP oP
ap (a,b,c) +b o (a,b,c) +c o (a,b,¢) = dP(a,b,c) =0

By our assumption, a = ¢ = 0 is therefore impossible as it would require b = 0.
So assume that ¢ # 0. Then by the homogeneity of P (and its partial derivatives)

OP (a b oP
-~z Z — o—d-H=Z7
ay <C7C71> c ay (aﬂb?C)%O

We can thus apply the complex implicit function theoremﬂ to the polynomial
P(z,y,1) in x and y. This tells us that there exist open neighborhoods V" and W
of ¢ and g respectively in C and a holomorphic function g : V- — W such that if
xr €V and y € W then

Define U by

U:{[x,y,z] EC:Z%O,xEV,yEW}
z z
={lz,y,1] e C:ze€V,yec W}.
It is easy to see that U contains [a, b, ¢] and that U is open in C* when viewed as
a subset of C3. Thus U is open in C. The projection map ¢ : U — V defined by
x
% [:C7 Y, Z] = -
z

is continuous and its inverse is given by
w = [w, g(w), 1].

Hence U is mapped homeomorphically to V.

Take any [a, b, ] € C. Following the argument above (potentially with = or z
instead of y), we get a neighborhood U homeomorphically mapped to V' which is
homeomorphic to C ~ R? which proves (ii).

'Kirwan! [1992], Appendix B
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Take any [a,c] € P!\ ¢(R) and let [a,b;, c] for 1 < i < d be all the preimages
of [a, ] in ¢.

By definition of ¢(R) it holds that (%—I;) (a,b;,c) # 0 for all i. Thus the
argument above can be performed with y. Moreover, a and ¢ are the same for all
preimages so we may WLOG assume that ¢ # 0 for all ¢. Following the argument,
we find a homeomorphism ¢; : U; — V; for all + where we may assume that U;

are pairwise disjoint. Now define

V=V

1<i<d

Then V' is an open neighborhood of ¢ in C homeomorphic to some U; C U; for
each 1.
Consider the embedding 6 : V — P! given by

x x
0(—) = {,1} =z, z].
()= [21] = 1.
By Remark 0 is a homeomorphism onto its image. Consequently, ¢ : U/ — P!
is a homeomorphism onto its image as it is the composition of ¢; and 6 restricted
onto U/. Thus (i) is now proved.

O

Remark 3.8. Let ¢ : C — P! be a branched cover of P! and suppose that [0, 1,0] ¢
C'. Any given [a,b,c|] € C satisfies a # 0 or ¢ # 0, let us assume the latter. The
polynomial P(z,y,1) in y is of degree n, so we can multiply it by a scalar so that
it is monic of degree n in y.

Consider the map ¢’ : C N U, — U; defined on its domain by ¢’ = 6, 0 o0 6;*
where U, Us, 60,, 0> are defined as in Remark and ¢ is defined as in the
statement of Corollary The individual steps of ¢’ map any [a,b, 1] € CNU;
to

la,b,1] — (a,b) — a > [a,1],

showing that ¢’ is a restriction of ¢.

By Corollary any 29 € C has an open neighborhood G in C such that
each connected component of ¢ (@) contains at most one point of ¢p~!(z). Since
0, and 0, are homeomorphisms onto their images (see Remark and ¢’ is a
restriction of ¢, any [z, 1] € U; has an open neighborhood G in U; such that
each connected component of ¢~ (G) contains at most one point of ¢! [z, 1]. Tt
is easy to see that G is open also in P*.

Similarly, if a # 0 then we get the same result with P!\ {[0, 1]} instead of Uj.
It follows that the first assumption of Theorem [1.28] is satisfied for the branched
cover ¢ : C' — P! of PL.

To find a triangulation, we will first find a triangulation of P!, and then we
will lift it to C.

Lemma 3.9. Let {pi,...,p.} be any set of at least three points in P'. Then there
is a triangulation of P with py,...,p, as its vertices and with 3r — 6 edges and
2r — 4 faces.
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Proof. We will use induction on » > 3. When r = 3, Lemma tells us that
there is a projective transformation taking p; to 1, ps to e and p3 to 5 (here
we identify P! with C U {co}). We can then join these three points by segments
of the unit circle in C.

The exterior of the unit circle is mapped to the interior of the unit circle
by the projective transformation z % (defined by the linear transformation
(z,y) — (y,x)). Since there is a homeomorphism

A—={zeC:|z| <1}

sending the vertices of A to 1, e% and e%, there exists a triangulation of P!
with three edges and two faces when r = 3.

Now suppose that » > 3 and let (V, E, F) be a triangulation with vertices
D1y, Dr1, 3r — 9 edges and 2r — 6 faces. We now consider two cases based on
the position of p,.

Suppose that p, lies in the interior of some f € F. Then we can subdivide f
by connecting the vertices of f with p,, adding two more faces and three more
edges.

On the other hand, if p, lies in the interior of some e € F, we can subdivide
both fF and f; by connecting p, with their vertices not lying on e. This argument
gives a triangulation with two more faces, two new edges, and e subdivided into

two edges.
Either way, the resulting triangulation has a correct number of edges and
faces, so we are done. O

Theorem 3.10. Let ¢ : C — P! be a branched cover of P. Suppose that (V, E, F)
is a triangulation of P! such that the set V' contains the branch locus o(R) of ¢.
Then there is a triangulation (V, E, F') of C' such that

V=¢"'(V),

E=1{é:1— C:é continuous,poé € E}

and

F:{f:A—)C’:fcontmuous,gbofeF}.

Moreover, if vy(p) is the ramification index of ¢ at p and d is the degree of C
then

#HV =d#V =3 (ns(p) — 1),

PER
HE = dH#HE
and 3
LF = d4F.

Proof. First, Claim [3.7 and Remark [3.8] tell us that the assumptions for Theo-
rem are satisfied for the map ¢. We must show that (\7, E, F) satisfy the
definition of the triangulation and the formulas for #V, #E and #F are correct.

By Theorem, if feF,te AW andpe ¢ ' (f(t)), then there is a unique
continuous lift f : A — C of f such that f(t) = p. By Lemma o7 H(f(1))

consists of exactly d points of C' (since f(t) does not belong to the branch locus
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#(R)), therefore there are exactly d continuous lifts of f. Since F is defined as
the set of all lifts of all f € F, we have

#F = d#F.
It is easy to see that

C\o (V)

o {ft): feFte AV}
{fty: feFtenV}.

In particular 3
G=U f(4)
fer
contains C'\ ¢~'(V), and because ¢~ (V) is finite by Lemma C'\ G is also
finite. However, A is compact so f(A) is compact for every f € F so G is

compact so G is closed in C' (here we use Claim [3.7). But then C'\ G is open in
C, hence it is empty by Claim [3.7 It follows that

671 (V) ={f(t): f € F,t € {(0,0),(1,0),(0,1)}}.

By Remark [L.29] if e € E, t € (0,1) and p € ¢~1(¢), then there is a unique
continuous lift € of e such that é(¢) = p. Moreover by Theorem [1.27the restriction
of € to (0,1) is a homeomorphism onto its image in C. Therefore (ii) of Defini-
tion casily follows using the lifting property of members of E. Furthermore
if t € (0,1) and e € E then ¢'(e(t)) consists of exactly d points of C' (again
because e(t) ¢ ¢(R)). It follows that there are exactly d continuous lifts of e,
hence

HE = d#F.

If f € F then ¢o f € F which means either ¢po foo; € E or go foo;or € E
for every 1 < i < 3 where o0y, 09, 03 are defined as in Definition (iii). Thus
either foo; € E or foo;or € E (proving the second half of the condition (iii)
of Definition SO

ftye{e):eec Bfu{eq):éec B}
if t € {(0,0),(1,0),(0,1)}. Consequently
{e(0):ee Efu{e():ee B} o7\ (V).
The opposite inclusion easily follows from the lifting property of each é € E, so
in fact, we have equality which is exactly the condition (i) of Definition [3.1]
It also follows that
o {e(t)ec Ete (0,1)} ={et): e Bt (0,1).}
Therefore if we define T" as in the condition (iii) of Definition then

oM =o' (V)U{e(t):éc E,te(0,1)} =T
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where we define
r=\JeW).
ek
By Theorem if f € F then the restriction of f to A is a homeomorphism
onto its image which is a connected component of ¢~1(f(A°)).
Now suppose that there exists a connected set U such that f(A°) C U C
C'\ [. Then it follows from the previous paragraph that there exists an u €

U\ ¢ (f(A°)). But then
o(U) O f(A%) Ud(u) 2 f(A?)

is also connected contradicting the fact that f(A°) is a connected component of
P!\ T'. This proves the first half of the condition (iii) of Definition i.e. that
f(A°) is a connected component of C'\T'. It follows easily that these are the only
connected components of C'\ T’ proving (iv) of Definition .

If ¢ € FE then ¢poé € E. Therefore for some 1 < ¢ < 3 it holds that
po froo;=fFoo; =¢oéwhere fi is alift of f which satisfies

f(oilt)) = e(t)

for some t € (0,1) (again using Theorem . By Remark ftroo;and é
agree on all ¢ € I. We can then perform the same argument with f. instead of
f.- which together prove the condition (v) of Definition [3.1]

Finally, we want to show that

#V = d#V =3 (vs(p) — 1).

PER
This follows immediately from Lemma [2.3|since V' contains ¢(R). O

Remark 3.11. Tt follows from the formulas for V, E, F that the Euler number
X(C) of C' is given by

X(O) = #V — #E +#F = dx(P) — > (vs(p) — 1).

PER

This formula is called the Riemann-Hurwitz formula for the branched cover ¢ :
C — P

We have already done all the work needed to prove the degree-genus formula.
All that remains is to put everything together.

Theorem 3.12. (The degree-genus formula) Let C' be a nonsingular algebraic
curve of degree d in P2. The Euler number x and genus g of C are given by

X =d(3—d)

and

g=5(d—1)d~2)
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Proof. By Lemma [2.5] we can assume that after applying a suitable projective
transformation to C' the map ¢ : ¢ — P! defined by

o) [x,y, Z] = [ZL‘,Z]

is well-defined and the ramification index vy [a, b, c] of ¢ at every [a,b,c] € C
satisfies
Vg la,b,c] < 2.
Then by Lemma [2.4] ¢ has exactly d(d—1) ramification points i. e. #R = d(d—1).
By Lemma if r > max(3,d(d — 1)) then we can choose a triangulation
(V,E, F) of P! such that V D ¢(R) and #V =1, #F = 3r — 6 and #F = 2r — 4.
By Theorem there is a triangulation (V, E, F') of C' with

#HE = d#E = 3(r — 2)d,

HF = d#F =2(r — 2)d

and

#V = d#V =3 (vs(p) — 1).

pPER

Since #R = d(d — 1) and v4(p) = 2 for every p € R we have
#V =rd —d(d —1).
A straightforward calculation then shows that
X =d(3—d)
and )
g= - 1)(d~2).
as required. O

Corollary 3.13. Let C' and D be nonsingular homeomorphic projective curves
of degrees n and m in P%. Then either n = m or {n,m} = {1,2}.

Proof. By Theorem the Euler number of such curve of degree d is given by
X = d(3 — d) which is an almost injective function on N (apart from 1 and 2).
By Remark C and D have the same Euler number. Thus either n = m or
{n,m} = {1,2}. O

The proof of the degree-genus formula used the definition of genus as a linear
function of the Euler number. Nevertheless, it remains to show that this is
consistent with the definition of genus as a number of handles attached to the
sphere.

First, a theorem states that a triangulable compact connected surface is de-
termined up to homeomorphism by the number of handles.

Theorem 3.14. Any compact connected surface C with triangulation in the sense
of Definition is homeomorphic to a sphere with g handles.

Proof. See Kirwan| [1992], Appendix C.3. O
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Remark 3.15. We want to show that the two definitions of genus match (at least
when C' is connected). We will present an informal argument here; the reader
should refer to [2019], Chapter 6, Section 4 for rigorous proof of both
Theorem B.3] and this Remark.

Let 'y be a sphere with g handles. We can homeomorphically shrink each
handle so that each handle influences a triangulation only locally. Hence the
Euler characteristic of a surface is a linear function of a number of handles.

If g = 0 then I'; has a triangulation with 3 vertices on the equator, 2 faces
and 3 edges. Thus y = 2, as we wished.

If ¢ = 1 then there is a triangulation (shown in Figure of I'y with 3
vertices, 6 faces colored each colored by a respective color and 9 edges. Hence in
this case y = 0, again as we wished.

Figure 3.2: An example triangulation of a torus.

Both of the definitions of genus are linear in the Euler number and they
coincide at two different values ¢ = 0 and ¢ = 1. Hence both of them are
equivalent (and g = 3(2 — x) holds).

It follows that if C' is a connected projective curve in P? of degree d then C' is
homeomorphic to a sphere with £(d — 1)(d — 2) handles.

Last but not least, we want to show that the assumption of nonsingularity is
indeed warranted.

Remark 3.16. Let C be a projective curve defined by the polynomial P(z,y, z) =
y?z — 23, Tt is easy to show that C' is irreducible. Then

OP OP OP

— =327 — =2 — =7

Ox o oy vz g 7

vanish simultaneously at a single singular point [0,0,1] € C. Thus C' is nonsin-

gular.
Consider a map f : P! — C defined by f[s,t] = [s%*, 53 t3]. We will show
that f has an inverse g : C' — P! given by

0,1] ifz=y=0,
g I::L‘7 y’ Z] = .
ly,z] otherwise.
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First, f and g map [0, 1] and [0, 0, 1] to each other. Otherwise, both s and y are
nonzero. Then

gofls,itl=g [SQt, 33,t3] = {ss,sgt} = [s,1]

and
foglv.y,zl = fly.x] = {QQ%ygaxﬂ = [y2x,y3,y22} = [z,y, ]
proving that f and g are inverse maps.

Choose any open set G in C. Then there exists an open set G' C C?\ {0}
such that 7(G")NC = G. Its preimage in f (considered as an affine map) is again
open, therefore f~1(G) is also open. Thus f is continuous.

The converse of the previous idea shows that ¢ is continuous at each ¢ €
C\ [0,0, 1]. Consider a neighborhood U of [0, 1] in P*. Then there exists M € R*
such that if [s,t] satisfies |t| > |s| - M then [s,t] € U. Thus the preimage of U
in ¢ consists at least of all points [x,y, 2] of C satisfying |z| > max(|z], |y|) - M?
which is a neighborhood of [0,0, 1] in C. Thus g is continuous.

It follows that C' is homeomorphic to P! so x(C) = x(P') = 2. This does
not agree with the degree-genus formula. Hence, it cannot be applied to singular
curves.

27



Conclusion

In the thesis, we managed to prove the classical degree-genus formula for nonsin-
gular projective curves in P? by producing a suitable triangulation of the curve
C. Simply put, we showed that the topology of a projective nonsingular curve
in P? depends only on the degree of the polynomial defining it. In the proof,
we introduced important topological invariants such as the Euler number and
genus. Then we briefly sketched how our result relates to the other definition of
genus as a number of handles attached to a sphere. Finally, we showed that the
degree-genus formula does not hold in general for singular curves.

Our proof utilized techniques from general topology, algebraic topology, where
we developed some theory around covering spaces, and complex analysis. We
analyzed the branched cover ¢ : C — P! of P! and showed that it acts as a
near-perfect covering projection (excluding a finite set of ramification points).

Several generalizations of the degree-genus formula are also known. If a curve
C' is irreducible (and possibly singular) then after performing a projective trans-
formation in the sense of Lemma 2.5 it holds that

s=y-va-2-3 5 (1,(R5)-ni s o))

peSing(C)

where Sing(C') is the finite set of singular points of C, I,(Q, R) is the intersection
number of Q and R at p and 7 : C — C is the map from the resolution of
singularities of C'. This equation is called Noether’s formula. In particular, there
exists a way to compute the genus despite it not depending solely on the degree.

Another generalization comes from the study of curves in higher dimensions.
It turns out that the formula for the arithmetic genus of a nonsingular hyper-
surface H in P" defined by a homogeneous polynomial of degree d is a natural
extension of the degree-genus formula. Precisely,

d—1
9= :
n
Further work could be done to prove any of the two generalizations. In ad-
dition to that, one could modify the topological arguments from this thesis to
prove the general form of the Riemann-Hurwitz formula for a general map be-

tween projective algebraic curves. Here, a more general theory of ramification
indices needs to be developed.
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