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the existence of pushouts in the category of schemes with an emphasis on diagrams
of affine schemes. We use the methods of Ferrand [2003] and Schwede [2004] and
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Introduction
An effort to form quotients was and still is one of the main driving forces in
the development of algebraic geometry. While it is very easy and natural to
perform quotient constructions in both algebra and topology, doing in it in the
context of algebraic geometry is seldom so. Due to the compatibility requirements
on their algebraic and geometric structures, objects in algebraic geometry are
remarkably rigid. In taking quotients in the setting of algebraic geometry, one
must manipulate both algebraic and geometric parts of objects at the same time
to ensure that they remain compatible which is often impossible. Therefore one
often has to decide whether to forgo the desired degree of compatibility or the
universal property.

Most of these sought after quotients originated from group actions on algebro-
geometric objects. It is worth noting that David Hilbert laid foundations of alge-
braic geometry as a field of mathematics in investigating the rings of invariants
of classical group actions. Non-existence of many group quotients in classical
algebraic geometry was one the crucial motivations for relaxing compatibility
requirements on algebro-geometric objects and introduction of very abstract ob-
jects, like algebraic spaces or stacks, that play a pivotal role in contemporary
algebraic geometry.1

However, in this thesis, we shall deal with pushouts which are another class
of quotient constructions. In contrast to group quotients, which have more non-
equivalent definitions, pushout (or amalgamated sum) is a well defined categorial
notion. Pushout is the colimit of a pair of morphisms with common domain or
given a diagram:

X

Y Z

φ ψ

then an object W together with morphisms ι1 : Y → W and ι2 : Z → W such
that ι1φ = ι2ψ is the pushout of this diagram if for any object W ′ and morphisms
η1 : Y → W and η2 : Z → W such that η1φ = η2ψ there exists a unique morphism
π : W → W ′ such that ηi = πιi for i = 1, 2.

The dual notion to pushout is pullback which is the limit of a pair of mor-
phisms with a common codomain. Due to presence of many contravariant functors
in algebraic geometry, we will also deal with pullbacks very often.

Compared to group quotients which are a vibrant of study, the topic of existence
of pushouts in categories of algebro-geometric objects has attracted relatively lit-
tle attention so far. The main article is Conducteur, descent, et pincement (in
French) by Daniel Ferrand published in the Bulletin of French Mathematical So-
ciety in 2003 which is a corrected version of author’s dissertation from 1970’s.
Ferrand [2003] deals, among other things, with special pushouts in the category
of schemes (one of the morphisms in the pushout datum is required to be a closed

1For a more detailed discussion, we refer the reader to Sections 1.3 and 1.7 in Eisenbud
[1995].
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immersion and the other is required to be affine). His strategy is to give sufficient
conditions when the pushout, which always exists, of a diagram of schemes in the
category of ringed spaces is also a scheme, and thus a pushout in the category of
schemes.

This approach was also taken by Karl Schwede in an article Gluing schemes
and a scheme without closed points published in 2004. Schwede [2004] indepen-
dently discovered some of the results given by Ferrand [2003] and worked some
interesting examples and counterexamples.

Kezheng Li, in his article Push-outs of schemes published in 2007, studied
the existence of pushouts of schemes under some strict conditions on the mor-
phisms of the pushout datum (e.g. flatness or finiteness). Under these strong
assumptions, Li [2007] was able to give some sufficient and equivalent conditions
for the existence of pushout and, moreover, grupoid quotients in the category of
schemes.

Most recently, Michael Temkin and Ilya Tyomkin asked about the existence
of pushouts investigated by Ferrand [2003] in the category of algebraic spaces
in their article Ferrand pushouts for algebraic spaces from 2016. Temkin and
Tyomkin [2016] managed to extend Ferrand’s results to the category of algebraic
spaces and pointed out the connections of the existence of pushouts with several
other problems in the study of algebraic spaces.

In this thesis, we follow up on the articles of Ferrand and Schwede in examin-
ing the existence of puhsouts in the category of schemes and analyse the existence
of pushouts in the context of classical algebraic geometry, specifically in the cat-
egory of affine algebraic sets, as well. The latter problem does not appear to be
treated in the literature at all, both Schwede [2004] and Temkin and Tyomkin
[2016] point to its instances in some examples, though.

This work is thus divided into two chapters. The first chapter opens with a
discussion of the existence of pushouts in the category of affine algebraic sets
over an infinite field. We use the contravariant equivalence between the category
of affine algebraic sets and the category of coordinate rings to equivalently refor-
mulate the problem in a purely algebraic way − we ask whether the pullback a
diagram of coordinate rings, which always exists in the category of algebras over
the ground field, is a finitely generated algebra.

It turns out that this can be conveniently dealt with in a more general setting
of finitely generated algebras over a commutative Noetherian ring. We provide
a complete solution of the problem of existence of some pullbacks in such a
category and give a partial solution to other instances. We conclude the chapter
by considering intersections of finitely generated algebras and by analysing local
properties of some quotients of affine algebraic sets.

In the second chapter, we mainly elaborate on the results of Ferrand [2003]
and Schwede [2004] about the existence of pushouts in the category of schemes,
particularly of the diagrams of affine schemes. We begin by characterising when
the pushout of a diagram of affine schemes in the category of ringed spaces is the
affine schemes that corresponds to the pullback of the corresponding diagram of
global sections. The result is that we can limit ourselves to diagrams of affine
schemes where all morphisms correspond to inclusions of commutative rings. We
give some sufficient conditions and examples of the spectrum of intersection of
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two commutative subrings of a commutative ring being equal to the amalgamated
sum of their respective spectra.

Subsequently, we try to generalise and allow the pushouts of diagrams of
affine schemes to be merely schemes. Using a result related to the Ferrand’s
main theorem, we are able to give some sufficient conditions for their existence.
Finally, we abandon the, as it emerges, overly restrictive approach of trying to
prove that the pushout of a diagram of schemes in the category of ringed spaces
is also a scheme itself. We prove that it suffices for a scheme to be in some sense
close to that general pushout to be the pushout of the diagram in the category
of schemes and show that such conditions are natural for diagrams affine schemes.

Main references for standard results and definitions are David Eisenbud’s Com-
mutative Algebra with a View towards Algebraic Geometry for commutative alge-
bra and Algebraic Geometry I: Schemes With Examples and Exercises by Ulrich
Görtz and Torsten Wedhorn for algebraic geometry.

The results of the first chapter were presented at the Prague Algebra Seminar in
November 2017. An earlier version of this work was submitted to SVOČ (a Czech
and Slovak competition in mathematical research for university students) in May
2018 and it won a shared first place in the M5+M6 category. Parts of this the-
sis will be sent for publication, the author gratefully acknowledges support from
grant GACR 17-23112S of the Czech Science Foundation to this end.
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1. Pullbacks of finitely generated
algebras
In this chapter, we will be motivated by investigation of the existence of push-
outs in the category of affine algebraic sets over an infinite field. Throughout, we
will make free use of basic results and definitions of affine algebraic geometry as
described for example in Chapter 1 of Görtz and Wedhorn [2010].

1.1 Pushouts of affine algebraic sets
Let K be an infinite field, consider, for example, these diagrams of algebraic sets
with natural maps:

A1
K

A0
K A2

K

the pushout of which would correspond to contracting a line in a plane into a
single point or:

A0
K ⊔ A0

K

A0
K A1

K

the pushout of which would correspond to identifying two points of on affine line.
It is folklore knowledge that the first pushout does not exists in the category of
affine algebraic sets (see Example 3.5 on page 7 in Schwede [2004]), but the second
one does. In the following text, we will try to characterise under which circum-
stances we can form a pushout of affine algebraic sets or glue two affine algebraic
sets via another algebraic set that maps to them in the most general way possible.

The existence of pushouts P and Q respectively, would, through contravariant
equivalence of the category of algebraic sets and the category of coordinate rings,
mean that K[P ] and K[Q] are pullbacks in the category of coordinate rings of
the respective diagrams:

K[P ]

K K[x, y]

K[x]

K[Q]

K K[x]

K2

Moreover, K[P ] and K[Q], which are finitely generated as algebras over K,
need to be the pullbacks of the respective diagrams in the category ofK−algebras1.

1Let A,B,C be K−algebras and let φ : B → A a ψ : C → A be their homomorphisms.
Then the pullback of the corresponding diagram is isomorphic to {(b, c) ∈ B×C |φ(b) = ψ(c)}.
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This is due to the following lemmas:

Lemma 1. Let X be a non-empty K−algebraic set, then any finitely generated
K−subalgebra of K[X] is a coordinate ring of some K−algebraic set.

Proof. Let B be a finitely generated K−subalgebra of K[X] with generators
Φ1, . . . ,Φn. There exists a unique homomorphism φ : K[x1, . . . , xn] → B such
that xi ↦→ Φi for all i ∈ {1, . . . , n}. However, φ can be thought of as a ho-
momorphism from K[x1, . . . , xn] to X. Then φ gives rise to a polynomial map
Φ = (Φ1, . . . ,Φn) : X → An

K . Suppose that a polynomial f ∈ K[x1, . . . , xn] van-
ishes on Φ(X), that means for all x ∈ X we have f(Φ1(x), . . . ,Φn(x)) = 0, for
this we need that K is an infinite field. Let us have f ∈ Kerφ, then:

0 = f(Φ1, . . . ,Φn)(x) = f(Φ1(x), . . . ,Φn(x))

for all x ∈ X, hence f vanishes on Φ(X), we established that Kerφ = I(Φ(X)).
Furthermore, noting that I(V (I(Φ(X)) = I(Φ(X)), we observe that:

B ∼= K[x1, . . . , xn]/I(Φ(X))

by the first isomorphism theorem, it is therefore the coordinate ring of K−alge-
braic set V (I(Φ(X)).

Lemma 2. Suppose φ : B → A a ψ : C → A are homomorphisms of coordinate
rings of affine algebraic sets over K, then D with morphisms θB, θC is the pullback
of the corresponding diagram in the category of coordinate rings if and only if D
is also the pullback of corresponding diagram in the category of all K−algebras.

Proof. We know that the pullback of the corresponding diagram in the category
of all K−algebras is of form P = {(b, c) ∈ B × C |φ(b) = ψ(c)} with ηB, ηC pro-
jections. However, B and C are coordinate rings of K−algebraic varieties X and
Y respectively. This implies that B ×C is a coordinate ring of X ⊔ Y. Therefore
P is a finitely generated subalgebra is a coordinate ring.

(⇐) Provided that P is finitely generated as an algebra over K, it is also a
coordinate ring by the Lemma 1 and D ∼= P by the universal property of pull-
back.

(⇒) Suppose that D is not pullback of corresponding diagram in the category of
all K−algebras. If P is finitely generated, proceed by the previous paragraph.
Assume that P is not finitely generated and D is the pullback in the category of
coordinate rings. By virtue of P being pullback of the diagram in the category
of all K−algebras, there is a homomorphism ϱ : D → P so that projections from
D to B and C factor through that. Therefore θB = ηBρ and θC = ηCρ. Clearly,
this means that ϱ(D) with projections defined as restrictions of ηB and ηC is also
the pullback in the category of finitely generated K−algebras. This is due to the
universal property of the pullbacks D and P in respective categories.

By virtue of P not being finitely generated, thus, Im ηB or Im ηC is not finitely
generated by Proposition 6. Without loss of generality, assume that Im ηB is not
finitely generated and find a finitely generated subalgebra D′ of P such that
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ηB(ϱ(D)) is strictly smaller than ηB(D′). We infer by Lemma 1 that D′ is a
coordinate ring.

This yields a contradiction as restriction of ηB to D′ clearly does not factor
through ηB restricted to ϱ(D) − the assumed pullback of the diagram in the
category of coordinate rings.

Therefore we have successfully translated a geometric question about the ex-
istence of pushouts of K−algebraic sets to the question whether ring-theoretic
pullbacks of induced diagrams of their coordinate rings are finitely generated.

It turns out, however, that the question can be conveniently generalised to a
more general setting of finitely generated algebras over an arbitrary Noetherian
ring and to establish strong finiteness conditions on the existence of finitely gen-
erated pullbacks we will need to use only very general results of commutative
algebra.

1.2 Preliminary results
At first, we recall some two theorems of commutative algebra, of which we shall
make an extensive use, and set some conventions for this chapter.

Theorem 3 (Hilbert basis theorem; Theorem 1.2 and Corollary 1.3 in Eisenbud
[1995], pages 27 and 28). If a ring R is Noetherian, then the polynomial ring R[x]
is Noetherian. Furthermore any finitely generated algebra over R is Noetherian.

We shall also often refer to the fact that a finitely generated module over a Noethe-
rian ring is Noetherian, which is expressed in Eisenbud [1995] by Proposition 1.4,
page 28. We will also use all three isomorphisms theorems quite frequently.

Theorem 4 (Artin-Tate lemma; Theorem in Exercise 4.32 in Eisenbud [1995],
page 143). Suppose R is a Noetherian ring and S is a finitely generated R-algebra.
If T ⊆ S is a R−algebra such that S is a finitely generated T−module, then T is
a finitely generated R−algebra.

Throughout this chapter, R will denote a Noetherian commutative unital ring.
We note that for R−algebras S ⊆ B and ideal I ⊆ B, the quotient B/I has a
natural structure of an S−module given by multiplication by elements s + I for
s ∈ S.

We begin by establishing some general results that will allow us to simplify
our problem even further.

Proposition 5. Suppose S is a R−algebra with ideals I, J ⊆ S such that both
S/I and S/J are finitely generated algebras over R, then S/I ∩ J is a finitely
generated R−algebra.

Proof. Without loss of generality, we can assume that I ∩ J = {0}, otherwise we
set S̃ = S/I ∩ J , Ĩ = I/I ∩ J , and J̃ = J/I ∩ J.

Let us denote the canonical projections by πI : S → S/I and πJ : S →
S/J . If we lift finitely many generators of S/I and S/J , we obtain SI and SJ
finitely generated R−subalgebras of S such that πI(SI) = S/I and πJ(SJ) = S/J
respectively.
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Additionally, we have that I + J/J ∼= I/I ∩ J ∼= I as I ∩ J = 0. Since
S/J is Noetherian by the Hilbert basis theorem, it can be viewed as a Noethe-
rian SJ−module, and I is isomorphic to its submodule, we conclude that I is a
Noetherian, hence finitely generated SJ−module.

Choose an arbitrary s ∈ S, as πI(SI) = S/I, there is an sI ∈ SI such that
s − sI ∈ I. However, any element i ∈ I can be expressed as i = ∑n

k=1 ιksk,J for
fixed ι1, . . . , ιk ∈ I and some s1,J , . . . , sk,J ∈ SJ . Consequently, S is generated
as a R−algebra by finitely many generators of SI and SJ together with finitely
many generators of I as a SJ−module.

Proposition 6. Let A,B,C be finitely generated R−algebras and let φ : B → A
a ψ : C → A be their homomorphisms. Then the pullback of the corresponding
diagram:

B C

A

φ ψ

is finitely generated R−algebra if and only if both φ−1(Imφ∩Imψ) and ψ−1(Imφ∩
Imψ) are finitely generated as algebras over R.

Proof. Pullback of the diagram above exists in the category of commutative
rings and can be expressed as P = {(y, z) ∈ B × C,φ(y) = ψ(z)} with pro-
jections π1 : P → B, (y, z) → y and π2 : P → C, (y, z) → z. The ring P
can be naturally equipped with R−algebra structure such that π1 and π2 be-
come R−algebra homomorphisms. It is clear that π1(P ) = φ−1(Imφ∩ Imψ) and
π2(P ) = φ−1(Imφ∩ Imψ) as well as Ker π1 = (0,Kerψ) and Kerπ2 = (Kerφ, 0).

(⇒) We observe that Kerπ1 ∩ Ker π2 = {(0, 0)}. Under the assumption that
π1(P ) = φ−1(Imφ ∩ Imψ) and π2(P ) = φ−1(Imφ ∩ Imψ) are finitely generated
R−algebras, P is easily finitely generated as an algebra over R from Proposition 5.

(⇐) If P is a finitely generated R−algebra, then both φ−1(Imφ ∩ Imψ) and
ψ−1(Imφ∩ Imψ) are finitely generated as its homomorphic images under π1 and
π2 respectively.

Remark (Special cases of two monomorphisms and two surjective homomor-
phisms). Let us retain the notation from the proposition above. Assume that φ
and ψ are surjective homomorphisms, then the proposition above gives an affirma-
tive answer to our question − as φ−1(Imφ∩Imψ) = B and ψ−1(Imφ∩Imψ) = C
are finitely generated R−algebras, so is the pullback P . However, if both homo-
morphisms are monomorphisms, without loss of generality inclusions, the propo-
sition is tautological. Since φ−1(Imφ∩ Imψ) = ψ−1(Imφ∩ Imψ) = B∩C, which
is also equal to the pullback P.

1.3 Subalgebras containing an ideal
Proposition 6 allows to proceed from asking whether the pullback of finitely
generated algebras is finitely generated to asking if some subalgebras of finitely
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generated R−algebras are themselves finitely generated. For now, let us set aside
the case when φ and ψ are both monomorphisms, using the notation of the
proposition above, and suppose that φ is not a monomorphism. It follows that
φ−1(Imφ ∩ Imψ) contains an ideal of B, namely Kerφ ⊆ φ−1(Imφ ∩ Imψ).

As the ensuing discussion illustrates, this is a crucial fact, which makes deter-
mining whether φ−1(Imφ∩ Imψ) is a finitely generated R−algebra much easier.

Lemma 7. Let S ⊆ B be R−algebras such that B is finitely generated as an
algebra over R and there exists an ideal I of B which lies in S. If S is finitely
generated over as an algebra R, then B/AnnB(f) is a finitely generated S−module
for each non-zero f ∈ I.

Proof. By the Hilbert basis theorem, S is Noetherian. For each f ∈ I, we have
(f)B ⊆ I ⊆ S. As an ideal of S, (f)B has to be finitely generated. So there are
b1, . . . , bk ∈ B such that (f)B = (fb1, . . . , fbk)S. Choose an arbitrary b ∈ B, we
can find s1, . . . , sk ∈ S so that fb = ∑k

i=1 fbisi. We deduce that b − ∑k
i=1 bisi ∈

AnnB(f) and thus b1 + AnnB(f), . . . , bk + AnnB(f) generate B/AnnB(f) as an
S−module.

We shall show that the result of the previous lemma can be strengthened
considerably under additional assumptions, specifically if the ring is coprimary
as module over itself.

Definition 8 (Prime ideals associated to a module and coprimary module; de-
fined on pages 89 and 94 in Eisenbud [1995]). Let M be an R−module. A prime
ideal p ∈ SpecR is associated to M if p is the annihilator of an element of M. A
submodule N of M is primary if only one prime is associated to M/N . We say
that M is coprimary module if its zero submodule is primary.

Lemma 9. Suppose B is a coprimary and finitely generated R−algebra, then all
elements of the only associated prime of B are nilpotent.

Proof. This lemma follows easily from Proposition 3.9 on page 94 in Eisenbud
[1995]. To be consistent with the notation in Eisenbud [1995], let us denote P the
the only associated prime of B. Then B is P−coprimary as a module over itself.
By b of the proposition, all elements of B−P are not zero divisors. However, by
c of the said proposition, a power of P annihilates B, as all elements of B − P
are not zero divisors, this power has to be zero. Thus, all elements of P are
nilpotent.

Proposition 10. Suppose S ⊆ B are R−algebras such that there exists a finitely
generated ideal I ⊆ B with the property that B/I is a finitely generated S−module
and that all its elements are nilpotent, in effect B is a finitely generated S−module.

Proof. Suppose a1, . . . , an ∈ I generate it as B−module and ami = 0 for all
1 ≤ i ≤ n. Then every element of Imn is a B−linear combination of elements
from {aφ(1) . . . aφ(mn); for all functionsφ : {1, . . . ,mn} → {1, . . . , n}}, but for
each φ : {1, . . . ,mn} → {1, . . . , n} there is an index n0 such that |φ−1(n0)| is
greater or equal than m, so aφ(1) . . . aφ(mn) = 0. Therefore Imn = {0}.

11



Let us denote by Pi = {p1, . . . , pki
} a finite set of generators of I i as a

B−module for each 1 ≤ i ≤ mn − 1, and by SB = {s1, . . . , sℓ} a finite sub-
set of B such that its image under the canonical projection generates B/I as an
S−module. We shall show that the finite set ⋃mn−1

i=1 PiSB is a set of generators of
an S−module I, where PiSB = {ab; a ∈ Pi, b ∈ SB} for all i.

If we denote S̃B the S−module generated by the finite set SB, for any b ∈ B,
there is a bS ∈ S̃B for which b− bS ∈ I. Choose a p ∈ I i, there are b1, . . . , bki

∈ B
such that p = ∑ki

j=1 pjbj. It is simple to deduce that p−∑ki
j=1 pjb

S
j ∈ I i+1. As the

element pjbSj can be written as an S−linear combination of pjs1, . . . , pjsℓ for each
1 ≤ j ≤ ki.

We can hence inductively approximate an arbitrary p ∈ I by S−linear combi-
nations of PiSB denoted pi such that p−p1 − . . .−pj ∈ Ij+1. This approximation
stops after mn− 1 steps because Imn = {0}. Consequently, I is contained in the
S−module generated by the finite set ⋃mn−1

i=1 PiSB.
It is clear now that B is a finitely generated S−module, since both I and B/I

are finitely generated S−modules.

The results of this section up to this point can be neatly put together:

Theorem 11. Let S ⊆ B be R−algebras such that B is finitely generated over R
and coprimary as a module over itself and there exists an non-zero ideal I of B
which lies in S. Then S is finitely generated over R if and only if B is a finitely
generated S−module.

Proof. (⇐) This implication follows trivially from the Artin-Tate lemma.

(⇒) Let p ∈ SpecB be the only associated prime of B; we know that AnnB(b) ⊆ p
for each b ∈ B.

Since I contains a non-zero element f , by Lemma 7, B/AnnB(f) is a finitely
generated S−module. It follows obviously that B/p is also a finitely generated
S−module.

By Hilbert basis theorem, p is a finitely generated B−module and by Lemma
9 all its elements are nilpotent. We can now directly apply Proposition 10 to
obtain that B is a finitely generated S−module.

It is possible to extend the result of the previous theorem to an arbitrary finitely
generated algebras by using the primary decomposition of its zero ideal.

Theorem 12 (Lasker-Noether theorem or primary decomposition; Theorem 3.10
in Eisenbud [1995], page 95). Let M be a finitely generated R−module. Any proper
submodule M ′ of M is the [finite] intersection of primary submodules.

Theorem 13. Assume that S ⊆ B are R−algebras such that B is finitely gen-
erated as an algebra over R and there exists an ideal I of B which lies in S. Let
P1, . . . , Pn be a primary decomposition of the zero ideal in B such that I ⊆ Pi
for all 1 ≤ i ≤ n′ and that I ⊈ Pj for every n′ + 1 ≤ j ≤ n. Then S is finitely
generated as algebra over R if and only if S/I is a finitely generated R−algebra
and B/Pj is a finitely generated S + Pj/Pj−module for every n′ + 1 ≤ j ≤ n.

Proof. (⇐) This implication follows immediately as S/I is finitely generated
R−algebra as a homomorphic image of finitely generated R−algebra S and so
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are S+Pj/Pj for every n′ +1 ≤ j ≤ n. Since I ⊈ Pj for every n′ +1 ≤ j ≤ n then
I + Pj/Pj is non-zero for all j. Therefore, using Theorem 11, B/Pj is a finitely
generated S + Pj/Pj−module for all j.

(⇒) We know that I ⊆ Pi for all 1 ≤ i ≤ n′ and S/I is a finitely generated
algebra over R. Thus S +Pi/Pi ∼= S/Pi ∩ I is also finitely generated R−algebras
for all i. As well, we have that B/Pj is a finitely generated S+Pj/Pj−module for
every n′ + 1 ≤ j ≤ n, by Artin-Tate lemma or Theorem 11 S +Pj/Pj ∼= S/Pj ∩ I
is a finitely generated R−algebra. By the choice of P1, . . . , Pn we have that⋂n
k=1 Pk = {0}, specifically, we get ⋂nk=1(I ∩ Pk) = {0}. If we inductively apply

Proposition 5 we get that S is a finitely generated R−algebra.

1.4 Intersections of finitely generated algebras
In the preceding part, we dealt with the problem whether a subalgebra of a
finitely generated algebra containing its ideal is finitely generated and formulated
a strong general result in Theorem 13. However, the strength of this theorem
is limited − generally, we can replace the condition of subalgebra being finitely
generated algebra by the condition of the algebra being module-finite over the
subalgebra only some of the primary components of the algebra which forces us
to assume that some quotient of the algebra in question is finitely generated.

To illustrate this point, let us go back to the pullback discussed in the context
of Proposition 6. We have finitely generated R−algebras A,B,C and φ : B → A
a ψ : C → A is finitely generated and ask whether the pullback of this diagram is
finitely generated. To this end, we would like to know it about S = φ−1(Imφ ∩
Imψ). If we were to use Theorem 13, we would encounter a problem since,
typically, we need to have no knowledge of S/I = Imφ ∩ Imψ where I = Kerφ
required in the theorem.

Therefore determining if the pullback of this diagram:

B C

A

φ ψ

is finitely generated using the tools of previous part generally requires knowing
that the pullback of this diagram:

Imφ Imψ

A
⊆ ⊆

which is Imφ ∩ Imψ is also finitely generated algebra over K. However, we do
not need to consider the second diagram if either B or C is coprimary and one
of the homomorphisms is surjective due to Theorem 11 (see Theorem 20 in the
next section), for example. The second diagram may as well be trivial if B and
C are K−algebras and either Imφ or Imψ is equal to A − that is the case of
both motivational examples, which we will revisit in the next section.
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In this section we will follow up on the preceding section and the remarks
above and deal with the problem when an intersection of two finitely generated
algebras over a commutative Noetherian ring is also finitely generated. This is, in
general, a very difficult problem as shown by Pinaki Mondal in his article When
is the Intersection of Two Finitely Generated Subalgebras of a Polynomial Ring
Also Finitely Generated?, for example.

In the introduction Mondal [2017] lists an easy example of two finitely gener-
ated subalgebras C[x2, y − x] and C[x2, x3, y] of C[x, y] whose intersection is not
finitely generated, which is derived from another example due to Neena Gupta
and Wilberd van der Kallen.

On the other hand, somewhat similarly looking finitely generated algebras
K[y, x2y] and K[x, xy] have a finitely generated intersection for K an arbitrary
field, namely K[x2y, x2y2]. In this section, we will show to sufficient conditions
for an intersection of two finitely generated algebras to be finitely generated −
one will rely on the results of the preceding section, mainly Theorem 13, the other
will be more of a combinatorial nature and a general instance of the example we
have just offered.

Lemma 14. Assume, that S ⊆ B are R−algebras, I ⊆ B is an ideal of B which
is contained in S, then B is a finitely generated S−module if and only if B/I is
a finitely generated S−module.

Proof. (⇒) This implication is trivially valid.

(⇐) Let us take a finitely generated S−module B′ ⊆ B such that its image
under the canonical projection is equal to B/I. generate B/I as an S−module.
Choose b ∈ B then there exists bS ∈ B′ which differs from b by an element of I.
As I ⊆ S , we get B′ + S = B. However both of these S−modules are finitely
generated, B is a finitely generated S-module as well.

Lemma 15. Suppose that M is an R−module with submodules M1, . . . ,Mn such
that M/Mi is Noetherian for all 1 ≤ i ≤ n, then M/M1 ∩ · · · ∩ Mn is also
Noetherian.

Proof. Let us denote πi : M → M/Mi the canonical projection for each i. Con-
sider a homomorphism π : M → ∏n

i=1 M/Mi given in i−th coordinate by πi. We
easily observe that Ker π = M1 ∩· · ·∩Mn, hence M/M1 ∩· · ·∩Mn

∼= Im π, which
is Noetherian as a submodule of a clearly Noetherian module ∏n

i=1 M/Mi.

Lemma 16. Let B be a commutative ring and I, J, P its ideals, then:√
(I ∩ J) + P =

√
(I + P ) ∩ (J + P ).

Proof. Firstly, we note some basic facts: for any two ideals of B, intersection
of their radicals is the radical of their intersection and sum of their radicals is
below the radical of their sum. Furthermore, we recall that the lattice of radical
ideals2 of B is distributive. Finally, we also observe that we always have that
(I ∩ J) + P ⊆ (I + P ) ∩ (J + P ).

2For R1, R2 radical ideals of B, we put R1 ∧ R2 = R1 ∩ R2 and R1 ∨ R2 =
√
R1 +R2.

The fact that this lattice is distributive means that for any radical ideals R1, R2, R3 of B the
equality

√
R1 +

√
R2 ∩R3 =

√
R1 +R2 ∩

√
R1 +R3 holds.
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Now, let us gradually apply the above stated facts to obtain what we seek:√
(I ∩ J) + P =

√√
I ∩ J +

√
P =

√√
I ∩

√
J +

√
P =

at this point we use the distributivity of the lattice of radical ideals of B =√√
I +

√
P ∩

√√
J +

√
P =

√
I + P ∩

√
J + P =

√
(I + P ) ∩ (J + P ).

Remark. This proof can be simplified and seen geometrically, if rewritten using
properties of Zariski topology on SpecB. Simply write V ((I ∩ J) + P ) = V (I ∩
J) ∩ V (P ) = (V (I) ∪ V (J)) ∩ V (P ) = (V (I) ∩ V (P )) ∪ (V (J) ∩ V (P )) = V (I +
P ) ∪ V (J + P ) = V ((I + P ) ∪ (J + P )). See Section 2.1 for details.

Theorem 17. Let S ⊆ B be R−algebras such that B is finitely generated as
an algebra over R and I, J ⊆ B be ideals of B. Let P1, . . . , Pn be a primary
decomposition of the zero ideal in B such that I ∩ J ⊆ Pi for all 1 ≤ i ≤ n′ and
that I ∩ J ⊈ Pj for every n′ + 1 ≤ j ≤ n. Then

1. if B is a finitely generated S+I−module and S+J−module, B is a finitely
generated S + (I + J)−module, S + (I ∩ J)−module, and (S + I) ∩ (S +
J)−module, furthermore, all of these R−algebras are finitely generated,

2. if both S + I and S + J are finitely generated R−algebras, S + (I + J) is a
finitely generated algebra over R,

3. if both S + I and S + J are finitely generated R−algebras, then S + (I ∩ J)
and (S + I) ∩ (S + J) are finitely generated R−algebras.

Proof. (1.) Since S + I ⊆ S + (I + J) and S + (I ∩ J) ⊆ (S + I) ∩ (S + J),
it suffices to prove that B is a finitely generated S + (I ∩ J)−module if it is a
finitely generated S + I−module and S + J−module.

Suppose I and J are S+ (I ∩ J)−modules. However, by Lemma 14, we know
that B/I and B/J are finitely generated modules over S+I and S+J respectively.
As S+(I∩J)+I/I ∼= S+I/I, S+(I∩J) acts on B/I and B/J in the same way,
hence B/I and B/J are also finitely generated S+ (I ∩J)−modules. By Lemma
15, B/I ∩J is a finitely generated S+(I ∩J)−module. Another usage of Lemma
15 consequently establishes that B is a finitely generated S + (I ∩ J)−module.

All of the said R−algebras are obviously finitely generated using Artin-Tate
lemma.

(2.) The R−algebra S + (I + J) is generated by finitely many generators of
S + I and S + J as algebras over R.

(3.) We know that S + I/I and S + J/J are finitely generated R−algebras,
that S + (I ∩ J) + I = (S + I) ∩ (S + J) + I = S + I and analogically for
adding J. By Proposition 5, we consequently have that S + (I ∩ J)/I ∩ J and
(S + I) ∩ (S + J)/I ∩ J are finitely generated algebras over R.

Without loss of generality, we can assume that P1, . . . , Pn form a primary
decomposition of zero and that for all 1 ≤ i ≤ n′ we have I ∩ J ⊆ Pi and for
n′ + 1 ≤ j ≤ n we have that I ∩ J ⊈ PJ . We shall show that B/Pj is a finitely
generated S + (I ∩ J)−module for each n′ + 1 ≤ j ≤ n. By Lemma 14, it suffices
to prove that B/(I ∩ J) + Pj is a finitely generated module.
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We know that the nilradical of B/(I ∩ J) +Pj is
√

(I ∩ J) + Pj/(I ∩ J) +Pj.

However, as (I ∩ J) + Pj ⊆ (I + Pj) ∩ (J + Pj) and
√

(I + Pj) ∩ (J + Pj) =√
(I ∩ J) + Pj, which we proved in Lemma 16, (I + Pj) ∩ (J + Pj)/(I ∩ J) + Pj

is specifically finitely generated nilpotent ideal of B/(I ∩ J) + Pj.
From Theorem 13 and Lemma 14 and the fact that both S + I and S + J are

finitely generated R−algebras, we deduce that B/(I + Pj) and B/(J + Pj) are
finitely generated S−modules. Whereas, an application of Proposition 5 gives us
that B/(I + Pj) ∩ (J + Pj) is a finitely generated module over S. Finally, this
means that B/(I ∩ J) + Pj is a finitely generated as S−module by Proposition
10.

Now, we have that B/Pj is a finitely generated S + (I ∩ J)−module. As
S + (I ∩ J) ⊆ (S + I) ∩ (S + J), B/Pj is a fortiori a finitely generated as a
module over (S + I) ∩ (S + J). Invoking Theorem 13 once more, we obtain the
desired result − the R−algebras S + (I ∩ J) and (S + I) ∩ (S + J) are finitely
generated.

Remark. Notice that part (3.) the theorem above solves a very specific instance
of the problem whether an intersection of two finitely generated subalgebra of an
R−algebra are finitely generated as we set out above.

Proposition 18. Let K be a field and S1, S2 ⊆ B be finitely generated subalge-
bras of K−algebra B which is a domain. Then S1 ∩ S2 is a finitely generated
K−algebra if and only if there are g1, . . . , gm and h1, . . . , hm generators of S1
and S2 respectively such that M generates S1 ∩ S2 as a vector space over K with
M denoting the intersection of multiplicative sets generated by g1, . . . , gm and
h1, . . . , hm respectively.

Proof. (⇒) Assume that S1 ∩ S2 is a finitely generated K−algebra with gener-
ators f1, . . . , fk and that g1, . . . , gm and h1, . . . , hm are generators of S1 and S2
respectively. Then the claim clearly holds for the intersection of multiplicative
sets generated by 1, f1, . . . , fk, g1, . . . , gm and 1, f1, . . . , fk, h1, . . . , hm respectively.

(⇐) Suppose that g1, . . . , gm and h1, . . . , hm are generators of S1 and S2 respec-
tively and that M ∩ (S1 ∩ S2) generates S1 ∩ S2 a vector space over K. Where
M denotes the intersection of multiplicative sets generated by g1, . . . , gm and
h1, . . . , hm respectively. This means that every element of S1 ∩ S2 is a K−linear
combination of elements of M .

To prove that S1 ∩ S2 is finitely generated, it suffices to show that there are
finitely many elements of M in S1 ∩ S2 such that any element of M in S1 ∩ S2 is
a product of their powers.

The set M is in bijection with the following set:

I = {(a1, . . . , an, b1, . . . , bm) ∈ Nn+m
0 : ga1

1 . . . , gam
m = hb1

1 . . . hbn
n }

we will consider Nn+m
0 to be equipped with a natural partial ordering a ≥ b if

ai ≥ bi for all 1 ≤ i ≤ n + m. Suppose that (a1, . . . , am, b1, . . . , bn) ∈ I and
(c1, . . . , cm, d1, . . . , dn) ∈ I such that:

(a1, . . . , am, b1, . . . , bn) > (c1, . . . , cm, d1, . . . , dn),
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we will show that (a1 − c1, . . . , am − cm, b1 − d1, . . . , bn − dn) ∈ I. That follows
easily from:

p · ga1−c1
1 . . . , gam−cm

m = ga1
1 . . . , gam

m = hb1
1 . . . hbn

n = hb1−d1
1 . . . hbn−dn

n · p

where all ai − ci, bj − dj ≥ 0 (at least one such inequality is strict) and p =
gc1

1 . . . , gcm
m = hd1

1 . . . hdn
n . Cancelling p out, we obtain:

ga1−c1
1 . . . , gam−cm

m = hb1−d1
1 . . . hbn−dn

n

what we wanted to prove.
By Dickson’s lemma which says that every subset of Nn+m

0 has finitely many
minimal elements with respect to the natural partial order, see Theorem 5 on
page 71 in Cox et al. [2007] for an equivalent formulation in related terms of
monomial ideals, there are finitely many elements i1, . . . , ik in I such that for
each a ∈ I at least one of those elements lies beneath it. By induction on
||a||1 = ∑m+n

i=1 ai, we will prove that for each a ∈ I there are c1, . . . , ck ∈ N0 such
that a = c1i1 + · · · + ckik.

Let a have minimal norm ||a||1 over I, then, clearly, a is one of i1, . . . , ik as
there is no element of I strictly beneath it (any b with a > b has to have strictly
smaller norm). The induction arguments goes as follows: let a ∈ I, then either a
is one of i1, . . . , ik or one of i1, . . . , ik is strictly beneath a, thus a− ij ∈ I for some
1 ≤ j ≤ k. However, ||a||1 > ||a − ij||1, which enables us to apply the inductive
assumption.

This means, by the correspondence of M and I that each element of M is a
product of powers of gi

1
1

1 . . . , g
i1m
m , . . . , g

ik1
1 . . . , gi

k
m
m . These elements generate S1 ∩S2

as K−algebra.

While the proposition above may seem almost tautological, it can actually
be used to prove that a large class of subalgebras arising as intersections of two
finitely generated algebras are finitely generated:

Theorem 19. Let S1, S2 ⊆ K[x1, . . . , xn] be subalgebras generated by monomials,
then S1 ∩ S2 is finitely generated.

Proof. At first, we will show that for i = 1, 2 if f ∈ Si, then all monomials
whose sum f belong Si. However, all elements of Si are K−linear combination
of products of powers of its generators. Such products are indeed monomials if
we assume Si is generated by monomials and clearly belong to Si. Our claim
then follows from the uniqueness of expression of a polynomial in K[x1, . . . , xn]
a K−linear combination of monomials − they form a basis of K[x1, . . . , xn] as a
vector space over K.

Suppose that f ∈ S1 ∩ S2 and f = ∑m
i=1 cifi where c1, . . . , cm ∈ K and

f1, . . . , fm are monomials. We know that as f ∈ Si, then f1, . . . , fm ∈ Si for
i = 1, 2. This means that g1, . . . , gm ∈ S1 ∩ S2 and that S1 ∩ S2 is generated by
monomials. The algebra S1 ∩ S2 is generated by all its elements, however, any
such element is a sum of monomials in S1 ∩ S2, thus S1 ∩ S2 is generated by its
monomials.

To prove that S1 ∩ S2 is finitely generated, we use the proposition above.
Let g1, . . . , gm and h1, . . . , hm be monomial generators of S1 and S2 respectively.
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Take M to be the intersection of multiplicative sets M1 and M2 generated by
1, g1, . . . , gm and 1, h1, . . . , hm respectively. Suppose that f ∈ S1 ∩ S2 is a mono-
mial, then f ∈ M1 and f ∈ M2 by uniqueness of expression of elements of
K[x1, . . . , xn] as sums of monomials. Then f ∈ M, thus all monomials in S1 ∩ S2
are in M and M generates generates S1 ∩ S2 as a vector space over K.

Remark. Note that Theorem 19 can be used to prove that finitely generated
algebras K[y, x2y] and K[x, xy] over K have a finitely generated intersection, as
stated at the beginning of this section.

1.5 Examples and local properties
In this section, we will give a partial solution to the problem whether the pull-
back of a diagram of finitely generated algebras is finitely generated, revisit the
motivational examples given at the beginning of this chapter, and investigate lo-
cal properties of pushouts of algebraic sets and algebras arising as pullbacks. To
these ends, we shall employ the tools we developed in all sections before.

Theorem 20. Let A,B,C be finitely generated R−algebras, B is a domain, and
let φ : B → A a ψ : C → A be their homomorphisms, φ is surjective with Kerφ
non-zero. Then the pullback of the corresponding diagram:

B C

A

φ ψ

is finitely generated R−algebra if and only if A is a finitely generated module over
Imψ.

Proof. Let PB and PC be images of the pullback of the diagram P with morphisms
πB, πC under πB, πC respectively. Cleary, as Kerφ is non-zero, PB contains it.
Combining Theorem 11 and Lemma 14, we obtain that PB is finitely generated
R−algebra if and only if A is a finitely generated module over φ(PB) = Imψ, as
φ is onto. Provided that P is a finitely generated R−algebra, PB as its image
needs to be so as well, this gives us that A is a finitely generated module over
Imψ.

See the second remark below for the other implication.

Remark. Retain the notation of the theorem, provided that Kerφ = 0, the pull-
back of the corresponding diagram is finitely generated automatically, since it is
C with morphisms ψ : C → A and id : C → C about which we assume that it is
a finitely generated algebra over R. If P is finitely generated.
Remark. The if part trivially holds even if A is not a domain. Use Lemma
14 to show that B is finitely generated module over PB, the same for C and
PC . By Artin-Tate lemma, PB and PC are finitely generated R−algebras, using
proposition 6, the pullback is also a finitely generated R−algebra. This result
is included as Lemma 15.5.1. in Part 1, Chapter 15 More on algebra in Stacks
project [Stacks project authors, 2018, Tag 00IT].
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Example (Contracting a line in A2
K ; included without proof as Example 3.5 in

Schwede [2004], page 7). Consider this diagram:

K[x, y] K

K[x, y]/(y)
π ι

with ι and π being canonical inclusion and projection, respectively. The pullback
of this diagram is K + (y).

Theorem 20 gives K + (y) is finitely generated K−algebra if and only if
K[x, y] is a finitely generated K + (y)−module. By Lemma 14, this is equivalent
to K[x] ∼= K[x, y]/(y) being finitely generated K + (y)−module, that clearly
does not hold, as K[x] would have to be a finite dimensional vector space over
K ∼= K + (y)/(y).

Therefore K + (y) is not a finitely generated K−algebra and it is impossible
to contract a line in A2

K into a point in the category of algebraic sets over K. △
Remark. We can use the reasoning from the example above also in treating Ex-
ample 3.2 in Temkin and Tyomkin [2016].
Example (Contracting a finite number of points on algebraic varieties over K; a
special case given as Example 3.6 in Schwede [2004], page 7). Let L be a finitely
generated K−algebra, and I an intersection of finitely many maximal ideals of
L. Consider this diagram:

L K

L/I

π ι

with ι and π being canonical inclusion and projection, respectively. The pullback
of this diagram is K + I as in the previous example. This situation can be view
as contracting a finite number of points to a single one.

Suppose m1, . . . ,mn are maximal ideals of L such that I = ⋂n
i=1 mi. However,

as by Theorem 4.19 on page 132 in Eisenbud [1995], K ⊆ L/mi is a finite field
extension, we have by Lemma 14 that L is a finitely generated K + mi−module
for all i. Using Theorem 17 inductively, we get that L is a finitely generated
K+⋂n

i=1 mi−module, thus K+ I is a finitely generated K−algebra by the Artin-
Tate lemma. △
Example (Contracting two points on A1

C results in a singularity). Let k1, k2 ∈ K
be two its distinct elements. We know that K[x] is a principal ideal domain,
so the intersection of maximal ideals (x − k1), (x − k2) ⊆ K[x] is equal to I =
((x− k1)(x− k2)) ⊆ K[x].

In the penultimate example of this section, we show that K + I is generated
by (x− k1)(x− k2) and x(x− k1)(x− k2) as an algebra over K.

If we were to identify points −1 and 1 on in the complex A1
R, we get a plane

curve R[y, z]/(y3 − z2 + y2) as (x2 − 1)3 − (x(x2 − 1))2 + (x2 − 1)2 = 0 and we put
y = x(x− 1) and z = x2(x− 1).

Observing the real locus of the resulting plane curve R[y, z]/(y3 − z2 + y2) we
see that has a singularity of order 2 at the origin. △
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For the rest of this section, we will concern ourselves with singularities arising
from forming pushouts of algebraic sets or, more generally, from forming pullbacks
of finitely generated subalgebras. At first, we discuss local properties in a classical
case of pullback of two surjective homomorphisms which corresponds to gluing
two algebraic sets via their common closed subset. Then we prove a result that
in special case shows that if we glue points on an algebraic variety, we get a
singularity at least of order of dimension of the variety times the number of
identified points, speaking in rather loose terms. This section is concluded by a
discussion on finer properties of algebras and singularities arising in some cases
of gluing points in affine spaces.

Proposition 21. Let us have two surjective homomorphisms of finitely generated
R−algebras π : B → A and ϱ : C → A. Then the pullback of the corresponding
diagram P = B ×A C = {(b, c); π(b) = ϱ(c), b ∈ B, c ∈ C} together with maps
τ1 : B×AC → B and τ2 : B×AC → C is a finitely generated R−algebra. Suppose
that m ⊆ B ×A C is a maximal ideal

1. if (Kerπ, 0) ⊆ m and (0,Ker ϱ) ⊈ m, then:

mm/m
2
m

∼= τ2(m)τ2(m)/τ2(m)2
τ2(m),

2. if (Kerπ, 0) ⊈ m and (0,Ker ϱ) ⊆ m, then:

mm/m
2
m

∼= τ1(m)τ1(m)/τ1(m)2
τ1(m),

3. if (Kerπ, 0), (0,Ker ϱ) ⊆ m, then we have that:

mm/m
2
m

∼= (Ker π, 0)m + m2
m/m

2
m ⊕ τ2(m)τ2(m)/τ2(m)2

τ2(m)

and
mm/m

2
m

∼= (0,Ker ϱ)m + m2
m/m

2
m ⊕ τ1(m)τ1(m)/τ1(m)2

τ1(m),

as vector spaces over P/m ∼= B/τ1(m) a P/m ∼= C/τ2(m).

Proof. The fact that the pullback P is finitely generated follows immediately from
Proposition 6, as Im π ∩ Im ϱ = A and so π−1(Im π ∩ Im ϱ) = B and ϱ−1(Im π ∩
Im ϱ) = C which we assume are finitely generated algebras over R.

Since (Ker π, 0) · (0,Ker ϱ) = {0} and m ⊆ B×AC is, a fortiori, a prime ideal,
we get that (Kerπ, 0) ⊆ m or (Ker π, 0) ⊆ m. This shows that our proposition is
correctly formulated.

At first, let us deal with 1. Suppose that we have (Kerπ, 0) ⊆ m and
(0,Ker ϱ) ⊈ m. Localise P in m via u : P → Pm. There is an element of (0,Ker ϱ)
that becomes invertible as (0,Ker ϱ) ⊈ m, this gives us that (Kerπ, 0) ⊆ Keru.
Since τ2 is a onto and projection with kernel (Ker π, 0), τ2(m) is a maximal ideal of
C. By the homomorphism theorem there is a unique homomorphism u : C → Pm,
such that u = u′τ2. However, we observe that u′ is the localisation of C in τ2(m).
From that we deduce that mm/m

2
m

∼= τ2(m)τ2(m)/τ2(m)2
τ2(m). Part 2. can be proven

along the same lines.
Now let us assume that (Kerπ, 0), (0,Ker ϱ) ⊆ m. It follows that τ1(m) is a

maximal ideal of B and τ2(m) is a maximal ideal of C, since both τ1 and τ2 are
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onto. Using the third isomorphism theorem, we show that P/m ∼= B/τ1(m) and
P/m ∼= C/τ2(m). We can write:

(mm/m
2
m)/((Ker π, 0)m + m2

m/m
2
m) ∼= mm/(Ker π, 0)m + m2

m
∼=

(m/(Ker π, 0) + m2)m ∼= [(m/(Kerπ, 0))/(m2 + (Ker π, 0)/(Kerπ, 0))]m.
However, we have m2 + (Kerπ, 0)/(Kerπ, 0) ∼= m2/m2 ∩ (Kerπ, 0). Now, let us
show that (m/(Kerπ, 0))2 ∼= m2/m2 ∩ (Kerπ, 0). Because:

(a+ (Ker π, 0))(b+ (Ker π, 0)) = ab+ (Ker π, 0)

for all a, b ∈ m, we know to (m/(Ker π, 0))2 is an image of m2 under the projection
with kernel (Kerπ, 0) which is m2/m2 ∩ (Kerπ, 0). Putting it all together, we get
that:

mm/(Kerπ, 0)m + m2
m

∼= τ2(m)m/τ2(m)2
m

∼= τ2(m)τ2(m)/τ2(m)2
τ2(m),

the last isomorphism is due to τ2 being surjective. We already have:

mm/m
2
m

∼= (Kerπ, 0)m + m2
m/m

2
m ⊕ τ2(m)τ2(m)/τ2(m)2

τ2(m)

as vector spaces over P/m ∼= C/τ2(m) which is what we wanted to prove. The
second part can be proven it the same way.

Proposition 22. Suppose B is an integral domain finitely generated as an algebra
over R, S ⊆ B is its subalgebra and I ⊆ S is an ideal of B which can be written
as an intersection of prime ideals, I = ⋂

a∈A pa. Assume, moreover, that h1 +
I, . . . , hk + I form a free basis of an S/I−module B/I. Let {i1, . . . , in} ⊆ I
be linearly independent in papa

/pa
2
pa

for each a ∈ A, then {iℓh1, . . . , iℓhk; ℓ =
1, . . . , n} is linearly independent in II/I

2
I , we think of II as an ideal of SI .

Proof. Assume there exist coefficients sℓj + II ∈ SI/II , without loss of generality
sℓj ∈ S, such that for all 1 ≤ ℓ ≤ n and 1 ≤ j ≤ k we have that ∑j,ℓ iℓhjsℓj ∈
I2
I . Taking sℓj ∈ S can be justified by thinking about them as elements of the

respective quotient field Q(B), we can then cancel out all their denominators by
multiplying with elements of S − I under which is S closed.

Denote h′
ℓ = ∑

j hjsℓj for all ℓ. Since we assume that I ⊆ pa for all a ∈ A, it
follows that I2

I ⊆ pa
2
pa

and hence i1h′
1 +· · ·+inh′

n ∈ pa
2
pa

for every a ∈ A. However,
we supposed furthermore that i1 + pa

2
pa
, . . . , in + pa

2
pa

are linearly independent,
therefore for every 1 ≤ ℓ ≤ n the element h′

ℓ has to be in papa
. Moreover as each

h′
ℓ ∈ B, then h′

ℓ ∈ pa for all 1 ≤ ℓ ≤ n and a ∈ A.
This means that h′

ℓ ∈ ⋂
a∈A pa = I for every 1 ≤ ℓ ≤ n. Take any such ℓ,

we’ve shown that h′
ℓ + I = 0 + I, let us expand that to ∑k

j=1 hjsj + I = 0 + I.
Since we supposed that h1, . . . , hℓ form a free basis of B/I as an S/I−module,
then all sℓj + I need to be zero for all possible ℓ and j. Therefore, the set
{iℓh1, . . . , iℓhk; ℓ = 1, . . . , n} is linearly independent in II/I

2
I .

Remark. The proposition above can conveniently applied in the case where B
is a coordinate ring of a K−algebraic variety X, suppose furthermore that K is
algebraically closed, and S = K+I where I is the ideal of B such that I = ⋂n

i=1 mi

for some maximal ideals m1, . . . ,mn of B. Then K + I can be thought of as a
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coordinate ring of an algebraic variety X with finitely many points corresponding
to the ideals m1, . . . ,mn are identified.

We can observe that B/I is a finite dimensional vector space as in the second
example of this section, hence free module, over S/I ∼= K and that I is maximal,
thus prime, ideal of K + I. Let us now suppose that mi = (x1 − a1i, . . . , xm −
ami)/I(X) for all 1 ≤ i ≤ n with all aji ∈ K. For simplicity, let us also assume
that aji ̸= aj′i iff j ̸= j′. This guarantees that xj − aji /∈ mi′/I(X) for i′ ̸= i.

It is clear that (x1 − a1i) + m2
imi
, . . . , (xm − ami) + m2

imi
generate mimi

/m2
imi

for each 1 ≤ i ≤ n. Thus, there is a set of indices Ji such that (x1 − aji
1i

) +
m2
imi
, . . . , (xji

i
−aji

i i
)+m2

imi
form a basis of mimi

/m2
imi
. Without loss of generality,

assume that |J1| = k is the smallest of such indices. We observe that (xj1
1

−
aj1

11)(xj2
1
−aj2

12) . . . (xjn
1

−ajn
1 n

)+I(X), . . . , (xj1
k
−aj1

k
1)(xj2

k
−aj2

k
2) . . . (xjn

k
−ajn

k
n)+

I(X) belong to m1 . . .mn/I(X) ⊆ I.
Now, notice that these k elements of are linearly independent in all mimi

/m2
imi

for each 1 ≤ i ≤ n, since (xj1
ℓ

− aj1
ℓ

1)(xj2
ℓ

− aj2
ℓ

2) . . . (xjn
ℓ

− ajn
ℓ
n)+ and (xji

ℓ
− aji

ℓ
i)

span the same subspace of mimi
/m2

imi
. This is due to the fact that for all i and j

we have that xj − aji /∈ mi′/I(X) for i′ ̸= i.
By the proposition above, the SI/II−dimension of II/I2

I in SI is at least
k dimK B/I, so the smallest dimension of a tangent space among identified points
(a11, . . . , a1m), . . . , (an1, . . . , anm) times the number of points which is equal to
dimK B/I. Therefore, the order of the arising singularity is proportional to the
number of identified points.

The singularities arising from gluing finitely many points on affine algebraic
sets can be studied even more closely by looking at rings of formal power series
in them. In treating the following two examples, we will assume that charK = 0.
Example (Gluing finitely many points on A1

K). Let a1, . . . , an ∈ K be distinct,
then the ideal I defining {a1, . . . , an} is generated by φ0(x) = (x−a1) . . . (x−an).
We will try to describe K + I.

We know that K + I is a finitely generated algebra over K. Now, we will find
its generators and relations between them. We say that K + I is generated by
φ0(x), . . . , φn−1(x) where φi+1(x) = xφi(x) for 0 ≤ i ≤ n − 2. The proof this
claim goes by induction on degree of the non-zero polynomial f ∈ S, it suffices
to assume that f ∈ I.

As a1, . . . , an ∈ K are distinct, there are no polynomials of degree less than
n in I and there is, up to a multiple by an element of K, only one polynomial of
degree n, φ0(x).

Let f ∈ I be of degree m > n and we know that all polynomials of smaller
degree belong to K[φ0(x), . . . , φn−1(x)]. Write m = kn + r, where 1 ≤ k and
0 ≤ r ≤ n − 1 and denote ℓ the leading coefficient of f. Then f − ℓφk−1

0 φr is
of strictly smaller degree. We can conclude the proof by pointing out that both
f − ℓφk−1

0 φr and ℓφk−1
0 φr belong to K[φ0(x), . . . , φn−1(x)].

We know that K + I ∼= K[x0, . . . , xn−1]/J with J an ideal of K[x0, . . . , xn−1]
by xi ↦→ φi for 0 ≤ i ≤ n − 1. We will show that J is generated by two types of
relations: xixj = xkxℓ for all i+ j = k + ℓ and xixjxk = ∑n

ℓ=0 bn−ℓ[n− ℓ]2 where
i + j + k ≤ n − 2, bn−ℓ are coefficients of φ0 and [n − ℓ]2 denotes a product of
xaxb such that a+ b = i+ j + k − ℓ.
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Our strategy will be to proceed by induction of degree of an element of J
divide an element of J into a sum of two elements, one whose image under the
xi ↦→ φi is a sum of monomials of degrees high enough so that they need to
annihilate each other and that elements belongs to J , thus the other elements
belongs to J as well and we will reduce its degree by applying the relations of the
second type.

At first, we need prove that if i1 + · · · + im = j1 + · · · + jm, then xi1 . . . xim −
xj1 . . . xjm ∈ J , by induction on m. The claim clearly holds for degrees 1 by
definition and 2 it is given by relations of the first type. Assume the degree is
k ≥ 1 and the claim holds for all smaller degrees. Without loss of generality,
suppose that i1 ≥ · · · ≥ ik and j1 ≥ · · · ≥ jk and i1 ≥ j1. If i1 = j1, the claim
holds by inductive assumption. If i1 > j1, then j1 ≥ ik. Otherwise, we would
have i1 + · · · + ik ≥ i1 + ik + · · · + ik > j1 + · · · + j1 ≥ j1 + · · · + jk which yields a
contradiction. This gives us that i1 − j1 ≤ i1 − ik or ik + (i1 − j1) ≤ i1. We can
therefore rewrite xi1xik = xi1−(i1−j1)xik+(i1−j1) using one of the relations of the
first type. After this, both monomials contain xj1 and we can use the inductive
assumption, hence completing the proof.

Let F (x0, . . . , xn−1) ∈ J be a homogenous relation of degree m. Observe
that it can be rewritten as a sum of homogenous relations of the same degree
F (x0, . . . , xn−1) = ∑m(n−1)

i=0 Fi(x0, . . . , xn−1) where Fi(x0, . . . , xn−1) is a K-linear
combination of monomials xj1 . . . xjm where i = j1+· · ·+jm and whose coefficients
add up to zero. Inductively, using the claim right above, we can show that all
Fi(x0, . . . , xn−1) ∈ J, and so F (x0, . . . , xn−1) ∈ J.

At this point, suppose that F (x0, . . . , xn−1) ∈ J is a general relation of de-
gree m. Denote Fm(x0, . . . , xn−1) the m−th homogenous part of F . Now, let
F ′
m(x0, . . . , xn−1) be a sum of monomials xi1 . . . xim of Fm such that i1 + · · ·+im >

(m − 2)(n − 1). These are monomials for which we cannot use the relations of
the second type to lower their degree. We show that F ′

m(x0, . . . , xn−1) ∈ J . Let
F ′′
m(x0, . . . , xn−1) denote the part of F ′

m made of monomials with the highest sum
of indices, i1 + · · · + im for xi1 . . . xim . Those monomials map to polynomials of
degree i1 + · · ·+im+mn under xi ↦→ φi, by virtue of i1 + · · ·+im being the highest
among them, monomials in the other part of F ′

m(x0, . . . , xn−1) map to polyno-
mials of strictly smaller degree. For any other monomial that is part of F , the
degree of polynomial to which it is mapped is at most (m−1)(n−1)+(m−1)n =
(m− 1)(2n− 1) as it is of degree at most m− 1. However, our assumption that
i1+· · ·+im > (m−2)(n−1) gives us that 1+· · ·+im+mn > (m−2)(n−1)+mn =
(m − 2)(n − 1) + m(n − 1) + m = (m − 1)(2n − 2) + m = (m − 1)(2n − 1) + 1.
As the image of F under xi ↦→ φi and no other parts of it map to elements of
such high degree, the image of F ′′

m needs to be zero, thus the sum of coefficients
in F ′′

m is zero. This allows us to use relations xi1 . . . xim − xj1 . . . xjm ∈ J for
i1 + · · · + im = j1 + · · · + jm to prove that F ′′

m ∈ J , indeed. We can replace F ∈ J
by F − F ′′

m ∈ J and proceed inductively.
Let xi1 . . . xim be a monomial of degree m such that i1 + · · ·+im ≤ (m−2)(n−

1). If i1 + · · · + im = (m− 2)(n− 1), we can rewrite xi1 . . . xim to xm−2
n−1 x

2
0 and use

the relation of the second type on to rewrite xn−1x
2
0 to a sum of monomials of

degree two, hence lowering the degree. Suppose that i1 + · · · + im = k(n− 1) + r
where r < n − 1 and k ≤ m − 3. Then, xi1 . . . xim − xkn−1xrx

m−k−1
0 ∈ J and

r ≤ n − 2, so xrx2
0 can be rewritten as a sum of monomials of degree two by a
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rule of the second type. Therefore Fm − F ′
m can be rewritten as polynomial of

degree m− 1 at most. Using the inductive assumption, we conclude our proof.
Let us now examine two specific cases, glueing two and three points on A2

K .
We shall work under the assumption that charK = 0 and that K is algebraically
closed. We will glue roots of unity in both cases.

Identifying roots of x2 − 1 on A1
K , we get a variety V2 with the following

coordinate ring:
K[x0, x1]/(x3

0 − x2
1 + x2

0)
with x3

0 − x2
1 + x2

0 being an instance of the rule of the second type. To examine
the resulting singularity at 0 closely, we move to the ring of formal power series
of this variety at 0. We get K[[x0, x1]]/(x2

0(1 + x0) − x2
1). However, we can take

u ∈ K[[x0, x1]] a formal square root of 1 + x0 that is also invertible. The ring
K[[x0, x1]]/(x3

0 − x2
1 + x2

0) is thus isomorphic to:

K[[y0, y1]]/((y0 − y1)(y0 + y1)).

This means that the resulting singularity locally looks like a pair of intersecting
lines.

Identifying roots of x3 − 1 on A1
K , we get a variety V3 with the following

coordinate ring:

K[x0, x1, x2]/(x0x2 − x2
1, x

3
0 − x1x2 + x2

0, x
2
0x1 − x2

2 + x0x1)

by using our results above. The first relation is of the first type, the latter two are
of the second type. As above, we will examine the corresponding ring of formal
power series. Rewrite the latter two relations as x2

0(1+x0)−x1x2 and x0x1(1+x0)−
x2

2.However, we can find v ∈ K[[x0, x1, x2]] such that v3 = 1+x0, furthermore, this
v is invertible. Rewrite the relations as x0(x2v

−2)−(x1v
−1)2, x2

0 −(x1v
−1)(x2v

−2),
and x0(x1v

−1) − (x2v
−2)2. This means that K[[x0, x1, x2]]/(x0x2 −x2

1, x
3
0 −x1x2 +

x2
0, x

2
0x1 − x2

2 + x0x1) is isomorphic to:

K[[y0, y1, y2]]/(y2
0 − y1y2, y

2
1 − y0y2, y

2
2 − y0y1).

Take K[y0, y1, y2]/(y2
0 − y1y2, y

2
1 − y0y2, y

2
2 − y0y1) and set y1 = a for non zero

a ∈ K. This results in a2 = y1y2, y
2
1 = ay2, and y2

2 = ay1. Take y2 = a2

y1
, then both

remaining equations can be written as y3
1 = a3. Denote ξ1, ξ2, ξ3 three distinct

roots of x3 − 1 in K where ξ1 = 1 and ξ1 and ξ2 are roots of x2 − x+ 1. We have
three solutions (a, a, a), (a, ξ1a, ξ2a), and (a, ξ2a, ξ1a). Choosing y1 = 0, we get
y1 = y2 = 0. This means that K[y0, y1, y2]/(y2

0 − y1y2, y
2
1 − y0y2, y

2
2 − y0y1) is the

coordinate ring of three lines which span K3 as a vector space3.
The singularity of V3 at 0 hence looks locally as three distinct lines intersecting

in a single point. △
Example (Gluing two points on An

K). Let a1, a2 ∈ Kn be two distinct points.
Because there always exists a linear bijection of Kn → Kn that maps any
pair of distinct points to any other pair of distinct points, we can assume that
a1 = (−1, 0, . . . , 0) and a2 = (1, 0, . . . , 0). We claim that the ideal I correspond-
ing to the algebraic set {a1, a2} is equal ((x1 − 1)(x1 + 1), x2, . . . , xn). Clearly,

3Vectors (1, 1, 1), (1, ξ1, ξ2), and (1, ξ2, ξ1) are linearly independent by regularity of Vander-
monde matrix, since ξ2

1 = ξ2 and ξ2
2 = ξ1.
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I = (x1 − 1, x2, . . . , xn) ∩ (x1 + 1, x2, . . . , xn) and ((x1 − 1)(x1 + 1), x2, . . . , xn) is
below this intersection. Take f ∈ (x1 −1, x2, . . . , xn)∩ (x1 +1, x2, . . . , xn), clearly
f(x1, 0, . . . , 0) is in the intersection as well as it is zero on {a1, a2}. The polyno-
mial f(x1, . . . , xn) − f(x1, 0, . . . , 0) ∈ (x2, . . . , xn) as it is zero on the x1−axis.
Since f(x1, 0, . . . , 0) is in one variable and zero for −1, 1, then f(x1, 0, . . . , 0) ∈
((x1 − 1)(x1 + 1))K[x1] where K[x1] is naturally a subring of K[x1, . . . , xn]. Then
clearly f(x1, 0, . . . , 0) ∈ ((x1 −1)(x1 +1)) and f ∈ ((x1 −1)(x1 +1))+(x2, . . . , xn)
which is what we wanted to prove.

We will now show that as an K−algebra K + I is generated by the following
elements:

x2
1 − 1, x1(x2

1 − 1), x2, x1x2, . . . , xn, x1xn.

Let f ∈ I be of degree one, then f = f − f(x1, 0, . . . , 0) as f(x1, 0, . . . , 0) is
of degree at least two. Therefore, f is a K−linear combination of x2, . . . , xn.
Suppose f ∈ I is of degree d ≥ 2 or more, then f = fd + f ′ where fd is the
homogenous part of degree d and deg f ′ ≤ d − 1. Let xc1

1 . . . xcn
n be a monomial

where c1 + · · · + cn = d and c1, . . . , cn ≥ 0. If c1 = 1 then there is 2 ≤ j ≤ n such
that cj ≥ 1, then xc1

1 . . . xcn
n = (x1xj)xc2

2 . . . x
cj−1
j . . . xcn

n which clearly is generated
by our elements. If c1 ≥ 2 then there are a, b non-negative integers such that
2a+ 3b = c1, then (x2

1 − 1)a(x1(x2
1 − 1))bxc2

2 . . . xcn
n is a product of our generators

and xc1
1 . . . xcn

n − (x2
1 − 1)a(x1(x2

1 − 1))bxc2
2 . . . xcn

n is of degree at most d− 1. After
this discussion, we can prove that f is in K−algebra generated by our elements
using a simple induction on its degree, analogously as above.

Let us have a homomorphism ψ : K[y1, . . . , yn, z1, . . . , zn] → K + I such that
for y1 ↦→ x2

1 − 1, z1 ↦→ x1(x2
1 − 1), and yi ↦→ xi, zi ↦→ x1xi for all 2 ≤ i ≤ n.

We claim that the kernel of this homomorphism is generated by the following
relations yiyjy1 − zizj − yiyj and yizj − yjzi for all 1 ≤ i, j ≤ n.

We observe that no non-trivial relations of degree one are satisfied. Moreover,
all relations of degree two need to be homogenous. Any relation F of degree 2 can
be written as F = F2 − F1 where F2 is the homogenous part of degree two and
F1 is the homogenous part of degree one. After plugging in, we get the equation
ψ(F2) = ψ(F1) in K+I. We infer that F2 cannot contain a multiple of monomials
y2

1, yiz1, zizj, y1zi, 1 ≤ i, j ≤ n, as after applying ψ they are of degree at least 4,
however, degψ(F1) ≤ 3. It also cannot contain multiples of monomials yiyj, yizj
for 2 ≤ i, j ≤ n as they contain two variables aside of x1 which does not hold for
any of the generators.

This means that F1 = 0. We show that F2 = ∑
i<j ci,j(yizj−yjzi) by discussion

of possible cases. Suppose that F2 contains a square y2
i or z2

i , this cannot be the
case since a square of each our generator can be written as a product of two
generators in only one way. We observe the same about yiyj and zizj. This leaves
us with yizj for 1 ≤ i, j ≤ n, the situation when i = j is trivial. We notice that
ψ(yizj) = ψ(yjzi) and that the product ψ(yizj) can be expressed only in these
two ways as a product of two of our generators. Thus if F2 contains cyizj, i < k,
it needs to contain c(yizj − yjzi) for some c ∈ K.

Now, let us have a relation F of degree d ≥ 3. We will proceed similarly as
in the example above, we will isolate Fd, the homogenous part of F of degree
d, if possible reduce degree using the prescribed relations and show that the rest
needs to cancel out itself. We recognise three types of monomials whose K−linear
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combination is Fd − at first there are monomials which do not contain y1 or z1,
then there are monomials that contain y1 or z1 but at most two y’s, and finally
monomials which contain y1 or z1 and contain at least three y’s.

Monomials of the third type can be rewritten using relations of type yizj−yjzi
to contain yiyjy1 which in turn can be transformed by the other relations of type
yiyjy1 − zizj − yiyj to something of degree d− 1.

Monomials of the second type contain at most two y’s and thus at least d− 2
z’s. We notice that if we have a product P of m of our generators of K+ I which
contains m′ ≥ m − 2 generators of the second type, then any other product Q
of at most m of our generators of K + I having the same homogenous part in
the highest degree as P has to contain at least m′ of second type generators and
actually P = Q. We will show that F ′

d is in the kernel. We prove this by induction
on m. It is clear for m = 2. In the induction step, it suffices to prove that such
P and Q, where P is a product of m + 1 generators, have a common factor of a
second type generator. If P is a polynomial in x1, this follows trivially, if P as a
product contains x1xi for 2 ≤ i ≤ n, then Q as a polynomial is divisible by x1xi
as Q has the same same homogenous part in the highest degree as P and is a
product of our generators of K + I.

After having shown this, we can easily deduce that monomials of the second
type cancel themselves simply using relations of type yizj − yjzi as they are only
different realisations of products from the claim above.

Monomials of the first type can be described by a, the number of z’s in them,
and (ai)ni=2 where ai are numbers of occurrences of yi and zi in the monomial for
2 ≤ i ≤ n. Using relations of type yizj − yjzi, one can transform two monomials
of the first type an with a fixed a’s and (ai)ni=2’s to a common form and they need
to cancel themselves out.

Therefore, we write Fd = Fd,1+Fd,2+Fd,3 as sum of monomials of first, second,
and third type, where Fd,1, Fd,2 are in the kernel of ψ and there is G in the kernel
of ψ such that Fd,3 − G is of degree at most d − 1. Using our relations, we have
thus replaced F by F ′ of strictly smaller degree. An inductive argument gives us
that the kernel of ψ is generated by the following relations yiyjy1 − zizj − yiyj
and yizj − yjzi for all 1 ≤ i, j ≤ n.

Identifying (−1, 0, . . . , 0) and (1, 0, . . . , 0) in Kn we get a variety Wn with
coordinate ring:

K[y1, . . . , yn, z1, . . . , zn]/(yiyjy1 − zizj − yiyj, yizj − yjzi for 1 ≤ i, j ≤ n).

As above, we will examine the ring of formal power series, we have:

K[[y1, . . . , yn, z1, . . . , zn]]/(yiyjy1 − zizj − yiyj, yizj − yjzi for 1 ≤ i, j ≤ n)

but taking u−1yi for each 1 ≤ i ≤ n where u is a square root of 1 − x1 which is
invertible in K[[y1, . . . , yn, z1, . . . , zn]] we get the following isomorphic ring:

K[[y′
1, . . . , y

′
n, z1, . . . , zn]]/(y′

iy
′
j − zizj, y

′
izj − y′

jzi for 1 ≤ i, j ≤ n).

Thus around origin Wn looks analytically same as the variety W ′
n with a coordi-

nate ring:

K[y′
1, . . . , y

′
n, z1, . . . , zn]/(y′

iy
′
j − zizj, y

′
izj − y′

jzi for 1 ≤ i, j ≤ n).
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Our equations prescribe that (y′
i− zi)(y′

i+ zi) = 0 for all 1 ≤ i ≤ n. Suppose that
a point with non-zero y′

i, y
′
j and zi = y′

i and zj = −y′
j but we need to have y′

iy
′
j −

zizj = 2y′
iy

′
j by another equation, we arrive to a contradiction. This means that

W ′
n looks as a pair of linear subspaces of dimension n intersecting at the origin.

These linear subspaces are (y′
1, . . . , y

′
n, y

′
1, . . . , y

′
n) and y′

1, . . . , y
′
n,−y′

1, . . . ,−y′
n) for

y′
1, . . . , y

′
n ∈ K. △
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2. Pushouts of affine schemes
In this chapter, we will focus on the existence of pushouts of affine schemes in
the category of schemes. We will follow the the main reference articles Schwede
[2004] and Ferrand [2003] and look for the possible pushout in the category of
ringed spaces which is cocomplete. We generalise their results and show that the
existence of pushouts of affine schemes in the category of schemes depends on the
existence of pushouts of diagrams of affine schemes corresponding to inclusions of
two subrings of a ring. For such diagrams, the approach of trying to prove that
the pushout of a diagram in the category of ringed spaces is a scheme, moreover
an affine scheme, will prove to be overly restrictive. We thus conclude this chapter
by moving beyond it: we give a sufficient condition for a scheme to be a pushout
of a diagram schemes and apply it to our case of interest − diagrams of affine
schemes.

2.1 Basics of ringed spaces and schemes
At first, we recall the basic notions of the theory of ringed spaces and schemes
from Chapters 2 and 3 of Görtz and Wedhorn [2010].

We begin by stating the definition of Zariski topology on prime spectra of
commutative rings. It can be viewed as a vast generalisation of Zariski topology
on affine algebraic sets over fields. Indeed, these two variants of Zariski topology
share many key properties and, practically, coincide in case of algebraically closed
fields.

Definition 23 (Spectrum of a ring defined as on page 41 in Görtz and Wedhorn
[2010]). Let A be a ring. We set SpecA to be the set of all prime ideals of A. For
a set I ⊆ A, we set V (I) = {p ∈ SpecA : I ⊆ p}.

Lemma 24 (Lemma 2.1. on page 41 in Görtz and Wedhorn [2010]). The map
I ↦→ V (I) is inclusion-reversing map from ideals of A to subsets of SpecA1 and
also

1. V (0) = SpecA and V (1) = ∅,

2. V
(⋃

j∈J Ij
)

= V
(∑

j∈J Ij
)

= ⋂
j∈J V (Ij),

3. for I, J ideals V (I ∩ J) = V (IJ) = V (I) ∪ V (J).

Definition 25 (Defintion 2.2 on page 41 in Görtz and Wedhorn [2010]). Let A
be a ring. The set SpecA of all prime ideals of A with the topology whose closed
sets are the sets V (I), where I runs through the set of ideals of A, is called the
prime spectrum of A or simply the spectrum of A. The topology thus defined is
called the Zariski topology on SpecA.

Remark. Open sets in Zariski topology are, of course, of form SpecA− V (I) for
I and ideal. We define principal open sets as complements of principal ideals

1Clearly V (I) = V ((I)A) where (I)A is the ideal generated by I in A, so we can without
loss of generality assume to work only with ideals.
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D(f) = SpecA− V (f) for f ∈ A. Note that we abuse the notation a little bit by
writing V (f) instead of V ({f}). Principal open sets D(f) for f ∈ A form a basis
of the topology on SpecA, see Proposition 2.5 on page 43 in Görtz and Wedhorn
[2010].

Definition 26 (I(−) defined as on page 42 in Görtz and Wedhorn [2010]). Let
A be a ring and Y ⊆ SpecA be a subset, we define:

I(Y ) =
⋂
p∈Y

p.

Proposition 27 (Part of Proposition 2.3. on page 42 in Görtz and Wedhorn
[2010]). Let A be a ring, J ⊆ A an ideal, and Y a subset of SpecA, then

1.
√
I(Y ) = I(Y ),

2. I(V (J)) =
√
J and V (I(Y )) is the closure of Y in SpecA with Zariski

topology.

Definition 28 (As defined on page 44 in Görtz and Wedhorn [2010]). A ↦→
SpecA defines a contravariant functor from the category of rings to the category
of topological spaces. Let φ : A → B be a homomorphism of rings. If q is
a prime ideal of B, φ−1(q) is a prime ideal of A. Therefore we obtain a map
aφ : SpecB → SpecA such that q ↦→ φ−1(q).

It turns out that there are natural maps of spectra continuous with respect
to Zariski topology coming from homomorphisms of rings. These maps neatly
correspond to polynomial maps between affine algebraic sets.

Proposition 29 (Part Proposition 2.10. and ensuing remarks on page 44 in Görtz
and Wedhorn [2010]). Let A be a ring and φ : A → B be a ring homomorphism,
then for any M subset of A we have that aφ−1(V (M)) = V (φ(M)), hence aφ is
continuous with respect to Zariski topologies on SpecA and SpecB.

While spectra of commutative rings share many properties with affine alge-
braic sets, it requires much more effort to equip spectra with an additional struc-
ture of functions over its open sets. For this end, we need to develop sophisticated
machinery of sheafs.

Using sheaf, we will be able to define ringed spaces which are topological spaces
with functions that respect the topology of the underlying space and schemes
which are ringed spaces that locally look like affine schemes, speaking in loose
terms.

Definition 30 (Modified Definition 2.17. on page 47 in Görtz and Wedhorn
[2010]). Let X be a topological space. A presheaf of rings F on X consists of
the following data: a ring F(U) (or Γ(U,F)) for every U ⊆ X open, and a ring
homomorphism resVU : F(V ) → F(U) for each U ⊆ V ⊆ X open. The data need
to satisfy resUU = idU for each U ⊆ X open and resWU = resVU ◦ resWV for each
U ⊆ V ⊆ W open.

Remark. For s ∈ F(V ) and U ⊆ V , we will sometimes write simply s|U for
resVU (s).
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Definition 31 (Modified Definition 2.18. on page 48 in Görtz and Wedhorn
[2010]). Let X be a topological space. A presheaf of rings F on X is a sheaf if it
satisfies for all U and all coverings (Ui)i∈I as above the following condition (sheaf
property or axiom): the diagram

F(U) ∏
i∈I F(Ui)

∏
(i,j)∈I×I F(Ui ∩ Uj)

ρ σ

σ′

is exact. This means that the map ρ is injective and that its image is the set
of elements (si)i∈I ∈ ∏

i∈I F(Ui) such that σ((si)i∈I) = σ′((si)i∈I), where σ :
(si)i∈I ↦→ (si|Ui∩Uj

)i,j and σ′ : (si)i∈I ↦→ (sj|Ui∩Uj
)i,j.

Remark. If we know the value F(U) of a sheaf on every element U of some basis
B of the topology on X, we can use the sheaf property to determine F(V ) on an
arbitrary open. This is made precise in the discussion after Examples 2.19. on
page 49 in Görtz and Wedhorn [2010].

Definition 32 (Definition 2.21. and preceding remarks on page 50 in Görtz and
Wedhorn [2010]). Let X be a topological space, F be a presheaf on X, and let
x ∈ X be a point. The system (F(U), (resVU )U⊆V ) which is indexed by the set of
open subsets U ⊆ X with x ∈ U , ordered by containment, is a filtered inductive
system. Then the inductive limit:

Fx = lim
−→
x∈U

F(U)

is called the stalk of F in x.

Definition 33 (Modified Definition 2.29. on page 55 in Görtz and Wedhorn
[2010]). A ringed space is a pair (X,OX), where X is a topological space and OX

is a sheaf of rings on X.
If (X,OX) and (Y,OY ) are ringed spaces, we define a morphism of ringed

spaces (X,OX) → (Y,OY ) as a pair (f, f ♭), where f : X → Y is a continu-
ous map and where f ♭ is a collection of ring homomorphisms f ♭U : Γ(U,OY ) →
Γ(f−1(U),OX) form each U ⊆ Y open and for every U ⊆ V ⊆ Y open the
following diagram commutes:

Γ(V,OY ) Γ(f−1(V ),OX)

Γ(U,OY ) Γ(f−1(U),OX)

resV
U

f♭
V

resf−1(V )
f−1(U)

f♭
U

A morphism of ringed spaces (f, f ♭) : X → Y induces a morphism on stalks
f ♯x : OY,f(x) → OX,x for all x ∈ X. More details can be found above Definition
2.30. on pages 55 and 56 in Görtz and Wedhorn [2010].

Definition 34 (Definition 2.30. on page 56 in Görtz and Wedhorn [2010]). A
locally ringed space is a ringed space OX,x such that for all x ∈ X the stalk OX,x

is a local ring.
A morphism of locally ringed spaces (X,OX) → (Y,OY ) is is a morphism

of ringed spaces (f, f ♭) such that for all x ∈ X the induced homomorphism on
stalks f ♯x : OY,f(x) → OX,x is a local ring homomorphism that means that the only
maximal ideal of OY,f(x) maps under the only maximal ideal of OX,x.
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With the machinery of sheafs ready, we can equip spectra of commutative
rings with functions.

Proposition 35 (Theorem 2.33. on page 57 and ensuing discussion in Görtz
and Wedhorn [2010]). Let A be a ring, then a presheaf OSpecA on SpecA given
on the basis of principal open sets as OSpecA(D(f)) = Af for all f ∈ A with
restriction morphisms given by universal property of the localisation (more details
on the construction can be found above Theorem 2.33. on pages 57 and 58) is
a sheaf and (SpecA,OSpecA) is a locally ringed space with OSpecA,p = Ap for all
p ∈ SpecA.

Using the additional structure on prime spectra, we get an analogue of one of
the basic results of affine algebraic geometry − contravariant equivalence between
categories of affine algebraic sets and coordinate rings.
Remark. Let φ : A → B be a ring homomorphism gives rise to a morphism of
locally ringed spaces aφ : SpecB → SpecA gives rise where aφ♭D(f) : Af ↦→ Bφ(f)

for all f ∈ A determine aφ♭ on all other U ⊆ SpecA open. For more information,
see remarks after Definition 2.34. on page 59 in Görtz and Wedhorn [2010].

Definition 36 (Definition 2.34. on page 59 in Görtz and Wedhorn [2010]). A
locally ringed space (X,OX) is called affine scheme, if there exists a ring A such
that (X,OX) is isomorphic to (SpecA,OSpecA).

If (f, f ♭) : (X,OX) → (Y,OY ) is a morphism of affine schemes, then it is
uniquely determined by a ring homomorphism f ♭Y : Γ(Y,OY ) → Γ(X,OX), this
gives rise to a contravariant equivalence of the category of rings and the category
of affine schemes. See Theorem 2.35. and the discussion above it on page 59 in
Görtz and Wedhorn [2010].

Definition 37 (Definition 3.1. on page 66 in Görtz and Wedhorn [2010]). A
scheme is a locally ringed space (X,OX) which admits an open covering X =⋃
i∈I Ui such that all locally ringed spaces (Ui,OX |Ui

) are affine schemes. A mor-
phism of schemes is a morphism of locally ringed spaces.

Proposition 38 (Proposition and Definition 3.2. on page 67 in Görtz and Wed-
horn [2010]). Let X be a scheme, and U ⊆ X an open subset. Then the locally
ringed space (U,OX |U) is a scheme. We call U an open subscheme of X. If U
is an affine scheme, then U is called an affine open subscheme. The affine open
subschemes are a basis of the topology.

Having defined all the necessary notions, we can commence our discussion on
pushout of affine schemes. Our starting point is formed by the following definition
and theorem:

Definition 39 (Definition and Proposition 2.1 on page 2 of Schwede [2004]).
Let φ : X → Y and ψ : X → Z be morphisms of ringed spaces. We define
the pushout of these two morphisms as a ringed space W = Y ⊔ Z/ ∼ with
ι1 : Y → W and ι2 : Z → W where the equivalence ∼ is generated by pairs
(φ(z), ψ(z)) for all z ∈ Z. The ring portion of W is given as follows: OW (U)
is the pullback of these two morphisms φ♭

ι−1
1 (U) : OY (ι−1

1 (U)) → OX((ι1φ)−1(U))
and ψ♭

ι−1
2 (U) : OZ(ι−1

2 (U)) → OX((ι2ψ)−1(U)) for all U ⊆ W open.
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Theorem 40 (Théorème 5.1. on page 568 of Ferrand [2003] and Theorem 3.4
on page 7 of Schwede [2004]). Let P = B ×A C together with projections π1 and
π2 be a pullback of the ring homomorphisms B φ−→ A and C ψ−→ A. If φ or ψ is
onto, then SpecP is the pushout of the induced diagram of schemes.
We will try to generalise it by relaxing the assumptions made on φ, ψ that at
least one of them is onto. We begin by generalising one step of proof of Theorem
40 in Schwede [2004].
Proposition 41. Let P = B ×A C together with projections π1 and π2 be a
pullback of the ring homomorphisms B φ−→ A and C

ψ−→ A and S ⊆ P be a
multiplicative subset of P, then S−1P is the pullback of the following diagram of
rings:

π2(S)−1C⏐⏐⏐↓π2(S)−1(ψ)

π1(S)−1B
π1(S)−1(φ)−−−−−−→ (φπ1)(S)−1A

where π1(S)−1(φ) is the unique homomorphism extending:

B
φ−→ A −→ (φπ1)(S)−1A

to a homomorphism from π1(S)−1B to (φπ1)(S)−1A which exists and is unique
due to the universal property of localisation. The map π2(S)−1(ψ) is defined
analogously.
Proof. Suppose there are elements b

π1(s1) ∈ π1(S)−1B and c
π2(s2) ∈ π2(S)−1C such

that b ∈ B, c ∈ C, s1, s2 ∈ S, and

π1(S)−1(φ)
(

b

π1(s1)

)
= π2(S)−1(ψ)

(
c

π2(s2)

)
.

Expanding both sides of the equality above, we get:
φ(b)

φπ1(s1)
= ψ(c)
ψπ2(s2)

.

The resulting equality implies, that there exists s ∈ S such that:

φπ1(s)ψ(c)φπ1(s1) = φπ1(s)φ(b)ψπ2(s2).

Since for all p ∈ P we have φπ1(p) = ψπ2(p), we can rewrite that as:

ψ(π2(s)π2(s1)c) = φ(π1(s)π1(s2)b).

This gives us that (π2(s)π2(s1)c, π1(s)π1(s2)b) ∈ P, as P = B ×A C. Let us
have:

s−1s−1
1 s−1

2 (π2(s)π2(s1)c, π1(s)π1(s2)b) ∈ S−1P.

However this element maps to b
π1(s1) ∈ π1(S)−1B under S−1π1 and c

π2(s2) ∈
π1(S)−1C under S−1π2. These maps are defined analogously to the map π1(S)−1(φ).

Denote Q, ϱ1, ϱ2 the pullback of the localised diagram B
φ−→ A and C

ψ−→ A
together with projections, then we trivially have that ι : S−1P ↪→ Q. Suppose
that q ∈ Q, then π1(S)−1(φ)(ϱ1(q)) = π2(S)−1(ψ)(ϱ2(q)). But we showed that
there is p ∈ S−1P such that S−1π1(p) = ϱ1(q) and S−1π2(p) = ϱ2(q). Therefore
ι(p) = q, homomorphism ι is then onto and, in effect, an isomorphism.
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Remark. This result is included as Lemma 15.5.3. in Part 1, Chapter 15 More
on algebra in Stacks project by [Stacks project authors, 2018, Tag 01Z8].
We can restate the Proposition 41 in a more geometric way in the following
corollary.
Corollary. Let P = B ×A C together with projections π1 and π2 be a pull-
back of the ring homomorphisms B φ−→ A and C

ψ−→ A and f ∈ P . Denote
X = SpecP , Y = SpecB, Z = SpecC, W = SpecA. Then OX(D(f)) to-
gether with maps aπ1

♭
D(f) and aπ2

♭
D(f) is the pullback of the induced diagram

aφ♭D(π1(f)) : OY (D(π1(f))) → OW (D(φπ1(f))) and aψ♭D(π2(f)) : OZ(D(π2(f))) →
OW (D(ψπ2(f))).

2.2 Pushout of the form of an affine scheme
We begin by trying to generalise the main result of Ferrand [2003] and Schwede
[2004], Theorem 40. A straightforward generalisation commands us to look to
the spectrum of the pullback of the induced map of rings when trying to find
the pushout of a diagram of affine schemes in the category of schemes. This is
supported by Proposition 41 which describes, in light of Definition 39, a part of
structure sheaf of the possible pushout that looks like the structure sheaf on the
spectrum of the pullback.

The following theorem will establish that the problem of the existence o f
pushout of diagrams of affine schemes can be reduced to examining special types
of diagrams of affine schemes that correspond two monomorphisms.

Theorem 42. Let P = B×AC together with projections π1 and π2 be a pullback
of the ring homomorphisms B φ−→ A and C

ψ−→ A and U ⊆ SpecP be an open
set. Denote X = SpecP , Y = SpecB, Z = SpecC, W = SpecA. Then the
following are equivalent

1. X is the pushout of the diagram aφ : W → Y and aψ : W → Z in the
category of ringed spaces,

2. X is the pushout of the diagram aφ : W → Y and aψ : W → Z in the
category of topological spaces,

3. Spec Imφ∩ Imψ is the pushout of the induced diagram Spec Imφ → W and
Spec Imψ → W with natural maps in the category of topological spaces.

Proof. (1) ⇔ (2) This equivalence is established by the Theorem 40 and the def-
inition of ringed space and pushout of ringed spaces in Definition 39. We know
that X = SpecP has a basis of principal affine opens SpecPf for all f ∈ P ,
simply localisations in all its elements. The structure sheaf of X is determined
by its sections on basis open sets SpecPf which are Pf . But the Proposition 41
and the Definition 39 of pushout of ringed spaces tell us what the sections should
look just like that.

(2) ⇒ (3) Denote V = Spec Imφ ∩ Imψ. We observe that it is naturally homeo-
morphic to V = VP ((Kerφ,Kerψ)). Clearly:

aπ−1
1 (VP ((Kerφ,Kerψ))) = VB(Kerφ)
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and
aπ−1

2 (VP ((Kerφ,Kerψ))) = VC(Kerψ).

Moreover, it holds that aφ(W ) ⊆ VB(Kerφ) and aψ(W ) ⊆ VC(Kerψ). However,
X being the pushout of the diagram aφ : W → Y and aψ : W → Z means
that V ⊆ X is the pushout of the induced diagram of preimages, in our case
aφ : W → VB(Kerφ) and aψ : W → VC(Kerψ).

(3) ⇒ (2) At first, we expand the diagram:

P

B C

A

π1 π2

φ ψ

into the following commutative diagram of rings:

P

B′ C ′

B Imφ ∩ Imψ C

Imφ Imψ

A

π1 π2

⊆ ⊆

φ
⊆ ⊆

ψ

⊆ ⊆

It is easy to observe that all squares are commutative and that Imπ1 = B′, Imπ2 =
C ′, P, and Imφ ∩ Imψ are pullbacks of their respective diagrams. This diagram
transforms via the contravariant equivalence of categories into this diagram of
schemes, or:

SpecA

Spec Imφ Spec Imψ

SpecB Spec Imφ ∩ Imψ SpecC

SpecB′ SpecC ′

SpecP

i1 i2

p1

j1 j2
p2

q1 k1 k2 q2

r1 r2
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We know that SpecB′, SpecC ′, and SpecP are pushouts of their respective
diagrams by the previous theorem, as ring homomorphisms corresponding to
p1, p2, k1, k2 are surjective. Also, we assume Spec Imφ ∩ Imψ to be the pushout
of the respective diagram.

Suppose there is D with maps d1 : SpecB → D and d2 : SpecC → D such
that d1p1i1 = d2p2i2. Then there exists a unique map e : Spec Imφ ∩ Imψ → D
such that d1p1 = ej1 and d2p2 = ej2. Subsequently, we get unique maps f1 :
SpecB′ → D and f2 : SpecC ′ → D with the property that d1 = f1q1, e = f1k1
and d2 = f2q2, e = f2k2 respectively. Finally, there exists a unique map g :
SpecP → D such that f1 = gr1 and f2 = gr2. The uniqueness of g is provided
by its construction. Another demonstration of this claim proceed by multiple
application of the so called pasting law for pushouts, see The nLab project authors
for details. This abstract non-sense argument gives us that SpecP is the pushout
of the diagram:

SpecA

SpecB SpecC

SpecP

p1i1 p2i2

r1q1 r2q2

in the category of topological spaces.

The Theorem 42 tells us basically that we can restrict ourselves to testing
whether SpecP is the pushout of:

SpecA

SpecB SpecC

SpecP

aφ aψ

aπ1 aπ2

in the category of schemes given that P is the pullback of the corresponding
diagram:

P

B C

A

π1 π2

φ ψ

in the category of commutative rings where all morphisms are monomorphisms
or, without loss of generality, inclusions. Notice that the very same situation was
the most problematic in our discussion in the first chapter, see opening discussion
in Section 1.4. We also know that it suffices to show that SpecP is the pushout
of the diagram only in the category of topological spaces.

We know that if SpecP is the pushout of the diagram, then it has to be
naturally a quotient of SpecB ⊔ SpecC which is naturally homeomorphic to
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SpecB × C, where the quotient map is given by aπ1 on SpecB and by aπ2 on
SpecC or a(π1, π2) : P → B × C.

We will now thus investigate when an inclusion of rings C ⊆ D induces a
quotient map SpecD → SpecC.

Lemma 43. Let C ⊆ D be an extension of rings, we shall denote the inclusion
ι. Then the following are equivalent:

1. Spec(ι) is surjective,

2. for each ideal I of C we have
√

(I)D ∩ C =
√
I,

3. if for any c1, . . . , cn ∈ C there are x1, . . . , xn−1 ∈ D with the property that∑n−1
i=1 xici = cn then cn ∈

√
(c1, . . . , cn−1)C .

Proof. (1) ⇒ (2) Let I then be an ideal of C. We can write its radical as√
I = ⋂

I⊆p∈SpecC p, however for each such p there is a prime q of D lying
over it. Hence, the radical of (ID) is below the intersection of such q. This
intersection, however, does not contain any elements of C not in

√
I. Therefore√

(I)D ∩ C ⊆
√
I, the other inclusion being obvious.

(2) ⇒ (3) Let there be x1, . . . , xn−1 ∈ D such that for c1, . . . , cn ∈ C, we
have ∑n−1

i=1 xici = cn. Clearly, cn ∈ (c1, . . . , cn−1)D, cn lies in the radical of
(c1, . . . , cn−1)D. By our assumption, we have that cn is contained in the radical
of (c1, . . . , cn−1)C .

(3) ⇒ (1) Let p be a prime of C. Take the ideal (p)D. Suppose that there is
c ∈ C − p, c ∈ (p)D. That would mean, however, that there are c1, . . . , cn ∈ p
and x1, . . . , xn ∈ D such that ∑n

i=1 cixi = c. We assume that c is the radical
of (c1, . . . , cn)C which is contained in p, this yields a contradiction. Therefore,
(p)D ∩C = p. As (p)D avoids the multiplicative set C−p, there has to be a prime
q of D by Theorem 46, such that (p)D ⊆ q and q ∩ C − p, thus q ∩ C = p.

Remark. Proposition 4.8 on page 96 in Görtz and Wedhorn [2010] deals with the
same problem in Proposition 43 in an entirely different way.

While it is possible to provide a full characterisation of quotient maps of affine
schemes arising from inclusions of rings, we prefer to give the following simple
sufficient condition. This condition will be shown to generalise two important
properties of morphisms of affine schemes − going up and going down. However,
before stating the result, we need to introduce some notions and results.

Definition 44 (Definition on page 28 in Kaplansky [1974]). Let R ⊆ S be an
extension of rings, we say that it has lying over if for every p prime of R there is
q a prime of S such that q∩R = p, we also say that q lies over p. The extension
is said to have going up if for every pair of primes p1 ⊆ p2 and every q1 lying
over p1, there is q1 ⊆ q2 lying over p2. Similarly, we say that the extension has
going down if for pair every primes p1 ⊆ p2 and every q2 lying over p2, there is
q1 ⊆ q2 lying over p1. The extension is said to have incomparability property if
any two primes of S that lie over the same prime of R are not comparable with
respect to inclusion.
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Theorem 45 (Theorem 17 on page 11, Theorems 44 and 48 on page 29 in Ka-
plansky [1974]. Hereafter referred to as going up theorem.). Let R ⊆ S such that
S is integral over R, this is especially true if S is a finitely generated R−module.
Then the extension has lying over, incomparability property, and going up.

Theorem 46 (Proposition 2.11 on page 70 in Eisenbud [1995]). Let R be a
commutative ring, U ⊆ R a multiplicative subset, and I a maximal ideal of R not
meeting U , then I is a prime ideal.

Lemma 47. Let C ⊆ D be an extension of rings, we shall denote the inclusion ι.
If Spec (ι) is surjective and for each primes p ⊆ p′ of C there are primes q ⊆ q′

of D such that q ∩ C = p and q′ ∩ C = p′, then Spec (ι) is a quotient map.

Proof. Assume X is a subset of SpecC such that its preimage X ′ under Spec (ι)
is closed in SpecD. We shall show that X = X. Let p′ be an element of X. Then
C−p′ is a multiplicative set. From surjectivity of the map Spec (ι), we have that
I(X ′) ∩ C = I(X) = I(X). Therefore, I(X ′) avoids C − p′. There exists a prime
q̃ of D by Theorem 46, in X ′ as it is closed, such that q̃ avoids C − p′. We obtain
a prime p = q̃∩C in X that is below p′ since it avoids the complement of C − p′.
However, by our presupposition, there are q ⊆ q′ of D such that q ∩ C = p and
q′ ∩ C = p′. By definition, q ∈ X ′, but so there is q′ as it is above q and X ′ is
closed. Then, p′ is in X.

Corollary. Let C ⊆ D be an extension of rings and the induced map of spectra
be denoted Spec (ι). Provided that Spec (ι) is surjective and the extension has
going up or going down, then Spec (ι) is a quotient map.

Proof. Suppose that p ⊆ p′ are primes of C. By surjectivity of the induced map,
there are primes q and r′ of D such that q ∩ C = p and r′ ∩ C = p′. If the
extension has going down, then there is r ⊆ r′ a prime of D with the property
that r∩C = p. Provided that the extension has going up, we can find a prime q′

of D containing q that maps to p′ under Spec (ι).

Corollary. Let C ⊆ D be an extension of domains and the induced map of spectra
be denoted Spec (ι). Provided that Spec (ι) is surjective, all non-zero prime ideals
of C are of height one, then Spec (ι) is a quotient map.

Proof. The only prime of height 0 of C lies generally under ⋂p∈SpecC p which is the
nilradical, therefore

√
(0)C needs to be the only height 0 prime of C. Moreover,

this ideal needs to be (0)C as C is a domain.
As D is also assumed to be a domain, (0)D is a prime and Spec (ι)((0)D) =

(0)C . Suppose we have an inclusion of primes of C, the only non-trivial are
(0)C ⊆ p for p non-zero. However, we suppose that there is q prime of D which
maps to p under Spec (ι), but it has to contain (0)D which maps to (0)C . By
Lemma 47, Spec (ι) is a quotient map.

However, it does not suffice to show that SpecP is naturally a quotient of
SpecB × C while discussing whether SpecP is the pushout of the diagram of
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affine schemes in the category of schemes arising from a diagram of rings:

P

B C

A

π1 π2

φ ψ

where all morphisms are monomorphisms and P is the pullback. We need to
ensure that the equivalence induced by morphisms aφ : SpecA → SpecB and
aψ : SpecA → SpecC merges all pairs primes of SpecB × C which map to the
same primes in SpecP under a(π1, π2) which is generally a daunting task. We
thus strive to give at least some sufficient conditions.

Suppose we have the following commutative diagram of rings:

P

B C

A

ι1 ι2

φ ψ

where ι1, ι2, φ, ψ are monomorphisms and P is the pullback of the said diagram.
We can enrich this diagram by adding two rings B×C and B⊗P C with natural
maps:

P

B × C

B C

B ⊗P C

A

ι1ι2

πBπC

ιB

φ

ιC

ψ

where the map from P to B × C is the induced (ι1, ι2) and the map from B ×P

C is the induced map φ ⊗P ψ. Passing to their spectra, we get a diagram of
affine schemes with reversed arrows in the category of topological spaces. Let us
assume that SpecP is the pushout of the diagram, then it has to be naturally
homeomorphic to SpecB ⊔SpecA SpecC. Therefore, the induced map Spec(ι1, ι2)
has to be a quotient map, as SpecB ×C is naturally homeomorphic to SpecB ⊔
SpecC.

Lemma 48. Let P ⊆ B and P ⊆ C be extensions of rings, we shall denote the
natural inclusion P ⊆ B ×C by ι. If both extensions, P ⊆ B and P ⊆ C, satisfy
that given primes p ⊆ p′ of P such that there is a prime r of B,C respectively
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lying over p, then there are primes q ⊆ q′ of B,C respectively lying over p and p′

respectively, then so does the extension P ⊆ B × C.

Proof. The statement follows immediately from the fact that SpecB × C ∼=
SpecB ⊔ SpecC.

Corollary. Suppose that P ⊆ B and P ⊆ C are extensions of rings and that the
natural inclusion P ⊆ B × C is denoted ι. Provided that one of the extensions
has going up and the other going up or going down, then the induced map Spec ι
is a quotient map of topological spaces. If Spec ι is surjective and both extensions
have going down, then Spec ι is a quotient map of topological spaces.

Proof. It easily follows from the previous lemma and the fact that going up implies
lying over in this case. See Theorem 42 on page 29 of Kaplansky [1974].

Proposition 49. Let P ⊆ B and P ⊆ C be extensions of rings, we shall denote
the natural inclusion P ⊆ B × C by ι. Provided that

1. the induced map Spec (ι) is a quotient map,

2. and we have that if more then one prime of either of rings lie over the same
prime of P , then there is a prime of the other ring lying over the said prime
of P ,

then SpecP is the pushout of the following diagram in the category of topological
spaces:

SpecB ⊗P C

SpecB SpecC

SpecP

pB pC

where pB and pC are maps of spectra induced by natural inclusions of B and C
into B ⊗P C respectively.

Proof. We assume that SpecP is a quotient of SpecB × C which is naturally
homeomorphic to SpecB ⊔ SpecC. Therefore, we only need to show that the
kernel of Spec (ι) is the right equivalence and, for that, it suffices to show that
primes of B × C lying over the same prime of P are identified.

Suppose that primes qB of B and qC of C lie over same prime of P . We will
show that there is a prime q of B⊗P C such that pB(q) = qB and pC(q) = qC . The
existence of such q is given by Theorem 46, take a maximal ideal of B⊗P C above
the ideal (qB ⊗ 1, 1 ⊗ qC)B⊗PC avoiding the multiplicative subset {q1 ⊗ q2, q1 ∈
B − qB, q2 ∈ C − qC}, which is prime.

Suppose that distinct primes q1 and q2 of B lie over the same prime of P .
By our second assumption, there is a prime qC of C lying over the same prime
of P. We know that (q1, q) and (q2, q) are in tke kernel of Spec (ι), therefore by
symmetry and transitivity, so is (q1, q2). For two primes of C lying over over the
same prime of P , we proceed similarly due to the second assumption.
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Remark. Notice that the condition 2. in the previous proposition, which may
appear technical, is very important. It allows us to exploit the existence of
primes in SpecB⊔SpecC corresponding to pairs of primes in SpecB and SpecC
to show that we glue also pairs of primes of either B or C that map to the same
prime of P . Without it, the proposition would not hold in general.
Corollary. Under the assumptions of the proposition above, suppose we have the
following commutative diagram of rings:

P

B C

A

⊆ ⊆

φ ψ

where P is the pullback of the commutative diagram and φ, ψ are monomor-
phisms. If the induced map of spectra Specφ ⊗P ψ is surjective, then SpecP is
the pushout of the induced diagram in the category of topological spaces.

Proof. The proof goes along the same lines as the proof above.

The following example represents a connection of this section and the previous
chapter. We show that, under some additional assumptions, the pullback in the
category of finitely generated algebras from Theorem 17 gives rise to a pushout
in the from of an affine scheme in the category of schemes.
Example. Let B a finitely generated algebra and a domain over R, I, J its ideals
and S ⊆ B is R−subalgebra such that (S ∩ I) + (S ∩ J) = S ∩ (I + J). Suppose
that S + I and S + J are finitely generated as R−algebras. This means that
also their intersection S ′ is finitely generated by Theorem 17 and contains I ∩ J
which, in turn, implies that B, S+ I, S+J are finitely generated S ′−modules by
Theorem 11. We get an induced diagram of spectra:

SpecB

SpecS + I SpecS + J

SpecS ′

where all maps are closed an onto by the going up theorem. We will prove that
SpecS ′ is the pushout of the corresponding diagram in the category of ringed
spaces. It suffices to show that SpecS ′/I ∩ J is the pushout of the following
diagram of spectra

SpecB/I ∩ J

SpecS + I/I ∩ J SpecS + J/I ∩ J

SpecS ′/I ∩ J

b1 b2

ι1 ι2
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this due to the trick of localising in elements of I ∩J , a common ideal of all rings
in the diagram, which yield a diagram of the same rings − it is made precise by
Schwede [2004] in his proof of Theorem 40. We need to show that SpecS ′/I ∩ J
is naturally homeomorphic to the quotient of SpecS+ I/I ∩J ⊔ SpecS+J/I ∩J
by the equivalence θ generated by (p, q) ∈ SpecS + I/I ∩ J × SpecS + J/I ∩ J
such that b1(r) = p and b2(r) = q for some r ∈ SpecB/I ∩ J.

As all maps in the diagram are closed and onto by the going up theorem, we
know that SpecS ′/I∩J is naturally a quotient of SpecS+I/I∩J⊔SpecS+J/I∩J .
We only need to ensure that for any (p, q) ∈ SpecS + I/I ∩ J × SpecS + J/I ∩ J
such that ι1(p) = ι2(q), (p, q) ∈ θ. Suppose we have p1, p2 ∈ SpecS + I/I ∩ J
such that ι1(p1) = ι1(p2). Then there is r ∈ SpecB/I ∩ J such that b1(r) = p2,
clearly ι1(p1) = ι2(b2(r)) by commutativity of our diagram. If we have that
(p1, b2(r)) ∈ θ, then we also know that (p1, p2) ∈ θ by its transitivity, symmetry,
and the fact that (b1(r), b2(r)) ∈ θ by definition.

Assume that there are p ∈ SpecS + I/I ∩ J and q ∈ SpecS + J/I ∩ J such
that ι1(p) = ι2(q). We will discuss two possible cases, either I/I ∩ J ⊆ p and
J/I ∩ J ⊆ q or I/I ∩ J ⊆ p and J/I ∩ J ⊈ q. The case of I/I ∩ J ⊈ p and
J/I ∩ J ⊆ q can be reduced to the second case by symmetry.

The remaining case, I/I ∩ J ⊈ p and J/I ∩ J ⊈ q, can be reduced to the first
case as we will show. take r, s ∈ SpecB/I ∩ J , they have to contain I/I ∩ J or
J/I ∩ J since their product is zero in B/I ∩ J, such that b1(r) = p and b2(s) = q.
Since I/I ∩ J ⊈ p and J/I ∩ J ⊆ q, then J/I ∩ J ⊆ r and I/I ∩ J ⊆ s, which
permits us to deal with I/I ∩ J ⊆ b1(s) and J/I ∩ J ⊆ b2(r) as in the first case.
Because if (b1(s), b2(r)) ∈ θ, then (p, q) ∈ θ by its transitivity and symmetry,
since it contains (p, b2(r)) and (b1(s), q) by definition.

Let I/I ∩ J ⊆ p and J/I ∩ J ⊆ q such that ι1(p) = ι2(q). We know that
SpecS + I ∩ J/I ∩ J is the pushout of the following commutative diagram:

SpecS + I + J/I + J

SpecS + I/I SpecS + J/J

SpecS + I ∩ J/I ∩ J

a1 a2

η1 η2

which actually only represents that V (S ∩ J) ∪ V (S ∩ I) = V (S ∩ I ∩ J) and
V (S∩J)∪V (S∩I) = V (S∩I∩J) and V (S∩J)∩V (S∩I) = V ((S∩I)+(S∩J)) =
V (S ∩ (I + J)) by our technical assumption that (S ∩ I) + (S ∩ J) = S ∩ (I + J).
This result is mentioned by Ferrand [2003] as théorème chinois on page 557 and
SpecS + I ∩ J/I ∩ J also can be seen to be the pushout of the following diagram
using Theorem 40 as both ring homomorphisms in question are surjective.
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Into the diagram above, we can inscribe the following commutative diagram:

SpecS + I + J/I ∩ J

SpecS + I/I ∩ J SpecS + J/I ∩ J

SpecS ′/I ∩ J

b1 b2

ι1 ι2

so that the resulting diagram is commutative, since we have natural closed immer-
sions of affine schemes SpecS+I+J/I+J ↪→ SpecS+I+J/I∩J, SpecS+I/I ↪→
SpecS + I/I ∩ J, SpecS + J/J ↪→ SpecS + J/I ∩ J which correspond to taking
appropriate quotients of the respective rings. We will think of these morphisms of
schemes as of inclusions. Also S+I∩J/I∩J is naturally a subalgebra of S ′/I∩J ,
which gives us a morphism of schemes SpecS ′/I ∩ J → SpecS + I ∩ J/I ∩ J.

The result is a commutative diagram that looks like this:

SpecS + I + J/I + J

SpecS + I/I ♢ SpecS + J/J

SpecS + I ∩ J/I ∩ J

a1 a2

η1 η2

where ♢ represents the diagram:

SpecS + I + J/I ∩ J

SpecS + I/I ∩ J SpecS + J/I ∩ J

SpecS ′/I ∩ J

b1 b2

ι1 ι2

Notice that, for this manoeuvre, we used the technical assumption.
Let us return to our p and q, naturally p ∈ SpecS+I/I and q ∈ SpecS+J/J.

We know that η1(p) = η2(q) as ι1(p) = ι2(q). This means that there is r ∈
SpecS + I + J/I + J such that a1(r) = p and a2(r) = q, this r can be atken as a
prime of SpecS + I + J/I ∩ J , naturally.

Clearly, we have a surjective morphism of affine schemes SpecB/I ∩ J →
SpecS + I + J/I ∩ J given that S + I + J/I ∩ J is a subring of B/I ∩ J. Thus,
there is r′ ∈ SpecB/I ∩ J such that r′ maps to r. This gives us that p = b1(r′)
and q = b2(r′), thus (p, q) ∈ θ.

Now, let I/I ∩ J ⊆ p and J/I ∩ J ⊈ q. Our previous reasoning gives us
r ∈ SpecB/I ∩ J such that b2(r) = q, since J/I ∩ J ⊈ q, I/I ∩ J ⊆ r. We can
thus deal with two primes of SpecS + I/I ∩ J such that I/I ∩ J ⊆ p, p′, where
p′ = b1(r), of course.
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We assume that ι1(p) = ι1(p′) which means that they map to the same prime
of SpecS + I ∩ J/I ∩ J . However, p, p′ are naturally in SpecS + I/I, and them
having the same image in SpecS+ I ∩J/I ∩J means that they need to be equal,
as SpecS+I/I is naturally a subset of SpecS+I∩J/I∩J . Therefore, (p, p′) ∈ θ
trivially, as p = p′. △

We also include an example that shows it is possible to study group actions
on ring spectra and the resulting quotients using the pushout formalism we work
with.
Example. Let R be a commutative ring and G = {g1, . . . , gn} a non-trivial finite
subgroup of Aut(R) that acts freely (has no fixed points) on SpecR, denote
g1 = idR and RG the pullback of the following diagram of commutative rings:

R R

Rn
(idR,...,idR) (g1,...,gn)

clearly, RG is the ring of G−invariants. We will show that SpecRG is the pushout
of the induced diagram of spectra in the category of ringed spaces.

At first, we will deal with the morphism SpecR → SpecRG induced by in-
clusion. For this we will use some arguments used in proof of Lemma 11 on
pages 352 and 353 of Cox et al. [2007]. We notice that R is integral over RG

as each r ∈ R is a root of (x − g1(r)) . . . (x − gn(r)) = anx
n + · · · + a1x + a0

which is easily seen to be polynomial in RG[x], as (x− gig1(r)) . . . (x− gign(r)) =
gi(an)xn + · · · + gi(a1)x + gi(a0) for all 1 ≤ i ≤ n are the same polynomial,
hence its coefficients are G−invariant. Suppose that p is a prime of R, then gi(p)
are also primes as gi ∈ Aut(R) for all 1 ≤ i ≤ n. It is easy to deduce that all
p ∩RG = gi(p) ∩RG for all 1 ≤ i ≤ n.

Assume there is q a prime of R such that p ∩ RG = q ∩ RG and q ̸= gi(p) for
any i. Let us have a radical ideal:

I = g2(p) ∩ · · · ∩ gn(p) ∩ q ∩ g2(q) ∩ · · · ∩ gn(q).

We prove that I ⊈ p. By going up theorem, we have that all primes:

g2(p), . . . , gn(p), q, g2(q), . . . , gn(q)

are incomparable with p as they map to the same prime of RG and they are
different due to the action of G being free on SpecR. However, had I ⊆ p, then
one of those primes would have to lie under the prime p which would yield a
contradiction with incomparability.

Thus, there has to be a ∈ I such that a /∈ p. This means that elements
g−1

2 (a), . . . , g−1
n (a) belong to p. Similarly, we have g−1

1 (a), . . . , g−1
n (a) ∈ q, thus

g−1
1 (a) + · · · + g−1

n (a) ∈ q, but this element is G−invariant. Therefore g−1
1 (a) +

· · ·+g−1
n (a) ∈ p which means that a = g−1

1 (a) = (g−1
1 (a)+· · ·+g−1

n (a))−(g−1
2 (a)+

· · · + g−1
n (a)) ∈ p, a contradiction.

Since RG ⊆ R is an integral extension, which a fortiori by the going up the-
orem means that SpecR → SpecRG is a quotient map, it suffices to prove that
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SpecRG is naturally homeomorphic to SpecR⊔ SpecR/ ∼ where ∼ is the equiv-
alence generated by (a(idR, . . . , idR)(r), a(g1, . . . , gn)(r)) for all r primes of Rn.

Suppose that p, q are primes of R such that p ∩RG = q ∩RG, then gi(q) = p
for some 1 ≤ i ≤ n. Then let r = (R, . . . , R, p, R, . . . , R) be a prime of Rn with
p on the i−th coordinate. Clearly, a(idR, . . . , idR)(r) = p and a(g1, . . . , gn)(r) = q
as (g1(q), . . . , gn(q)) has gi(q) = p on the i−th coordinate. △

2.3 Pushout of the form of a scheme
However, it is overly restrictive to limit ourselves to looking for pushouts of di-
agrams of affine schemes in the form of affine schemes. Consider this trivial
example, let R be a ring and f, g be two non-nilpotent elements.

We have two morphisms of affine schemes SpecRfg ↪→ SpecRf and similarly
SpecRfg ↪→ SpecRg which correspond to inclusions SpecR− V (fg) ⊆ SpecR−
V (f) and SpecR−V (fg) ⊆ SpecR−V (g). The pushout of our two morphisms of
affine schemes exists in the category of schemes and is given by the union of two
corresponding open affine subsets of SpecR as (SpecR−V (f))∪(SpecR−V (g)).
This open subset of SpecR is naturally equipped with a structure of a scheme,
but needs not to be affine. This is the case for setting R to be K[x, y] and f, g
as x, y respectively, for instance.

We shall try to extend the idea in the proof of Theorem 42 to include some
cases when SpecA → Spec Imφ and SpecA → Spec Imψ do not have a pushout
in the form of an affine scheme in the category of schemes. It is possible to do so
under some additional assumptions.

At first, we will prove a generalisation of Theorem 40. After some work, the
following theorem can be viewed as a stronger version of one of the implications
of Théorème 7.1. on page 575 of Ferrand [2003] in a less general setting.

Theorem 50. Let Y ′ = SpecA′ and Y = SpecA be affine schemes, Z a scheme,
and f : Y → Z morphisms of schemes. Suppose there exists a open covering
(SpecBj)j∈J of Z by affine schemes such that J ⊆ A and for each j ∈ J we
have f−1(SpecBj) = SpecAj. Assume moreover that aπI : Y → Y ′ is a closed
immersion. Then, the pushout of the corresponding diagram in the category ringed
spaces is a scheme.

Proof. At first, we examine the structure of the pushout ringed space Y ′ ⊔Y Z
with morphisms iY ′ : Y ′ → Y ′ ⊔Y Z and iZ : Z → Y ′ ⊔Y Z. We know that aπI
is a closed immersion, so we can identify Y with a closed set aπI(Y ) of Y ′. This
gives us that iY ′ restricted to Y ′ − Y is an open immersion, we shall identify
Y ′ − Y and its image under iY ′ . Moreover, iZ is a closed immersion because so
is aπI : Y → Y ′. Similarly, we shall identify Z and its image under iZ . These
arguments are analogous to those made by Schwede [2004] in his proof of 40.

We will cover the pushout Y ′ ⊔Y Z with open affines. Clearly, we can do it for
Y ′ −Y ⊆ Y ′ ⊔Y Z and cover it by SpecAi for each i ∈ I where Y ′ −Y = Y ′ −V (I)
and I is an ideal of A.
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Now, let us have j ∈ J . We have a commutative square:

SpecAj SpecBj

Y Z

f

⊆ ⊆

f

with open immersions as vertical arrows. Identify A with A′/I and let j′ ∈ A′

be an element such that πI(j′) = j. Then, we have the following commutative
diagram of rings:

A′
j′ Aj

A′ A

πIj

πI

with localisations as vertical arrows, as A′
j′/Ij′ ∼= (A′/I)j, we know that πIj is a

surjective homomorphism with kernel Ij. Take Xj = (D(j′)∩ (Y ′ −Y ))∪SpecBj.
Clearly, i−1

Y ′ (Xj) = D(j′) = SpecAj′ and i−1
Z (Xj) = SpecBj. Then, by Definition

39 of pushout of ringed spaces and Theorem 40, Xj = SpecPj where Pj is the
pullback of the following diagram:

A′
j′ Bj

Aj

πIj f♭
Spec Bj

To prove that Y ′ ⊔Y Z is a scheme, it suffices to cover it by open affines − we
showed that Xj are open affine subsets Y ′ ⊔Y Z. By {Xj}j∈J , it is possible to
cover Z a closed subset of Y ′ ⊔Y Z. However, the complement of Z is identified
with Y ′ −Y has affine open cover inherited from Y ′. Thus, we obtain that Y ′ ⊔Y Z
is a scheme.

To apply the same reasoning as in the proof of Theorem 42, we will need to
use another result due to Schwede [2004], which is an easy consequence of his
Theorem 40.

Theorem 51 (Corollary 3.7. on page 7 in Schwede [2004]). Suppose Z is a closed
subscheme of both X and Y . Then X ⊔Z Y is a scheme.

Remark. The claim of the theorem above trivially holds if we assume Z to be an
open rather than closed subscheme of X and Y.

We can use the results above to give the aforementioned generalisation of
Theorem 42 in a straightforward manner, then will use the theorem in some
special cases.

Theorem 52. Assume we have ring homomorphisms B φ−→ A and C
ψ−→ A.

Such that the pushout of the diagram:

SpecA

Spec Imφ Spec Imψ

i1 i2
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where i1 and i2 are morphisms induced by respective inclusions is a scheme X
together with morphisms j1 : Spec Imφ → X and j2 : Spec Imφ → X that satisfy
the condition from the Theorem 50 on existence of a special affine open covering.
Then the pushout of the diagram:

SpecA

SpecB SpecC

aφ aψ

has a structure of a scheme.

Proof. We will proceed in similarly as in case of the Theorem 42. Let us draw
the following diagram:

SpecA

Spec Imφ Spec Imψ

SpecB X SpecC

XB XC

Y

i1 i2

p1
j1 j2

p2

q1 k1 k2 q2

r1 r2

where we put XB, XC as the pushout of the respective diagrams, they are schemes
by Theorem 50 and Y is also the pushout of the respective diagram. Moreover,
Y is a scheme a by Theorem 51 as X is a closed subscheme of both XB and XC

because p1 and p2 are closed immersions.
We deduce that Y is the pushout of aφ : SpecA → SpecB and aφ : SpecA →

SpecC in the same way as in case of the Theorem 42.

Corollary. Suppose there are ring homomorphisms B
φ−→ A and C

ψ−→ A.
Provided that i1 : SpecA → Spec Imφ and i2 : SpecA → Spec Imψ have a
pushout which is naturally an open subset of Spec Imφ ∩ Imψ, the pushout of
aφ : SpecA → SpecB and aφ : SpecA → SpecC is a scheme.

Proof. Assume that X together with morphisms of schemes j1 : Spec Imφ →
X and j2 : Spec Imφ → X is the pushout of i1 : SpecA → Spec Imφ and
i2 : SpecA → Spec Imψ. By the universal property, there is a morphism of
schemes X → Spec Imφ ∩ Imψ through which factor Spec Imφ → Imφ ∩ Imψ
and Spec Imψ → Imφ ∩ Imψ.

If the morphism X → Spec Imφ ∩ Imψ is an open immersion, then the open
covering of X in question is simply the restriction of covering of Spec Imφ∩ Imψ
by principal open affine subsets. Clearly for any f ∈ Imφ ∩ Imψ, we have that
the preimage of D(f) under the morphism Spec Imφ → Imφ ∩ Imψ induced by
the inclusion is again D(f) as a principal open affine subset of Spec Imφ, the
same works for Spec Imψ as well.
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Corollary. Suppose there are ring homomorphisms B φ−→ A and C
ψ−→ A. Pro-

vided that i1 : SpecA → Spec Imφ and i2 : SpecA → Spec Imψ are open
immersions, the pushout of aφ : SpecA → SpecB and aφ : SpecA → SpecC is a
scheme.

2.4 Another approach
In this section, we will try a possibly different approach than Ferrand [2003] and
Schwede [2004] who try to find conditions under which the pushout of a diagram
of schemes in the category of ringed spaces is a scheme. In the second half of the
Section , showing that the spectra of two rings glue just right via a third affine
schemes that maps to both of them proved very difficult as it is complicated to
deal with general pushouts in topological spaces. Now we will show that it is
possible to forego such discussions if we make some concessions, namely that we
do not require that the pushout of the diagram of schemes in the category of
schemes is not in the category of ringed spaces.

Proposition 53 (Proposition 3.4. on page 68 of Görtz and Wedhorn [2010]).
Let X be a scheme and Y = SpecR be an affine scheme then:

Hom(X, Y ) → Hom(R,Γ(X,OX)), (f, f ♭) ↦→ f ♭Y

is a bijection.

Proposition 54 (Proposition 3.5. Gluing of morphisms on pages 68 and 69 of
Görtz and Wedhorn [2010]). Let X and Y be a schemes, (Ui)i∈I an open covering
of X, and (Ui → Y )i∈I a family of morphisms of schemes, such that they coincide
on intersections. Then there exists a unique morphism of schemes X → Y such
that on Ui it is equal to Ui → Y for all i ∈ I.

Proposition 55. Suppose we have a commutative diagram of schemes:

X

Y x Z

SpecR
η1 η2

that P with morphisms p1, p2 is the pullback of the induced diagram of rings:

Γ(X,OX)

Γ(Y,OY ) Γ(Z,OZ)

and that π1 : Y → SpecP and π2 : Z → SpecP are the unique morphisms of
schemes induced by p1, p2 respectively. Then there is a unique homomorphism
δ : SpecP → SpecR such that ηi = δπi for i = 1, 2.
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Proof. By the universal property of the pullback, there exists a unique ring ho-
momorphism δ♭SpecR : R → P such that ηi♭SpecR = piδ

♭
SpecR for i = 1, 2. This

homomorphism gives rise to a unique morphism of schemes δ : SpecP → SpecR.
Proposition 53 gives us that ηi = δπi since ηi♭SpecR = piδ

♭
SpecR and pi = πi

♭
SpecP for

i = 1, 2. If there is another morphism δ′ : SpecP → SpecR such that ηi = δ′πi
for i = 1, 2, then ηi

♭
SpecR = piδ

′♭
SpecR for i = 1, 2. We have that δ♭SpecR = δ′♭

SpecR
by the uniqueness of δ♭SpecR from the universal property, moreover, δ′ = δ by
Proposition 53.

Theorem 56. Let us have morphisms X φ−→ Y and X ψ−→ Z and a scheme W
with morphisms p1 : Y → W and p2 : Z → W such that p1φ = p2ψ. We have a
unique induced map α from the ringed space Y ⊔X Z to W such that p1 and p2
factor through it. Provided that

1. α is onto,

2. Y ⊔X Z has the coarsest possible topology that makes α continuous,

3. and for each open subscheme U of W , we have that α♭U is an isomorphism,

then W with morphisms p1 and p2 is the pushout of the diagram:

X

Y Z

φ ψ

in the category of schemes.

Proof. Suppose S is a scheme with an affine open cover (SpecSj)j∈J and there is
a commutative diagram:

X

Y Z

S

φ ψ

η1 η2

Fix j ∈ J and denote Yj = η−1
1 (SpecSj), Zj = η−1

2 (SpecSj), and Xj = φ−1(Yj) =
ψ−1(Zj) the open subschemes of Y, Z and X respectively. Let Pj with morphisms
pj1, p

j
2 is the pullback of the induced diagram of rings:

Γ(Xj,OXj
)

Γ(Yj,OYj
) Γ(Zj,OZj

)

and that πj1 : Yj → SpecPj and πj2 : Zj → SpecPj are the unique morphisms
of schemes induced by pj1, p

j
2 respectively. By Proposition 55, there is a unique

homomorphism δj : SpecPj → SpecR such that ηji = δjπji for i = 1, 2 where
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ηj1 = η1|Yj
and ηj2 = η2|Zj

.

Our assumption (2.) and the definition of the ringed space Y ⊔XZ (see Definition
39) ensure that there is Uj an open subscheme of W such that Yj = p−1

1 (Uj) and
Zj = p−1

2 (Uj). Since Yj and Zj correspond to an open set Yj ⊔Xj
Zj of Y ⊔X Z,

its topology is the coarsest such that α is continuous, thus Yj ⊔Xj
Zj must be a

preimage of an open set of SpecP. Moreover, by definition of pushout of ringed
spaces and our assumption (3.), we can put Pj = Γ(Uj,OW ).

Proposition 53 gives us that the following diagram is commutative:

Yj Zj

Uj

SpecPj

πj
1

p1|Yj

πj
2

p2|Zj

cUj

as the maps on corresponding global sections are identical. Altogether, this means
that ηj1 = δj ◦cUj

◦p1|Yj
and ηj2 = δj ◦cUj

◦p2|Zj
. Also, δj ◦cUj

is the only morphism
of schemes with such a property. This is due to the universal property of pullback
Pj = Γ(Uj,OW ) and the fact that morphism of schemes from Uj to SpecSj are
uniquely determined by induced homomorphisms on global sections.

As preimages of open subschemes in the affine open cover (SpecSj)j∈J cover
Y, Z, and X, corresponding (Uj)j∈J need to cover W by our assumption (1.) that
α : Y ⊔X Z → W is onto. We also have a system of maps (δj ◦ cUj

: Uj → S)j∈J .
Pick different j, j′ ∈ J , we shall show that δj ◦ cUj

and δj′ ◦ cUj′ are equal on
Uj ∩Uj′ . Let u ∈ Uj ∩Uj′ be arbitrary and assume, without loss of generality, that
there is y ∈ Y such that p1(y) = u. This is possible as the map α : Y ⊔X Z → W ,
induced by p1 and p2, is onto.

Clearly, p1|Yj
(y) = p1|Yj′ (y) and ηj1(y) = ηj

′

1 (y). We have that ηj1 = δj ◦ cUj
◦

p1|Yj
and ηj

′

1 = δj′ ◦ cUj′ ◦ p1|Yj′ . Therefore (δj ◦ cUj
)(u) = (δj′ ◦ cUj′ )(u).

By Proposition 54, there is a unique morphism σ : W → S such that σ|Uj
= δj◦cUj

for all j ∈ J. This is the unique morphism such that ηi = σpi for i = 1, 2 as it
holds on all Uj which cover W and is uniquely determined on all of them.

Hence, W with morphisms p1, p2 is the pushout of X φ−→ Y and X
ψ−→ Z in

the category of schemes.

Remark. The theorem above allows not to worry about some pathologies of the
pushout of the diagram in the category of ringed spaces (namely that it has some
topologically indistinguishable points which is not possible for a scheme) if we
restrict ourselves to the category of schemes and find a scheme that looks almost
like the pushout of the diagram in the category of ringed spaces.

Using Theorem 56, we will be able to give a very general and purely algebraic
sufficient condition for the existence of pushouts of affine schemes in the category
of schemes. That is because Theorem 56 spares us the need to glue the primes
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of B and C via A exactly right, however, it comes at a cost − the pushout we
obtain is valid only in the category of schemes and not necessarily in the larger
category of ringed spaces.

Theorem 57. Let B,C ⊆ A be rings and all the induced maps in the following
diagram are surjective:

SpecA

SpecB SpecC

SpecP

where P = B ∩ C. Provided that for any I1 ⊆ B and I2 ⊆ C such that VA(I1) =
VA(I2) there exists I3 ⊆ B ∩C with VA(I1) = VA(I2) = VA(I3), then SpecP is the
pushout of the diagram above in the category of schemes.

Proof. We use Theorem 56. Since induced maps SpecB → SpecP and SpecC →
SpecP are surjective, so needs to be the induced map

α : SpecB ⊔SpecA SpecC → SpecP.

Let F ⊆ SpecB ⊔SpecA SpecC be a closed set, then, by definition, it needs to
correspond to the sum of VB(I1) in SpecB and VC(I2) in SpecC amalgamated
over VA(I1) = VA(I2) in SpecA for I1 ⊆ B and I2 ⊆ C. However, we assume
that there is I3 ⊆ P such that VA(I1) = VA(I2) = VA(I3). We know that VA(I3)
is the preimage of VB(I1), VC(I2), and VP (I3) under the respective induced map.
Due to surjectivity of induced maps from SpecA, VB(I1) and VC(I2) need to be
preimages of VP (I3) under the respective induced map. Thus F needs to be the
preimage of VP (I3). This gives us that any closed set of SpecB ⊔SpecA SpecC is
an inverse image of a closed set of SpecP under α.

The last assumption of Theorem 56 holds trivially by Proposition 41 and
definition of SpecB ⊔SpecA SpecC as a ringed space.

Corollary. Suppose that A is a domain. Then it is possible to forego the assump-
tion that induced maps SpecB → SpecP and SpecC → SpecP .

Proof. Independently of surjectivity assumptions on the induced maps, we proved
that any closed set of SpecB ⊔SpecA SpecC is an inverse image of a closed set of
SpecP under α. A fortiori, α is a closed map. Since A is domain, so are B,C and
P . Clearly, zero primes of B and C map to the zero prime of P by the induced
maps, therefore the image α contains the zero prime and is closed. This means
that α is surjective as VP (0) = SpecP.

Remark. Recall that algebraic characterisation of surjectivity of maps of spectra
induced by inclusions is given in Lemma 43.

It would be possible to use Theorem 57 and the gluing of pushouts as in
Theorems 42 and 50 to obtain an analogous result, the pushout we would obtain
would be in the category of schemes and not necessarily in the category of ringed
spaces, of course.
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