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Title: Tilting theory for quasicoherent sheaves

Author: Pavel Čoupek
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List of symbols

Mod–OX category of OX-modules

CohX category of coherent sheaves on X

QCohX category of quasi-coherent sheaves on X

F ,G ,H ,I (typically) a quasi-coherent sheaf, or an OX-module

OX the structure sheaf of a scheme X

resUV , ↾V restriction morphism (from U) to V
⊕

i∈I Fi direct sum of Fi’s, i ∈ I
∏

i∈I Fi direct product of Fi’s, i ∈ I

F⊕n,F⊕I direct sum of n copies / I copies of F (I possibly infinite
set)

F×n,F×I direct product of n copies / I copies of F (I possibly
infinite set)

M̃ quasi-coherent sheaf on SpecR associated to an R-
module M

Fx, OX,x stalk of F / OX at a point x

κ(x) residue field at a point x

f∗ direct image functor induced by f

f ∗ inverse image functor induced by f

SuppF support of F

AssF set of all associated points of F

Ann(s) annihilator of element of a module (or section of a sheaf)
s

Y closure of Y (in the topological sense)

E(F ) injective hull of the OX-module / quasi-coherent sheaf
F

Add(S) class of all direct summands of direct sums of objects
from class S

Prod(S) class of all direct summands of direct products of objects
from class S

Gen(S) class of all objects generated by class S

Cogen(S) class of all objects cogenerated by class S

Lim−−→S class of all direct limits of objects from class S
⊥S left Ext1-orthogonal class to S

S⊥ right Ext1-orthogonal class to S
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Introduction

Tilting theory originates in representation theory of finite-dimensional alge-
bras. In 1979, S. Brenner and M. C. R. Butler introduced tilting module as
a certain finite-dimensional module T of projective dimension at most 1 over a
finite-dimensional algebra Λ in [BB80]. The purpose of such modules was that
the functor HomΛ(T,−) provides an equivalence between certain subcategories of
mod–Λ and mod–Λ′ where Λ′ = EndΛ(T ). D. Happel later showed in [Hap87] that
this behaviour can be viewed as a remnant of the equivalence between the derived
categories Db(Λ) and Db(Λ′) induced by the derived functor RHomΛ(T,−). In
[Ric89], J. Rickard provided a necessary and sufficient condition for equivalence
of the derived categories. The condition is the existence of the so-called tilting
complex. From this point of view, tilting theory can be considered a continuation
of Morita theory, and tilting modules a generalization of projective generators.

Since then, tilting modules and tilting theory have been substantially gen-
eralized. Tilting modules of arbitrarily larger projective dimension n (so-called
n-tilting modules) were introduced and studied ([Miy86], [Hap88]) as well as non-
finitely generated tilting modules over arbitrary rings were considered ([CT95a],
[AHTT01], [HC01]). Dualization provided the notion of a cotilting module
([Col93], [CDT97], [CF00], [CTT97]), possibly non-finitely generated and of large
(finite) injective dimension.

Tilting objects in Abelian and Grothendieck categories A were defined and
studied in order to obtain a derived equivalence Db(A)

≃
−→ Db(R) with category

of modules ([HRS96], [Col99], [CF07]). For example, the derived equivalence of
the category of coherent sheaves on the projective n-space Pn and the category
of finite-dimensional modules over a non-commutative finite-dimensional algebra
obtained by A. A. Bĕılinson in [Bĕı78] can be understood in this context. An
important justification for the notion of (big) cotilting modules is the fact that
such modules occur on the module side of the equivalence as the image of an
injective cogenerator ([HRS96], [CGM07], [Št’o14]).

In the context of this development, it seems justified to presume that suitable
further generalizations of tilting and cotilting modules could lead to obtaining, or
better understanding of, equivalences between more general derived categories.

One far-reaching generalization of modules over a (commutative) ring R was
given by J. Dieudonné, A. Grothendieck and J.-P. Serre ([Ser55], [GD60]). The
commutative ring R is replaced by a scheme X, an object of geometrical nature.
The analogues of modules over R are then the so-called quasi-coherent sheaves
on X.

In the present thesis, we take a step in this direction of generalization by
studying 1-cotilting quasi-coherent sheaves on a scheme. For this purpose, a 1-
cotilting object in a general Grothendieck category is defined and, in order to
justify the given definition, its relation to the module-theoretic definition of a
1-cotilting module (cf. [HC01]) is studied.

In two consecutive papers [AHPŠT14] by L. Angeleri Hügel, D. Posṕı̌sil,
J. Štov́ıček and J. Trlifaj and [ŠTH14] by J. Štov́ıček, J. Trlifaj and D. Herbera,
the authors classify all n-cotilting modules over a Noetherian commutative ring R
up to equivalence of n-cotilting modules. In particular, 1-cotilting modules over
R correspond, up to equivalence, to the so-called specialization closed subsets Y

3



of the spectrum of R with the additional requirement that such sets Y do not
contain any of the associated primes of the regular module R. The classification
relies on the correspondence between specialization closed subsets Y ⊆ SpecR
and torsion classes T (Y ) of hereditary torsion pairs in Mod–R, which is a spe-
cial case of a result of P. Gabriel in [Gab62], establishing the correspondence for
categories of quasi-coherent sheaves on a Noetherian scheme X.

This general version of the correspondence is used in this thesis to construct
a family of pairwise non-equivalent 1-cotilting sheaves on a Noetherian scheme.
These are parametrized, analogically to the affine case, by specialization closed
subsets Y ⊆ X such that Y does not contain any of the associated points of a
generator G (that can be chosen arbitrarily) of the category of quasi-coherent
sheaves on X. To obtain an explicit description of F(Y ), the torsion-free class
associated to T (Y ), by means of the specialization closed subset Y , we also
present an alternative proof of the Gabriel’s correspondence using the description
of injective quasi-coherent sheaves from [Har66].

In Chapter 1, we remind the reader of most of the standard definitions and
basic theorems needed for establishing the context of this thesis. The definition
of Grothendieck category (as well as the definition of an Abelian category) is
recalled and several its basic properties stated. We continue by summarizing
some of the results on (1-)tilting and (1-)cotilting modules over a general ring
and over a Noetherian commutative ring in particular, and we introduce the
definitions of 1-tilting and 1-cotilting objects in a Grothendieck category. We
close the chapter by establishing the category QCohX of quasi-coherent sheaves
on a (locally) Noetherian scheme X, and the structure of injective objects in it.

Chapter 2 contains a description of hereditary torsion pairs in the category of
quasi-coherent sheaves on a Noetherian scheme by means of specialization closed
subsets. The reader is first reminded of (hereditary) torison pairs in an Abelian
category. We recall the definitions of associated point and support of a quasi-
coherent sheaf, and establish some of their properties needed for the classification.
In particular, it is proved that an associated point x of a sheaf F on a Noetherian
scheme can be detected by the existence of a coherent subsheaf G ⊆ F such that
x is its only associated point. Using this fact together with the structure of
injective quasi-coherent sheaves, we prove the claimed correspondence.

At the beginning of Chapter 3, various definitions of the Ext functor are re-
called and several complications that arise in Grothendieck categories in contrast
to module categories are discussed. We continue this discussion by relating our
definition of 1-cotilting object in a Grothendieck category to the module-theoretic
axioms (that is, its analogues in a Grothendieck catgory). The last part of the
chapter contains the description of a large family of 1-cotilting quasi-coherent
sheaves on an arbitrary Noetherian scheme X. These correspond to some of the
hereditary torsion pairs in the category of quasi-coherent sheaves, and hence to
some of the specialization closed subset by results from Chapter 2.

Finally, an overview of various subjects connected to the thesis’ topic is given
in Appendix. These facts occasionaly come up in arguments of proofs throughout
the first three chapters but are not central to the main topic. The subjects
presented here include definitions and basic properties of sheaves and schemes,
envelopes and covers in Abelian categories and the Yoneda’s definition of the Ext
functor.
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1. Preliminaries

Before we begin, let us comment on some of the notational conventions used
throughout this thesis.

If C is a category, the expression A ∈ C means that A is an object of the
category C. If S is a class of objects of C, we assume that it is closed under
isomorphic objects, except for the case when S is a set, since the closure under
isomorphism would enlarge S to a proper class. Since all the subcategories we
consider are always full, we do not make a strict distinction between a class S of
objects of C and the full subcategory on S.

When we talk about limits and colimits, we usually have the (co-)limit ob-
ject in mind; the associated (co-)cone is then called the universal (co-)cone, the
canonical morphisms from (to) the (co-)limit, and so on. One exception is made
when talking about kernels and cokernels: if f : A → B is a morphism (in an
Abelian category,) kernel of f means either the object Ker f itself or its inclusion
into A. Dually, cokernel of f is either the cokernel morphism or its codomain.

Similarly, if Ai, Bi i ∈ I is a collection of objects in a category, there are two
situations that occur regularly:

(A) There is a collection of morphisms fi : Ai −→ Bi and they lift to a morphism

f ′ :
∏

i∈I

Ai −→
∏

i∈I

Bi

by the universal property of products. That is, if πA
i :
∏

i∈I Ai → Ai,
πB
i :
∏

i∈I Bi → Bi, i ∈ I are the canonical projections, then f ′ is the unique
map satisfying πB

i f
′ = fiπ

A
i for every i ∈ I.

(B) There is a collection of morphisms fi : C → Bi i ∈ I and they lift to a
morphism

f ′ : C −→
∏

i∈I

Bi

by the universal property of product. That is, f ′πA
i = fi for every i ∈ I.

In both cases, we denote the resulting morphism f ′ by
∏

i∈I fi. This should not
lead to any confusion as in those cases the domain of the morphism

∏
i∈I fi is

always explicitly mentioned.
The term “module category” always refers to the category Mod–R of right R-

modules, where R is an associative ring with unit, not necessarily commutative.
If A is a category, A ∈ A an object and f : B → C a morphism in A, we

denote the image of f under the covariant (contravariant, resp.) HomA-functor
HomA(A, f) (HomA(f, A), resp.) by f ◦− (−◦f , resp.). This notation is inspired
by the action of such maps: HomA(A, f) takes g to f ◦ g and HomA(f, A) takes g
to g◦f . In particular, do not use the common notation f ∗ and f∗ as the star-index
notation is reserved for different functors (i.e. direct and inverse image functors)
in the context of algebraic geometry.

As is usually the case in algebraic geometry, in order to keep the amount of
notation at a reasonable level, objects and maps defined uniquely up to unique
isomorphism are often identified. This occurs frequently e.g. in discussions of
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various localization morphisms. For example, if R is a commutative ring and
f, g ∈ R are two elements such that

√
(f) =

√
(g), the localization morphisms

R → Rf and R → Rg are usually identified.

1.1 Abelian and Grothendieck categories

We begin by recalling the notions of Abelian and Grothendieck category.

Definition 1.1. An additive category A is called Abelian if

(AB1) every morphism admits a kernel and a cokernel, and

(AB2) given a morphism f : A → B in A, the induced morphism Coim f → Im f
is an isomorphism1.

An Abelian category A is called AB5-category if additionally

(AB3) there exist arbitrary direct sums (i.e. coproducts) in A, and

(AB5) direct limits in A are exact functors - that is, given a directed set I
(considered as a small thin category), the colimit functor

lim−→ : AI → A

is an exact functor.

An AB5-category with a generator is called a Grothendieck category.

Among the important theorems of the general theory of Abelian categories,
we mention the following result of B. Mitchell.

Theorem 1.2 (Mitchell’s Embedding Theorem, [Mit65, Theorem 7.2]). Sup-
pose that A is a small Abelian category. Then there exists a (unitary, not neces-
sarily commutative) ring R and a fully faithful exact (additive) functor

F : A −→ Mod–R.

An important consequence of Mitchell’s Theorem is that small diagrams can
be chased element-by-element instead of using universal properties of kernels,
cokernels, etc. This is very practical when one wishes to extend certain results of
homological algebra from the concrete module category to an abstract Abelian
one. This serves as a justification for the common diagram-chasing methods in
abstract setting, such as the Five Lemma, Four Lemma, behavior of pushouts
and pullbacks with respect to short exact sequences, etc. For further details and
a precise formulation, the reader is referred to [Mit65, Metatheorem 7.3].

Convenient as the above theorem may be, much more important role for our
purposes plays the well-known embedding theorem of Gabriel and Popescu.

Theorem 1.3 (Gabriel-Popescu Theorem, [GP64]2). Let A be a Grothendieck
category and G ∈ A its generator. Let R be the ring of endomorphisms of G.
Then the functor

HomA(G,−) : A −→ Mod–R

is fully faithful, and admits a left adjoint which is exact.

1Recall that Im f = Ker (Coker f) and dually, Coim f = Coker (Ker f).
2Note that instead of N. Popescu, N. Popesco is listed among the authors of the paper; this

is very likely a misspelling in the paper.
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Thus, by the Gabriel–Popescu Theorem, every Grothendieck category can be
treated as a reflective subcategory of the category Mod–R for a ring R, with
the reflector being exact. Such subcategories are called Giraud subcategories (cf.
[Ste75, X.1]). Among the important consequences, we mention the following.

Corollary 1.4 ([Ste75, X.4.3, X.4.4]). Let A be a Grothendieck category. Then

(1) A is complete, and

(2) A has enough injective objects.

The statement (2) can be further strengthened. The following theorem by
Gabriel gives a stronger condition.

Theorem 1.5 ([Gab62, Ch. II, Theorem 2]). LetA be a Grothendieck category.
Then A has injective hulls.

Proof (sketch). If A ∈ A is an object, by (2) we can treat A as a subobject of an
injective object E. The axiom (AB5) implies that A has a pseudocomplement3

A′ in E - it is the union of all subobjects B of E with the property A ∩ B.
Similarly, one constructs a pseudocomplement A′′ of A′ containing A. Now it is
enough to observe that A′′ is a maximal essential extension of A in E and that
it is complemented by A′, so it splits. Thus, A′′ is injective and A →֒ A′′ is
essential.

One more thing that is crucial to us is the fact that every Grothendieck
category A possesses an injective cogenerator. This was stated without proof by
Grothendieck in [Gro57]. We present the proof here for reader’s convenience.

Theorem 1.6. LetA be a Grothendieck category. Then there exists an injective
cogenerator W of A.

Proof. Consider the generator G of A and put R = EndA(G). By the fact
that the full embedding of A to Mod–R from Theorem 1.3 is a right adjoint,
it preserves kernels, hence it takes monomorphisms to monomorphisms. As a
consequence, the lattice Sub(G) of all subobjects of G (in A) is small and thus,
the lattice of all quotients of Quo(G) is small as well4. For each quotient of G,
fix a representative fi : G ։ Gi, so that we have a set of representatives

fi : G Gi, i ∈ I

(indexed by a set I).

For each i ∈ I, choose an embedding gi : Gi →֒ Ei where Ei is injective. Then
put

W :=
∏

i∈I

Ei .

3For a lattice L with bottom element 0, by pseudocomplement of x ∈ L it is meant an
element y ∈ L maximal with respect to the property x ∧ y = 0.

4Quo(G) is isomorphic or anti-isomorphic to Sub(G), depending on convention. The main
point is that a quotient corresponds to the kernel of the quotient map, and conversely, every
subobject prescribes the quotient given by cokernel of the inclusion map.
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W is clearly injective. For i ∈ I, denote by ιi : Ei → W the inclusion coming
from the biproduct structure

W = Ei ⊕
∏

j∈I\{i}

Ej .

Let us verify that W is an injective cogenerator. Since W is injective, it is
enough to show that there is a nonzero morphism A → W for each nonzero object
A ∈ A.

Suppose that A 6= 0 is a nonzero object. Since G is a generator, there is a
nonzero morphism f : G → A. Consider its epi-mono factorization

f = me, m monic, e epic.

The epimorphism e belongs to a class of the lattice of quotients of G so there is
an index i ∈ I admitting a commutative diagram

Im e

G A

Gi .

m

fi

e

≃

This means that we may without loss of generality assume that e = fi (by replac-

ing m by its composition with the vertical isomorphism in the above diagram).
Note that Gi 6= 0 since f 6= 0.

Since m is monic, by injectivity of W there is a morphism g fitting into the
commutative diagram

Gi A

W .

m

ιigi g

As Gi 6= 0, the monomorphism ιigi is nonzero and thus, g : A → W is
a nonzero morphism. Since A was chosen as an arbitrary nonzero object, this
shows that W is an injective cogenerator.

The definition of Grothendieck category is, in contrast to the definition of
Abelian category, not self-dual – that is, the opposite category of a Grothendieck
category is not Grothedieck in general. One way to see this is to observe that
inverse limit functors are typically not exact in such Grothendieck categories as
Mod–R.

Another way to see that the opposite category of a Grothendieck category is
not Grothendieck in general is to make use of the following observation (which
will be useful by itself later on).

Remark 1.7. Suppose thatAi, i ∈ I, is a collection of objects in a Grothendieck
category A. We claim that there is a canonical monomorphism

⊕
i∈I

Ai

∏
i∈I

Ai .

For each finite subset I ′ ⊆ I, one has a canonical isomorphism
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⊕
i∈I′

Ai ⊕
∏

i∈I\I′
Ai

∏
i∈I

Ai ,
≃

in particular, there is a monomorphism

⊕
i∈I′

Ai

∏
i∈I

Ai

iI′

(obtained as the composition of the embedding of
⊕

i∈I′ Ai into the biproduct⊕
i∈I′ Ai⊕

∏
i∈I\I′ Ai, and the canonical isomorphism mentioned above). Observe

that iI′ ↾⊕i∈I′′ Ai
= iI′′ for any two finite subsets I ′′ ⊆ I ′ ⊆ I. It follows that there

is a monomorphism

⊕
i∈I

Ai = lim−→
I′⊆Ifinite

⊕
i∈I′

Ai

∏
i∈I

Ai ,
lim−→ iI′

since direct limits in a Grothendieck category are exact functors by (AB5) and
thus, they preserve monomorphisms.

Again the dual property does not hold e.g. for the category of Abelian groups,
since there is no epimorphism Z×I → Z⊕I if I is a countable (infinite) set5. Thus,
the category Abop is not a Grothendieck category.

Let us conclude this section by introducing some of the notation used through-
out the rest of the thesis.

Notation 1.8. Let A,B, C be Abelian categories. For a class of objects S ⊆ A,
we use the following notation:

(1) Add(S) denotes the class of all direct summands of arbitrary direct sums of
objects from S.

(2) Prod(S) denotes the class of all direct summands of arbitrary direct products
of objects from S.

(3) If F : A → B an additive functor, we denote by KerF the class of objects
(or the full subcategory on those objects) A ∈ A such that F (A) = 0.

(4) If F : A × B → C is an additive bifunctor (meaning that it is additive
separately in both arguments), we put

KerF (S,−) =
⋂

S∈S

KerF (S,−).

That is, KerF (S,−) is the class (full subcategory) of all objects B such that
F (S,B) = 0 for all S ∈ S.

(5) In the same situation as in (4), if T is a class of objects of B, we denote the
fact that F (S, T ) = 0 for all S ∈ S and all T ∈ T by F (S, T ) = 0.

(6) S⊥ denotes Ker Ext1A(S,−) and ⊥S denotes Ker Ext1A(−,S)6.

5This is because Z is a slender Z-module. See e.g. [GT12, Chapter 4].
6If there are not enough injectives or projectives in A, we use the Yoneda’s definition of Ext

(Appendix, Section D).
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(7) Gen(S) denotes the class of all objects generated by S, that is, the class of
all epimorphic images of objects from Add(S). Dually, Cogen(S) is the class
of all objects cogenerated by S, i.e. the class of all subobjects of objects from
Prod(S).

(8) Lim−−→S denotes the class of all direct limits of objects in S. That is, A ∈ Lim−−→S

if there is a direct system D consisting of objects from S (and morphisms
between them in A) such that A = lim−→D.

(9) If S = {S}, we use plain S instead of {S} in the notation above . That is,
⊥S denotes ⊥{S}, and so on.

1.2 Tilting and cotilting objects

For the purposes of this section, the reader may assume that the functor
ExtiA in a Grothendieck category A is defined as the right derived covariant
HomA functor; this makes always sense since there are enough injectives in A
by Corollary 1.4 (2). A more detailed discussion of Ext and its behaviour in a
Grothendieck category will be given in Chapter 3 (Section 3.1).

In this section, let R be a (unitary, not necessarily commutative) ring.

Definition 1.9. Let n be a nonnegative integer.
An R-module T is called n-tilting provided that the following conditions hold:

(T1) projdimT ≤ n.

(T2) ExtiR(T, T
⊕I) = 0 for every set I and every i ≥ 1.

(T3) There is an exact sequence

0 R T0 T1 · · · Tr 0

with T0, T1, . . . , Tr ∈ Add(T ).

Dually, we call an R-module C n-cotilting if the following conditions hold:

(C1) injdimC ≤ n.

(C2) ExtiR(C
×I , C) = 0 for every set I and every i ≥ 1.

(C3) There is an exact sequence

0 Cr · · · C1 C0 W 0

whereW is an injective cogenerator ofMod–R and C0, C1, . . . , Cr ∈ Prod(C).

If a module T is n-tilting (n-cotilting, resp.), the exact sequence in the axiom
(T3) ((C3), resp.) can always be chosen in a way that r ≤ n. See [GT12,
Lemma 13.10 (b) and Lemma 15.14 (b)] for proof.

Using this fact, note that 0-tilting modules are precisely projective generators
and 0-cotilting modules are precisely injective generators for Mod–R.

10



A starting point for the definition of 1-tilting and 1-cotilting object in a
Grothendieck category is the following characterization of 1-tilting and 1-cotilting
modules by Colpi and Trlifaj7.

Theorem 1.10 ([CT95b, Proposition 1.3]). Let R be a ring.

(1) A right R-module T is 1-tilting if and only if T⊥ = Gen(T ).

(2) A right R-module C is 1-cotilting if and only if ⊥C = Cogen(C).

Definition 1.11. (1) If T is a 1-tilting module, we call the class T⊥ = Gen(T )
the 1-tilting class associated to T . Two 1-tilting modules T, T ′ are called
equivalent if T⊥ = (T ′)⊥.

(2) If C is a 1-cotilting module, we call the class ⊥C = Cogen(C) the 1-cotilting
class associated to C. Two 1-cotilting modules C,C ′ are called equivalent if
⊥C = ⊥C ′.

Remark 1.12. It can be proved that 1-tilting modules T, T ′ are equivalent if
and only if Add(T ) = Add(T ′), that is, if each one of them is a direct summand
in a direct sum of copies of the other. Dually, 1-cotilting modules C,C ′ are
equivalent if and only if Prod(C) = Prod(C ′), i.e. C is a direct summand of
suitable direct power of C ′ and vice versa. We will not need this fact. The reader
is referred to [GT12, Lemma 13.16, Remark 15.6] for proof.

The following definition of 1-tilting object in a Grothendieck category was
given in [Col99], and recently used in [CF07], [AHK15].

Definition 1.13. Let A be a Grothendieck category. An object T ∈ A is called
1-tilting if Gen(T ) = T⊥.

If this is the case, the class Gen(T ) = T⊥ is called the 1-tilting class associated
to T .

We now give a definition of 1-cotilting object in a Grothendieck category that
is used throughout this thesis.

As stated in Corollary 1.4 (2), any Grothendieck category always has enough
injectives. The dual fact, however, does not necessarily hold: a Grothendieck
category does not always possess enough projectives (this is be demonstrated
in the next section, Remark 1.29). As a result, any class of the form S⊥ is
always cogenerating, but the dual statement does not need to hold, i.e. ⊥S is not
necessarily generating. This asymmetry results in the seemingly-asymmetrical
definition of the dual 1-cotilting object.

Definition 1.14. Let A be a Grothendieck category. An object C ∈ A is called
1-cotilting if Cogen(C) = ⊥C and this class is generating.

If C is a 1-cotilting object, the class Cogen(C) = ⊥C is called the 1-cotilting
class associated to C.

To close this section, let us state the classification theorem for 1-cotilting
classes over a commutative Noetherian ring proved by Angeleri Hügel, Posṕı̌sil,
Štov́ıček and Trlifaj in [AHPŠT14, Theorem 2.11].

7The characterization was later generalized for n-tilting and n-cotilting modules by S. Baz-
zoni, see [Baz04, Theorem 3.11].
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Theorem 1.15. Let R be a commutative Noetherian ring. Then there are
bijections between the sets of

(1) 1-tilting classes in Mod–R,

(2) 1-cotilting classes in Mod–R,

(3) specialization closed subsets Y ⊆ SpecR such that AssR ∩ Y = ∅,

(4) hereditary torsion pairs (T ,F) in Mod–R with R ∈ F .

The theorem will serve us as a guidance as we pass from the category of
modules over a Noetherian commutative ring to the category of quasi-coherent
sheaves over a Noetherian scheme.

1.3 OX-modules and quasi-coherent sheaves

The purpose of this section is to introduce the categories of OX-modules and
of quasi-coherent sheaves on a scheme X as our main examples of Grothendieck
categories. It also contains description of the main tools and results of the theory
of quasi-coherent sheaves used throughout the rest of the thesis.

To make the presentation more to the point, we do not recall the definition of
general sheaf (of commutative rings, or Abelian groups) on a topological space,
or the notion of scheme at this moment. The reader is referred to Sections A and
B of Appendix, where a brief overview of these topics is presented. Alternatively,
we refer to the numerous algebraic geometry textbooks, e.g. [Har77], [GW10], or
to the original source [GD60].

The overview presented in this section is far from comprehensive; the reason
is, again, the effort to make this section as brief and compact as possible. Some of
the proofs are only informally sketched and some are omitted completely. Despite
this, we try to at least outline the arguments proving that the category of quasi-
coherent sheaves on a scheme is a Grothendieck category, and describe differences
from the module categories (most notably, not having enough projective objects).

Regarding schemes, we only briefly comment on some of the scheme-theoretic
notation we use (cf. Notation B.5). If x ∈ X is a point of a scheme, given an
open affine neighbourhood U ⊆ X of x, there is a prime ideal in the ring OX(U)
corresponding to the point; this prime ideal is denoted by px, or qx (in case we
need to consider two such affine open neighbourhoods, and the corresponding
prime ideals, at once). The unique maximal ideal of the stalk of the structure
sheaf OX,x is denoted by mx. The field OX,x/mx is called the residue field at x
and it is denoted by κ(x). Recall the fact (of commutative algebra) that κ(x) can
be alternatively computed as the fraction field of the integral domain OX(U)/px.

If X is a scheme and SpecR = U ⊆ X is an affine open subset, recall that
the collection of all distinguished open sets

Df = {p ∈ SpecR | f /∈ p}, f ∈ R

forms a basis of the (Zariski) topology on U . Since all the sets Df are affine open,
and X has a cover by affine open sets, it follows that X has a basis consisting of
affine open sets (cf. Remark B.4).

Let us start by recalling the definition of an OX-module.

12



Definition 1.16. Let X be a scheme. An OX-module consists of a sheaf of
Abelian groups F endowed with an OX(U)-module action8 on F (U) for each
open subset U ⊆ X such that the restrictions of the sheaf F FU

V is an OX(U)-
module homomorphism for every pair of open sets V ⊆ U ⊆ X. That is, given
two open sets U ⊆ V ⊆ X, the following diagram is commutative:

OX(V )× F (V ) F (V )

OX(U)× F (U) F (U)

resVU×FV
U FV

U

(the horizontal arrows are the respective module action maps).

A morphism of OX-modules F and G is a morphism of sheaves of Abelian
groups f : F → G such that for every open set U ⊆ X, the map fU : F (U) → G (U)
is an OX(U)-module homomorphism.

Denote by Mod–OX the category of all OX-modules.

Remark 1.17. Suppose that F is an OX-module and x ∈ X is a point. Given
an open neighbourhoods U, V of x, a function f ∈ OX(U) and a section of the
sheaf F s ∈ F (U), define

fx · sx := ((f ↾U∩V ) · (sU∩V ))x

(recall that fx, sx denotes the germ of f, s, resp., in the stalk OX,x, Fx resp.,
cf. Definition A.9). This definition is correct in the following sense: if sx = s′x
and fx = f ′

x for f ∈ OX(U), f ′ ∈ OX(U
′), and s ∈ F (V ), s′ ∈ F (V ′), then by

definition of stalks, it is possible to find a neighbourhood of x W ⊆ U∩U ′∩V ∩V ′

small enough, so that
f ↾W= f ′ ↾W , s ↾W= s′ ↾W .

Thus, using the commutative diagram from Definition 1.16 twice we have that

((f ↾U∩V ) · (s ↾U∩V )) ↾W=((f ↾W ) · (s ↾W ))

=((f ′ ↾W ) · (s′ ↾W )) = ((f ′ ↾U ′∩V ′) · (s ↾U ′∩V ′)) ↾W ,

therefore we obtain (using the definition of stalks again)

((f ↾U∩V ) · (s ↾U∩V ))x =(((f ↾U∩V ) · (s ↾U∩V )) ↾W )x

=(((f ′ ↾U ′∩V ′) · (s′U ′∩V ′)) ↾W )x = ((f ↾U ′∩V ′) · (s ↾U ′∩V ′))x.

That is, fx · sx is independent of the choice of f, s, it depends on the germs only.
A similar line of reasoning shows that the map · : OX,x × Fx → Fx defines a
structure of OX,x-module on Fx.

The category of OX-modules is always an Abelian category, which we state
without proof. The second part of the statement is a useful criterion of exactness
in Mod–OX .

Proposition 1.18 ([GW10, (7.13)]). Let X be a scheme. The category of
OX-modules is an Abelian category. Moreover, a sequence of OX-modules and
OX-module morphisms

8For a commutative ring R, by an R-module action on an Abelian group M it is meant a
map · : R×M → M making M into an R-module.

13



F ′ F F ′′α β

is exact if and only if the sequence

F ′
x Fx F ′′

x

αx βx

is exact sequence of OX,x-modules for all x ∈ X.

Remark 1.19. In [GW10, (7.13)], the proof of the assertion listed in Proposi-
tion 1.18 is done by an explicit construction of kernels, cokernels and biproducts.
An important fact is that kernels can be computed “open set by open set”. That
is, given a morphism f : F → G of OX-modules, the presheaf of Abelian groups
K defined by

K (U) := Ker fU , U ⊆ Xopen

is actually a sheaf, and since each fU is an OX(U)-module homomorphism, K (U)
is naturally an OX(U)-module. Consequently, K is an OX-module, and together
with the set-theoretical inclusions to F , it is the kernel of f in Mod–OX . As
a consequence, monomorphisms in Mod–OX can be realized as (collections of)
set-theoretical inclusions in the category Mod–OX .

The fact that the category Mod–OX is a Grothendieck category was proved
by Grothendieck in [Gro57]. This is, however, not enough for our purposes, since
we are primarily interested in the full subcategory of OX-modules described by
the following definition.

Definition 1.20. An OX-module is quasi-coherent if for every affine open sub-
set U ⊆ X and every f ∈ OX(U), there is an isomorphism F (Df )

≃
→ F (U)f

such that the following square

F (U) F (U)

F (Df ) F (U)f

resUDf
locf

≃

commutes (here locf denotes the localization morphism with respect to f). In

other words, the restriction from U to Df is the localization of F (U) with respect
to f .

We will call quasi-coherent OX-modules quasi-coherent sheaves, as X will be
usually clear from the context. Denote QCohX the full subcategory of Mod–OX

consisting of all quasi-coherent sheaves.

There are several classes of objects in QCohX of interest. In order to define
coherent sheaves in particular, recall that given a commutative ring R, an R-
module M is said to be coherent if M is finitely generated and each finitely
generated submodule of M is finitely presented.

Definition 1.21. Let X be a scheme and F a quasi-coherent sheaf.

(1) F is called coherent if for every affine open subset U ⊆ X, F (U) is a coherent
OX(U)-module.
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(2) F is finite rank locally free if there is an affine open cover X =
⋃

i∈I Ui such

that F↾Ui
is isomorphic to (OX↾Ui

)⊕ni for every i ∈ I, where ni are suitable
integers9.

Denote the full subcategory of QCohX consisting af all coherent sheaves by CohX .

Let us first comment on the heuristical reasons why is the category of quasi-
coherent sheaves preferable to the category of all OX-modules.

A geometric motivation for the notion of quasi-coherent sheaf is that quasi-
coherent sheaves are those OX-modules that restrict to smaller open sets in a
similar way as does the structure sheaf of a scheme. This is apparent if the
following construction of quasi-coherent sheaves over affine schemes is compared
to the construction of the affine scheme itself (cf. Construction B.2).

Construction 1.22. Let R be a commutative ring and M an R-module. Con-
sider the affine scheme X = SpecR. Define a quasi-coherent sheaf M̃ on X as
follows:

1. When U = Df is a distinguished open set (if U = D1 = SpecR in particu-
lar), put

M̃(U) = Mf

(i.e. the localization of M with respect to {fk | k ∈ N}). Note that if
Df = Dg for some f, g ∈ R, there is a canonical isomorphism Mf ≃ Mg

(i.e. the unique isomorphism making the diagram

M

Mf Mg

locf locg

≃

commute, locf , locg being the localization morphisms). That is, the module
Mf is unique up to a canonical isomorphism.

2. If Df ⊆ Dg is a pair of distinguished open sets, we have Df = Dfg, hence
Mf ≃ Mfg can be thought of as (Mg)f , the localization of Mg whith respect

to the multiplicative set {(f/1)k | k ∈ N}. Put
(
M̃(Dg)

res
Dg
Df

−→ M̃(Df )

)
:=

(
Mg

locf
−→ Mgf

)
.

Note that this is again uniquely determined up to a canonical isomorphism.

3. Extend the collection to arbitrary open sets the only possible way so that
the gluing axiom10 is satisfied. That is, whenever U ⊆ X is an open set,

9Coherent sheaves can also be defined using a chosen affine open cover only. That is, a
quasi-coherent sheaf F is coherent if and only if there is an affine open cover X =

⋃
i∈I Ui

such that each F (Ui) is a coherent OX(Ui)-module. This is because the assumptions of the
Affine Communication Lemma (Lemma B.6) are satisfied. The definition of locally free sheaf,
however, cannot be straightforwardly reformulated to the form analogous to the definition of
coherent sheaves.

10Cf. Remark A.2.
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consider all open sets Ui, i ∈ I, distinguished in X and contained in U , and
all restriction among them (defined in the previous step). Then put

M̃(U) := lim
i∈I

M̃(Ui).

For every pair of open sets V ⊆ U ⊆ X, we obtain a unique morphism

resUV : M̃(U) → M̃(V )

coming from the universal property of limit.

A similar construction produces a morphism of quasi-coherent sheaves f̃ : M̃ → Ñ

out of an R-module homomorphism f : M → N , making (̃−) into a functor

(̃−) : Mod–R → QCohX .

An algebraic motivation for working with quasi-coherent sheaves as opposed
to all OX-modules is that quasi-coherent sheaves on a scheme directly generalize
modules over a commutative ring, in the sense that QCohX is equivalent toMod–R
if X = SpecR is an affine scheme. This can be inferred from Construction 1.22:
every step of the construction is necessary when trying to construct a quasi-
coherent sheaf with the module of global sections being M . Thus, every quasi-
coherent sheaf F on an affine scheme X is of the form M̃ (for M = F (X)), and

similarly, every morphism f of quasi-coherent sheaves on X is of the form f̃X .
The non-trivial part is to verify that the above construction always works, i.e.
produces a quasi-coherent sheaf. But it is, indeed, always the case (cf. [GW10,
(7.9)]). Let us state the conclusion of this discussion precisely.

Proposition 1.23 ([GW10, Corollary 7.17], [Har66, II.5.5]). Let R be a com-

mutative ring. Denote X = SpecR. The functor (̃−) : Mod–R → QCohX yields
an equivalence of categories, with the inverse functor being the global sections
functor11

Γ(X,−) : F 7→ Γ(X,F ) = F (X).

Moreover, the functor (̃−) takes coherent modules precisely to coherent sheaves,
and finitely generated projective modules correspond precisely to finite rank lo-
cally free sheaves.

We now turn our attention to the fact that the category QCohX is Grothendieck,
in particular Abelian. The latter assertion, together with the axiom (AB3), is a
consequence of the following proposition.

Proposition 1.24 ([GW10, Corollary 7.19]). Let X be a scheme.

(1) If f : F → G is a morphism of quasi-coherent sheaves on X, then the OX-
modules Ker f, Coker f and Im f (computed in Mod–OX) are quasi-coherent.
That is, the kernels, cokernels and images in Mod–OX and in QCohX agree
for morphisms from QCohX .

(2) A direct sum of a family of quasi-coherent sheaves (computed, again, in
Mod–OX) is again quasi-coherent.

11Cf. Definition A.5.
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(3) If F is a quasi-coherent sheaf and Fi, i ∈ I a collection of quasi-coherent
subsheaves of F , then the sum

∑
i∈I Fi is again quasi-coherent. If the set I

is finite, then the intersection
⋂

i∈I Fi is quasi-coherent.

In order to verify the axiom (AB5), it is enough to use Proposition 1.24
together with the following observation.

Lemma 1.25. Consider a morphism of quasi-coherent sheaves f : G → H .
Then f is a monomorphism in Mod–OX if and only if f is a monomorphism in
QCohX .

Proof. Every monomorphism in Mod–OX is clearly a monomorphism in QCohX ,
since QCohX is a subcategory of Mod–OX .

Conversely, if f : F → G is a monomorphism in QCohX , it is a monomor-
phism in Mod–OX : since the kernel K of f in Mod–OX is quasi-coherent by
Proposition 1.23 (1), it is easy to see that it is the kernel of f in QCohX , hence
K = 0.

The subcategory QCohX of Mod–OX is thus closed under direct sums, kernels
and cokernels of morphisms from QCohX . In particular, it is closed under direct
limits12. Additionally, the monomorphisms in QCohX and Mod–OX agree by
Lemma 1.25. Using the fact that direct limits are exact in Mod–OX , we thus
infer that direct limits are exact in QCohX as well. Thus, QCohX is an AB5-
category.

What remains is to verify that QCohX admits a generator. This is more subtle
than in the case of the category of OX-modules13. The following line of arguments
is the approach of O. Gabber.

Given an infinite cardinal κ, let us call a quasi-coherent sheaf F of type κ if
for each open set U ⊆ X, the OX(U)-module F (U) is (< κ)-generated. Gabber
proved the following.

Lemma 1.26 (Gabber, [Con00, Lemma 2.1.7]14). Given an arbitrary scheme
X, there exists an infinite cardinal κ such that every quasi-coherent sheaf F on
X is the sum of its quasi-coherent subsheaves of type κ.

On a given scheme X, there are clearly, up to isomorphism, set-many quasi-
coherent sheaves of type κ. More precisely, there is a set S and a collection
{F s | s ∈ S} of quasi-coherent sheaves of type κ on X such that each quasi-
coherent sheaf F of type κ is isomorphic to F s for some s; as a consequence,
the quasi-coherent sheaf

⊕
s∈S F s is a generator for the category QCohX . Thus,

QCohX admits a generator, hence it is a Grothendieck category.
The importance of Gabber’s result is in the fact that it ensures the existence

of a generator of QCohX for arbitrary scheme X. It is, however, not needed
when suitable finiteness conditions are imposed on X. An example of this is the

12Or, more generally, all colimits.
13In order to produce a small family of generators for Mod–OX , Grothendieck uses an OX -

module construction called extension by zero. The problem is that this construction typically
produces OX -modules that are not quasi-coherent.

14The assertion is stated without proof in [Con00]. Apparently, the proof itself was written
down only later, in a generalized version, by E. Enochs and S. Estrada as Corollary 3.5 in
[EE05].
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following well-known exercise from Hartshorne’s book [Har77] on extensions of
coherent sheaves.

Theorem 1.27 ([Har77, Exercise II.5.15], [Sta16, Tag 01PF15]). Let X be a
Noetherian scheme, U ⊆ X be an open subset and G be a coherent sheaf on U .

(1) There is a coherent sheaf G ′ on X extending G , i.e. such that G ′
↾U = G .

(2) If F is a quasi-coherent sheaf on X such that G ⊆ F↾U , then there is a
coherent subsheaf G ′ ⊆ F on X such that G ′

↾U = F ′
↾U .

A consequence of Theorem 1.27 is that κ can be taken as ℵ0 in Gabber’s
lemma when X is Noetherian.

Corollary 1.28. Let X be a Noetherian scheme. Then every quasi-coherent
sheaf F on X is a directed union of its coherent subsheaves.

Proof. It is enough to show that given any open set U ⊆ X and any section
s ∈ F (U), there is a coherent subsheaf G of F containing s. Consider an affine
open cover16 of U , U =

⋃k

i=1 Ui. For each i, put si := s ↾Ui
. By Theorem 1.27 (2),

the quasi-coherent sheaf 〈̃si〉 can be extended to a coherent subsheaf G i on X.
In particular, si ∈ G i(Ui).

Now consider the coherent subsheaf

G =
k∑

i=1

G i ⊆ F .

G has the property that si ∈ G (Ui) for every i. It follows that s ∈ G (U), since
si’s are gluable collection of sections17. This finishes the proof.

Example 1. A basic example of a non-affine scheme is the projective line
P1
k = Proj k[x0, x1], where k is an algebraically closed field18.
The following is a rough desription, without any proof, of the category CohP1

k
.

A very thorough discussion of this category is given in [CK09, Chapter 5].
The category CohP1

k
is a Krull-Shmidt category, hence every coherent sheaf F

decomposes as a direct sum of indecomposable coherent sheaves.
There is a family of indecomposable, pairwise non-isomorphic, locally free

sheaves O(n), n ∈ Z, such that O(0) is the structure sheaf OX . We call these
sheaves locally free sheaves of rank 1, or line bundles19. For each n,m ∈ Z we
have

HomP1
k
(O(m),O(n)) ≃ (k[x0, x1])n−m ,

15As of May 2nd 2016, the Lemma under the Tag 01PF was listed on the Stacks Project site
[Sta16] as Lemma 27.22.1.

16Note that the affine open cover is taken finite. This is because if X is a Noetherian scheme,
any subspace of X is quasi-compact, see Remark B.8.

17Cf. Remark A.2.
18An explicit construction of P1

k can be found in Appendix, Example B.9. Proj is a (func-
torial) construction that makes Z≥0-graded k-algebras into projective k-schemes, in some ways
analogous to the Spec functor. For details, see [GW10, (13.2)].

19The terminology stems from the fact that a locally free sheaf of rank 1 can be obtained
as the sheaf of sections of a 1-dimensional vector bundle over X. This was proved by Serre in
[Ser55].
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where (k[x0, x1])n−m denotes the (n − m)-graded part of k[x0, x1] (graded by
degree). In particular, there are no nonzero morphisms O(m) → O(n) if m > n.

For each closed point x ∈ X and every integer r > 0, there is a short exact
sequence

0 O(−rd(x)) O(0) Ox,r 0 ,

where d(x) denotes an integer associated to the point x in a suitable way20.
This prescribes an indecomposable coherent sheaf Ox,r of length r. These are
called torsion indecomposable sheaves.

The above is a comprehensive list of indecomposable coherent sheaves of P1
k.

Remark 1.29. In contrast to the case of the category Mod–R, direct products
in a general Grothendieck category do not need to be exact. More precisely, given
an infinite set I, the functor ∏

i∈I

: AI −→ A

(which takes collection of objects indexed by I to their product) preserves kernels
(it is the right adjoint to the diagonal embedding functor) but it does not preserve
cokernels in general.

The phenomenon is not rare among the categories we are interested in, i.e.
A = QCohX for a (non-affine) scheme X. Even in the case when X = P1

k, the
exactness of direct product fails. This is demonstrated by H. Krause in [Kra05,
Example 4.9]21.

Another problem is that the category QCohX does not have enough projectives
in general. This can actually be viewed as a consequence of the non-exactness of
direct product functors: thus, the category P1

k does not have enough projectives.
To demonstrate this, suppose that QCohX has enough projectives. We prove

that the direct product functors are exact in QCohX
22. Since there is a gener-

ator for QCohX , this in particular means that there is a projective generator P
(obtained as a projective sheaf admitting an epimorphism onto a generator). Put
R = EndX(P).

The functor
HomX(P,−) : QCohX −→ Mod–R

is fully faithful (since P is a generator, e.g. by Theorem 1.3), and additionally,
it is exact (since P is projective). A general fact is that a fully faithful exact
functor reflects exactness, i.e. if

(ξ) 0 F ′ F F ′′ 0

is a sequence of quasi-coherent sheaves such that the sequence

20The point x corresponds to a homogeneous prime ideal p of k[x0, x1] and d(x) is chosen
as the degree of a homogeneous polynomial P such that (P ) = p. More details are in [CK09,
Chapter 5].

21The example is attributed to B. Keller.
22The author learned of this fact through an online discussion from L. Positselski. Although

the proof was worked out independently, it is certainly known. The proof is presented here
since the author of this thesis was not able to find any reference for it.
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0 HomX(P,F ′) HomX(P,F ) HomX(P,F ′′) 0

is exact, then (ξ) is itself exact.
Now, suppose that

(ξi) 0 F ′
i Fi F ′′

i 0 , i ∈ I

is a collection of short exact sequences in QCohX . Applying the product functor∏
i∈I yields a complex

(
∏

i ξi) 0
∏
i∈I

F ′
i

∏
i∈I

Fi

∏
i∈I

F ′′
i 0

which is taken by the functor HomX(P,−) to the complex

0 HomX

(
P,

∏
i∈I

F ′
i

)
HomX

(
P,

∏
i∈I

Fi

)
HomX

(
P,

∏
i∈I

F ′′
i

)
0

and this complex is, in turn, isomorphic to

0
∏
i∈I

HomX(P,F ′
i )

∏
i∈I

HomX(P,Fi)
∏
i∈I

HomX(P,F ′′
i ) 0

by the fact the universal property of products, i.e. by the fact that HomX(P,−)
preserves direct products. But this resulting complex is just a direct product of
the exact sequences

0 HomX(P,F ′
i ) HomX(P,Fi) HomX(P,F ′′

i ) 0 ,

and thus, is exact since direct products are exact in Mod–R. By the fact that
HomX(P,−) reflects exactness it thus follows that the original product complex
(
∏

i ξi) is exact. That is, X has the property that direct products are exact in
QCohX . The above mentioned example thus shows that QCohP1

k
does not have

enough projectives.

Remark 1.30 ([GW10, (7.8)]). Let us close this section by a remark on functors
between the categories of OX-modules induced by morphisms of schemes.

Consider a morphism of schemes

π : X −→ Y.

Then the pushforward functor π∗ : AbX → AbY (as described in Definition A.6
in Appendix) takes an OX-module to an OY -module; more precisely, there is a
natural way how to make the sheaf π∗F , given the fact that F is an OX-module,
into an OY -module. This way, a functor

π∗ : Mod–OX → Mod–OY

is obtained. The functor π∗ is called the direct image functor induced by π.
The analogous statement for the left adjoint π−1 : AbY → AbX does not hold.

However, the direct image functor still admits an adjoint, denoted by

π∗ : Mod–OY → Mod–OX .
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The functor π∗ is called the direct image functor induced by π.
Inverse image functors enjoy the property that quasi-coherence is preserved

by them, i.e. they take quasi-coherent sheaves to quasi-coherent sheaves (see
[GW10, Remark 7.23] for proof). This is not true for the direct image functor,
but it is true in several important cases. In particular, the fact that π∗ preserves
quasi-coherence when π is quasi-compact and quasi-separated morphism23 (see
[GW10, Corollary 10.27] for proof).

1.4 Injective OX-modules and quasi-coherent sheaves

This section is devoted to the investigation of the structure of injectives on
a locally Noetherian scheme. The goal is to demonstrate that the structure of
injective quasi-coherent sheaves on a locally Noetherian scheme resembles the
structure of injective modules over a Noetherian ring. The main reference used
in this section is [Har66, II.7] which treats primarily the structure of injective
OX-modules.

The following fact will be crucial to the consequent arguments.

Proposition 1.31 ([Har66, proof of II.7.18]). Let X be a locally Noetherian
scheme. Then the subcategory QCohX of Mod–OX is closed under injective hulls.
That is, whenever F is a quasi-coherent sheaf and E is its injective hull as an
OX-module, then E is quasi-coherent.

We now proceed to the description of the structure of injectives in QCohX
if X is locally Noetherian. We describe a family J (x), x ∈ X, of injective
quasi-coherent sheaves that plays similar role as the injective hulls of the inde-
composable R-modules in the affine (Noetherian) case. In order to do that, we
need first to describe a natural embedding SpecOX,x → X for every point x ∈ X.

Let X be a locally Noetherian scheme. For x ∈ X, denote the set of all
generizations of x by Y . That is, Y consists of all points y such that x ∈ {y}.
Clearly we have that

Y =
⋂

{U ⊆ X | U is open and x ∈ U},

and using the fact that the set of all affine open sets forms a basis of the topology
on X, we obtain

Y =
⋂

{U ⊆ X | U is affine open and x ∈ U}.

Fix an affine open neighbourhood U of x. By the above considerations, we
have Y ⊆ U . Interpreting the (topological) closure operator in SpecA, where
A = OX(U), we immediately see that

Y = {y ∈ U | py ⊆ px}.

The stalk OX,x can be computed using U as the localization24

OX(U)
loc
−→ OX(U)px = OX,x,

23see [GW10, Definition 1.10 and Definition 10.22] for the definitions of quasi-compact mor-
phism, quasi-separated morphism, resp.

24Cf. Construction B.2. The reason is that the structure sheaf OX behaves over an affine
open set as an affine scheme, and for affine scheme the assertion holds. Similarly, given a
quasi-coherent sheaf F and affine open set U , the stalk Fx may be computed as F (U)px

.
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which induces an embedding

SpecOX,x
j

−→ SpecOX(U) = U.

Composition of j with the open embedding of schemes U ⊆ X yields an embed-
ding of schemes

SpecOX,x

i
→֒ X

with i(SpecOX,x) = Y . This embedding is independent of the choice of U . If V
is another affine open neighbourhood of x and j, j′ denote the respective embed-
dings of SpecOX,x into U and V , we can choose an affine open neighbourhood
x ∈ W ⊆ U ∩ V which is distinguished in both U and V , and compute the embed-
ding j′′ of SpecOX,x into W . We have a commutative diagram (with all arrows
being suitable localizations) of ring homomorphisms:

OX(U)

OX(W ) OX,x .

OX(V )

resUW

loc

loc

resVW

loc

Applying the Spec functor and filling in the respective open embeddings of
U, V,W into X yields a commutative diagram

U

X W SpecOX,x ,

V

⊇

⊇

⊇

⊇

j′′

j

j′

⊇

whose common composite (i.e. from SpecOX,x to X) is i.
Define

J (x) = i∗

(
Ẽx

)
,

where Ex is the injective hull of κ(x), the residue field at x (in the category
Mod–OX,x). Note that SpecOX,x is a Noetherian (affine) scheme and thus, any
morphism of schemes with domain SpecOX,x (i, in particular) is quasi-compact
and quasi-separated (cf. Remark 1.30, or [GW10, Remark 10.2 and Defini-
tion 10.22]). Thus, J (x) is a quasi-coherent sheaf by Remark 1.30. In fact,
J (x) is an indecomposable injective quasi-coherent sheaf on X, which is a part
of the following classification theorem.

Theorem 1.32 ([Har66, II.7.17]). Let X be a locally Noetherian scheme and
F a quasi-coherent sheaf. Then the following are equivalent:

(1) F is an injective OX-module.

(2) F is an injective quasi-coherent sheaf (i.e. it is an injective object in QCohX).
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(3) For every x ∈ X, Fx is an injective OX,x-module.

(4) F is a direct sum of sheaves of the form J (x) for various x ∈ X.

Proof. The equivalence of (1), (3) and (4) is proved in [Har66, II.7.17], let us
only comment on the equivalence of (1) and (2)25.

The implication (1) ⇒ (2) follows directly from Lemma 1.25.
Conversely, suppose that F is injective as a quasi-coherent sheaf. By Proposi-

tion 1.31 we may consider an embedding F ⊆ G , where G is quasi-coherent sheaf
which is injective as an OX-module. Using the injectivity of F (in QCohX), it fol-
lows that F is a direct summand of G , i.e. the inclusion F ⊆ G splits (in QCohX ,
thus also in Mod–OX). Thus, F is a direct summand of injective OX-module,
hence it is an injective OX-module as well.

We close this chapter by the following consequence of the classification theo-
rem.

Corollary 1.33. Let X be a locally Noetherian scheme. The class of injective
quasi-coherent sheaves on X is closed under taking direct limits.

Proof. Suppose a sheaf F is given by

F = lim−→
i

Ei

with all Ei’s injective quasi-coherent sheaves. Consider an arbitrary point x ∈ X.
As the stalk functor (−)x is a left adjoint, it preserves all colimits, hence

Fx = lim−→
i

(Ei)x .

By Theorem 1.32, all the OX,x-modules (Ei)x are injective. As OX,x is a
Noetherian ring, it follows that the direct limit Fx is injective as well. Using
Theorem 1.32 again, we infer that F is an injective quasi-coherent sheaf.

25In [Har66, II.7, Example on p. 135], Hartshorne warns that the structure of injectives in
QCohX , as well as which of the injective quasi-coherent sheaves are injective as OX -modules,
is unclear even when X is locally Noetherian. The example goes on to describe a locally
Noetherian scheme such that the category QCohX is not locally Noetherian. The proof of the
equivalence “(1)⇔(2)” given here shows that this caution is not necessary when dealing with
locally Noetherian schemes. The used argument seems to be folklore – cf. [TT90, B.4].
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2. Hereditary torsion pairs in QCohX

In this chapter, we describe hereditary torsion pairs in the category of quasi-
coherent sheaves on a Noetherian scheme X. The result is, in the form of de-
scription of the hereditary torsion classes1, originally proved by Gabriel in his
dissertation thesis ([Gab62, VI.4.b]).

Let us start by recalling the definitions of a torsion pair and the useful tools
for dealing with quasi-coherent sheaves, namely, the associated point of a sheaf
and the support of a sheaf.

2.1 Torsion pairs in an Abelian category

Definition 2.1. Let A be an Abelian category. A torsion pair in A is a pair
(T ,F) of full subcategories of A such that

(1) HomA(T ,F) = 0, i.e. for all T ∈ T and all F ∈ F , HomA(T, F ) = 0, and

(2) for every A ∈ A, there is an exact sequence

0 T A F 0

with T ∈ T and F ∈ F . We call the object T the (T ,F)-torsion part of A,
and the object F the (T ,F)-torsion-free part of A.

A torsion pair (T ,F) is called hereditary if T is closed under subobjects.

Note that the definition of a torsion pair is self-dual. That is, if (T ,F) is a
torsion pair in an Abelian category A, then (Fop, T op) is a torsion pair in Aop.

In order to make the thesis reasonably self-contained, we present proofs even
for some of the standard results regarding torsion pairs. Let us start the discussion
by the following observation.

Lemma 2.2. Suppose (T ,F) and (T ′,F ′) are two torsion pairs in an Abelian
category A such that T ⊆ T ′ and F ⊆ F ′. Then (T ,F) = (T ′,F ′).

Proof. Consider G ∈ T ′. Then there is a short exact sequence

0 T G F 0α β

with T ∈ T and F ∈ F . Since F ∈ F ′, β = 0 and thus, α is necessarily an
isomorphism. It follows that G ∈ T . Using the symmetric argument one proves
that any H ∈ F ′ is in fact a member of F .

The notion of torsion pair in an Abelian category was introduced by S. E. Dick-
son in [Dic66]. The following discussion appeared, in some form, in the same
paper as well.

1In Gabriel’s thesis, these are called localizing subcategories. The reason is that hereditary
torsion classes have a deep connection to the localization theory of Abelian categories. See
[Gab62] or [Ste75] for further information.
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Remark 2.3 ([Dic66]). 1. If (T ,F) a torsion pair in A, then it follows that
F = KerHomA(T ,−) and T = KerHomA(−,F). To see the first equality,
first observe that Definition 2.1 (1) gives the inclusion ‘⊆’. Now clearly
T ′ := KerHomA(−,F) and F ′ := F form a torsion pair (to check the
property (2) for some A ∈ A, use the same T ∈ T ⊆ T ′ and F ∈ F = F ′ as
for the torsion pair (T ,F)). By Lemma 2.2, the torsion pairs (T ,F) and
(T ′,F ′) agree, so T = T ′ = KerHomA(−,F). The other equality is dual.

2. From the above equalities, it is clear that T is closed under all colimits that
exist in A (that is, if D is a diagram consisting of obects of T such that
colimD exists in A, then colimD ∈ T ), and dually, F is closed under all
limits that exist in A. Also both T and F are closed under extensions.

3. Suppose that A is an Abelian category where unions of arbitrary collections
of subobjects (i.e. colimit of the associated monomorphisms) exist - this
is fulfilled in particular when A is a Grothendieck category (e.g. QCohX)
or a Noetherian category (e.g. CohX). Assume that (T ,F) is a pair of
subcategories of A such that F = KerHomA(T ,−) and T is closed under
colimits (that exist in A, as in 2.) and extensions. We claim that (T ,F)

is a torsion pair. Indeed, consider A ∈ A, and take T
α
→֒ A the maximum

subobject of A with T ∈ T (T is given as the union of all subobjects
T ′ →֒ A with T ′ ∈ T ; by the fact that T is closed under colimits, from the
assumption on A we have that T ∈ T ). We have the short exact sequence

0 T A F 0α β

(where β = Cokerα). It is enough to show that HomA(T , F ) = 0 so that
F ∈ F . Consider T ′ ∈ T and a morphism γ : T ′ → F. Taking a pullback P
of β and γ yields a commutative diagram

0 T A F 0

0 T P T ′ 0

α β

β̃

γ̃ γ

with exact rows. In particular, P ∈ T as it is an extension of T ′ and T .
Consider the epi-mono factorization of γ̃, γ̃ = me, where P

e
→ P ′ is epic,

hence P ′ ∈ T , and P ′ m
→ A is monic, i.e. it is a subobject of A with P ′ ∈ T .

It follows that we have a (unique) factorization

T A

P ′ ,

α

m′ m

i.e. m = αm′. Thus, we have

γβ̃ = βγ̃ = βme = βαm′e = 0m′e = 0,
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and since β̃ is epic, it follows that γ = 0 and we are done.

4. Dually to 3., if A is a category where “counions” (i.e. limits) of arbitrary
collections of quotients exist and if F is closed under extensions and under
all limits that exist in A, by setting T = KerHomA(−,F), we obtain a
torsion pair (T ,F).

The following assertion is standard as well, cf. [Ste75, VI.3.2].

Lemma 2.4. Let A be an Abelian category wich has injective hulls and (T ,F)
be a torsion pair in A. Then the following are equivalent:

(1) (T ,F) is hereditary, i.e. T is closed under subobjects.

(2) F is closed under injective hulls.

Proof. (1) ⇒ (2). Consider F ∈ F , its injective hull E(F ) and a short exact
sequence

0 T ′ E(F ) F ′ 0

with T ′ ∈ T and F ′ ∈ F . Then we have the pullback diagram

0 T ′ E(F ) F ′ 0

0 T ′ ∩ F F

0 0

β

α

Since T is hereditary (and the torsion-free class F is closed under subobjects
automatically), T ′ ∩ F ∈ T ∩ F . Thus, T ′ ∩ F = 0 (as the identity morphism on
T ′ ∩ F must be the zero morphism). From essentiality of the monomorphism α
it follows that T ′ = 0, hence β is an isomorphism and E(F ) ∈ F .

(2) ⇒ (1). Suppose that F is closed under taking injective hulls. Consider

T ∈ T and its subobject T ′ i
→֒ T . We have a short exact sequence

0 T ′′ T ′ F ′′ 0α β

with T ′′ ∈ T and F ′′ ∈ F . Denote F ′′ j
→֒ E(F ′′) the embedding of F ′′ into its

injective hull. By injectivity of E(F ′′), there exists a morphism γ : T → E(F ′′)
such that the following square

T ′ F ′′

T E(F ′′)

β

i j

γ

is commutative. However, T ∈ T and E(F ′′) ∈ F , hence γ = 0. Thus, we have
that jβ = 0, hence β = 0 (since j is a monomorphism). It follows that α is an
isomorphism and thus, T ′ ∈ T .
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The following two propositions are concerned with the relations of torsion pairs
in the categories QCohX and CohX , in analogy to theMod–R andmod–R case. For
module categories, the assertion can be found e.g. in [GT12, Proposition 8.36].

Proposition 2.5. Let X be a Noetherian scheme.

(1) Consider a torsion pair (T ,F) in QCohX . Then (T ∩ CohX ,F ∩ CohX) is a
torsion pair in CohX .

(2) Consider a torsion pair (T ,F) in CohX . Then (Lim−−→T ,Lim−−→F) is a torsion
pair in QCohX .

Proof.

(1) Consider T ∈ CohX such that HomX(T ,F ∩ CohX) = 0. We claim that
HomX(T ,F) = 0. To see this, choose a sheaf F ∈ F arbitrarily and consider
a morphism f : T → F . As T ∈ CohX and X is Noetherian, the subsheaf
Im f ⊆ F is coherent as well. Then Im f ∈ F ∩ CohX , which shows that the
corestriction f : T → Im f is zero, hence f = 0.

Similarly, if F ∈ CohX is a sheaf such that HomX(T ∩ CohX ,F ) = 0,
then HomX(T ,F ) = 0. Consider an arbitrary morphism g : T → F with
T ∈ T . Then Im g ⊆ F is coherent, since F is (and X is noetherian). Thus,
Im g ∈ T ∩ CohX , hence the inclusion ⊆: Im g →֒ F is necessarily zero, i.e.
g = 0.

The above considerations show that

T ∩ CohX = KerHomCohX (−,F ∩ CohX) ,

F ∩ CohX = KerHomCohX (T ∩ CohX ,−) ,

hence (T ∩ CohX ,F ∩ CohX) is a torsion pair in CohX .

(2) Suppose T ∈ T is a coherent sheaf and Fi ∈ F , i ∈ I, is a directed system.
Since the canonical morphism

lim−→
i

HomX(T ,Fi) → HomX(T , lim−→
i

Fi)

is an isomorphism, we have that

0 = lim−→
i

HomX(T ,Fi) ≃ HomX(T , lim−→
i

Fi).

This shows that HomX(T ,Lim−−→F) = 0.

Suppose now that T ∈ Lim−−→T , F ∈ Lim−−→F . We can express T as lim−→i
Ti,

for some collection (more precisely, directed system) {Ti}i∈I of members of
T . As every cocone {Ti → F}i∈I is trivial (i.e. all the maps are zero), it
follows that HomX(T ,F ) = 0. Thus, HomX(Lim−−→T ,Lim−−→F) = 0.

Consider an arbitrary quasi-coherent sheaf G . By Corollary 1.28, G is a
directed union of its coherent subsheaves. Thus, we can write

G = lim−→
i∈I

Gi ,
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where Gi ⊆ G are coherent and all the morphisms in the directed system
ηij : Gi → Gj are inclusions. Denote τ(Gi) the (T ,F)−torsion part of G.
That is, we have exact sequences

0 τ(Gi) Gi Fi 0, i ∈ I
νi

with Fi = Coker νi ∈ F . The inclusions

ηij : Gi → Gj

induce inclusions
η′ij : τ(Gi) → τ(Gj),

and together they induce morphisms on the cokernels

η′′ij : Fi → Fj .

In other words, we have a short exact sequence of directed systems

0 {τ(Gi), η
′
ij} {Gi, ηij} {Fi, η

′′
ij} 0

As direct limits are exact in QCohX we have a short exact sequence

0 lim−→i
τ(Gi) G lim−→i

Fi 0

with lim−→i
τ(Gi) ∈ Lim−−→T and lim−→i

Fi ∈ Lim−−→F .

This shows (Lim−−→T ,Lim−−→F) is a torsion pair in QCohX .

Proposition 2.6. Let X be a Noetherian scheme. Then any hereditary torsion
pair (T ,F) is of finite type, i.e.

T = Lim−−→ (T ∩ CohX) and F = Lim−−→ (F ∩ CohX).

Proof. By Proposition 2.5, (Lim−−→ (T ∩ CohX),Lim−−→ (F ∩ CohX)) is a torsion pair
in QCohX . If T ∈ T is an arbitrary member of the torison class T , then T is
a direct union of its coherent subsheaves (by Corollary 1.28). Since the torsion
pair is hereditary, all these subsheaves are members of T as well. This shows that
T ⊆ Lim−−→ (T ∩ CohX). Similarly, we have that F ⊆ Lim−−→ (F ∩ CohX) (F is closed

under subsheaves since it is a torsion-free class). Application of Lemma 2.2 yields
the result.

The last lemma of this section connects the discussion of hereditary torsion
pairs with the structure of injective quasi-coherent sheaves obtained at the end
of Chapter 1.

Lemma 2.7. Let X be a locally Noetherian scheme. A hereditary torsion pair
(T ,F) in QCohX is determined by the set of indecomposable injective quasi-
coherent sheaves contained in F .
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Proof. Any hereditary torsion pair is determined by the set of torsion-free
injectives, since the class of torsion-free objects is closed under taking injective
hulls. Remark 1.7 shows that the torsion-free class in a Grothendieck category
is closed under direct sums since it is closed under products and subobjects.
In particular, this holds for QCohX . By Theorem 1.32, every injective quasi-
coherent sheaf decomposes into a direct sum of indecomposable injectives. Thus,
the set of indecomposable injective quasi-coherent sheaves in F determines the
set of all injective quasi-coherent sheaves in F . Consequently, the indecomposable
injectives in F determines the torsion-free class F , since F consists precisely of
all subobjects of injectives in F .

2.2 Support and associated points of a quasi-coherent sheaf

We now proceed to the topic of associated points and points in support of
quasi-coherent sheaves. In what follows in this section, let X be a Noetherian
scheme.

Definition 2.8. Let F be a quasi-coherent sheaf on X.
Define the support of the sheaf F by

SuppF = {x ∈ X | Fx 6= 0} .

We say that a point x ∈ X is an associated point of F provided that there is
a monomorphism of OX,x-modules

κ(x) →֒ Fx ,

i.e. there is an (affine) open set U ⊆ X and a section s ∈ F (U) such that
AnnOX,x

(sx) = mx. Denote the set of all associated points of F by AssF .

Recall that given a commutative ring R, its prime ideal p and an R-module
M , we say that p is an associated prime of M if p = Ann(m) for some m ∈ M .
That is, there is an injection of R-modules R/p →֒ M (taking 1+p to x). Denote
the set of all primes associated to M by AssM . Similarly, define support of M ,
denoted by SuppM , as the set of all primes p such that Mp 6= 0.

The following lemma describes the basic well-known properties of associated
primes. The proof can be found e.g. in [Eis95, Sections 3.1 and 3.2].

Lemma 2.9. Let R be a commutative Noetherian ring, M an R-module and
p ⊆ R a prime ideal.

(1) p ∈ AssM if and only if pp ∈ AssMp.

(2) AssM ⊆ SuppM .

(3) AssM = ∅ if and only if M = 0.

(4) Given any collection Mi, i ∈ I, of R-modules, we have

Ass
⊕

i∈I

Mi =
⋃

i∈I

AssMi .
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(5) Given a short exact sequence of R-modules

0 A B C 0 ,

we have that AssB ⊆ AssA ∪ AssC.

In addition, we prove the following lemma on associated primes of direct limits
for later use.

Lemma 2.10. Let R be a commutative Noetherian ring and M an R-module.
If M is a direct limit of a directed system of modules (Mi | i ∈ I), then

AssM ⊆
⋃

i∈I

AssMi.

Proof. Denote νi : Mi → M the canonical homomorphisms (coming from
the description M = lim−→i

Mi). Consider p ∈ AssM. Then we have an injective

homomorphism R/p
ι
→֒ M . Since R is Noetherian, p is a finitely generated

module, therefore the module R/p is finitely presented. Thus, it follows that ι
has a factorization

ι = νiιi,

where i ∈ I is some index and ιi : R/p → Mi is a suitable homomorphism (see
e.g. [GT12, Lemma 2.8]). Such ιi is necessarily injective since ι is. It follows that
p ∈ AssMi.

Now we use these algebraic facts to prove its algebro-geometric counterparts.

Corollary 2.11. Let X be a Noetherian scheme, F a quasi-coherent sheaf on
X and x ∈ X a point.

(1) x ∈ AssF if and only if there exists an affine open neighbourhood U of x
such that px ∈ AssF (U).

(1’) x ∈ AssF if and only if for every affine open neighbourhood U of x,
px ∈ AssF (U).

(2) AssF ⊆ SuppF .

(3) AssF = ∅ if and only if F = 0.

(4) Given any collection Fi, i ∈ I, of quasi-coherent sheaves on X, we have

Ass
⊕

i∈I

Fi =
⋃

i∈I

AssFi.

(5) Given a short exact sequence of quasi-coherent sheaves on X

0 F G H 0,

we have that AssG ⊆ AssF ∪ AssH .
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Proof. If U is an affine open neighbourhood of x, the stalk Fx may be computed
as (F (U))

px
and thus, x ∈ AssF iff mx = (px)px ∈ Ass (F (U)px). Application

of Lemma 2.9 (1) thus proves (1) and (1’). The statement (2) is clear from
the definition. Statements (3)–(5) follow directly from its algebraic counterparts
using the facts that for any x ∈ X, the stalk functor (−)x is exact (to prove (4))
and preserves direct sums (to prove (5)).

The presented definition of associated point is “stalk-local” and by Corol-
lary 2.11 (1), (1’) it can be considered “affine-local” in a strong sense as well. It
is therefore not surprising that if a quasi-coherent sheaf on a scheme is induced
from a quasi-coherent sheaf on an affine open subcheme, the set of associated
points does not change. Let us make this precise.

Let X be a Noetherian scheme and U ⊆ X an affine open subset. Denote
i : U →֒ X the open immersion. Suppose that F is a quasi-coherent sheaf
on U . By Remark 1.30, the OX-module G = i∗F is again quasi-coherent (as
the immersion i is quasi-compact and quasi-separated2). That is, G is a quasi-
coherent OX-module such that for every pair of open sets W ′ ⊆ W,

G (W )
resW

W ′

−→ G (W ′) equals G (W ∩ U)
resW∩U

W ′∩U−→ G (W ′ ∩ U) .

In particular, taking W ′ = W ∩ U , we have that

G (W )
resWW∩U−→ G (W ∩ U) equals G (W ∩ U)

1G (W∩U)
−→ G (W ∩ U).

Proposition 2.12. In the situation as above:

(1) Consider x ∈ X \ U . Then x 6∈ AssG .

(2) Suppose x ∈ U . Then x ∈ AssG if and only if x ∈ AssF .

Proof.

(1) Fix an affine open neighbourhood V of x and without loss of generality,
suppose that V ∩ U 6= ∅ (otherwise G (V ) = 0, hence x 6∈ AssG ). Assume
for contradiction that for s ∈ G (V ), AnnOX(V )(s) = px (where px denotes the
prime ideal corresponding to x in OX(V )).

Consider an arbitrary point y ∈ V ∩ U . Then there is f ∈ OX(V ) such that
for Vy = Df we have y ∈ Vy ⊆ V ∩ U . Since G is quasi-coherent, both the
maps

G (V )
resVVy
−→ G (Vy) , resp. OX(V )

resVVy
−→ OX(Vy)

are localisations of G (V ), resp. OX(V ), with respect to f .

The fact that x /∈ Vy = Df means that f ∈ px. That is, f · s = 0, since
px = AnnOX(V )(s). In particular, we have (f ↾Vy

) · (s ↾Vy
) = 0. However,

(f ↾Vy
) is invertible in OX(Vy) and hence, s ↾Vy

= 0.

Therefore, there is an open cover {Vy | y ∈ V ∩ U} of V ∩ U such that all
the restrictions s ↾Vy

are zero. By gluing axioms, we have that s ↾V ∩U= 0.

2Similarly to Section 1.4, this follows from the fact U is a Noetherian scheme from the
definitions ([GW10, Definition 1.10 and Definition 10.22]).
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However, the restriction map resVV ∩U (of the sheaf G ) is the identity 1G (V ∩U).
Thus, 0 = s ↾U∩V= s, hence AnnOX(V )(s) = OX(V ) 6= px. This is a contra-
diction with the choice of s.

(2) This part easily follows from Corollary 2.11 (1), (1’). U is affine open, hence
we have x ∈ AssG if and only if px ∈ AssG (U) and x ∈ AssF if and only if
qx ∈ AssF (U) (here qx denotes the prime ideal of OX↾U(U) = OX(U)). But
F (U) = G (U), and so the claim follows.

Given a commutative Noetherian ring R and an R-module M , an associated
prime p of M can always be “isolated” in a submodule N ⊆ M. That is, there is
a submodule N with AssN = {p}. This is obvious, one simply needs to take N
to be an isomorphic copy of R/p that is embedded into M . It will be useful to
generalize this property for Noetherian schemes. For this, we use the following
lemma, which is stated without proof.

Lemma 2.13 ([Sta16, Tag 01YE3]). Let X be a Noetherian scheme. Let
i : Z −→ X be the inclusion of an integral, closed subscheme, let ξ be its generic
point. Consider a coherent sheaf F on X such that Fξ is annihilated by mξ.
Then there exists an integer r ≥ 0, a sheaf of ideals I ⊆ OZ and an injective
map of coherent sheaves

i∗(I
⊕r) −→ F

which is an isomorphism in a neighbourhood4 of ξ.

Let us now proceed to the proof of the claimed assertion.

Lemma 2.14. Let X be a Noetherian scheme, x ∈ X and F a quasi-coherent
sheaf with x ∈ AssF . Then there is a coherent subsheaf G ⊆ F such that
AssG = {x}. Moreover, there is an affine cover V1, . . . , Vk of X such that any
section s ∈ G (Vi) is annihilated by px, i.e. px ⊆ Ann(s).

Proof. By the assumptions, there is an affine neighbourhood U ⊆ X of x and
a section g ∈ F (U) with AnnOX(U)(g) = px. By Theorem 1.27 (2), there is

a coherent subsheaf F ′ ⊆ F (on X) extending the coherent sheaf 〈̃g〉 (on U).
Thus,

F ′
x ≃

(
〈̃g〉
)
x
≃ (OX(U)/px)px ≃ OX,x/mx,

in particular, F ′
x is nonzero and is annihilated by mx.

Let Z be the integral closed subscheme of X with generic point x (i.e. whose
set of points is {x})5, and denote by i the embedding of schemes Z →֒ X. By
Lemma 2.13, there is a monomorphism

h : i∗(I
⊕r) −→ F ′,

3As of May 2nd 2016, the Lemma under the Tag 01YE was listed on the Stacks Project site
[Sta16] as Lemma 29.12.2.

4A morphism of quasi-coherent sheaves f : F → G is an isomorphism in an open set U if
f ↾U : F↾U → G↾U is an isomorphism of quasi-coherent sheaves on U .

5This exists and is unique, cf. [GW10, Proposition 3.50].
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which is an isomorphism at a neighbourhood of x, where I is a sheaf of ideals
on Z. Clearly h induces the isomorphism of stalks

hx : (i∗(I
⊕r))x

∼
−→ F ′

x.

In particular, G0 = Imh is a (nonzero) coherent subsheaf of F with x ∈ AssG0

and SuppG0 = {x}. What remains is to find a coherent subsheaf of G0 whose
only associated point in {x} is x.

For y ∈ {x}, choose an affine neighbourhood Vy (then x ∈ Vy since y ∈ {x}).

Since {x} is quasi-compact6, there is a collection of finitely many points y1, . . . , yk
such that

{x} ⊆
k⋃

j=1

Vyj .

Inductively, when Gj is defined, choose a quasi-coherent sheaf Gj+1 ⊆ Gj such
that Gj+1(Vyj+1

) ≃ OX(Vyj+1
)/px, which is possible by Theorem 1.27 (2) similarly

as above. We obtain a chain of coherent subsheaves of F

G := Gk ⊆ Gk−1 ⊆ Gk−2 ⊆ · · · ⊆ G1 ⊆ G0.

By the construction, it is obvious that AssGj ∩ Vyj = {x} and thus, we clearly
have

AssG ∩
k⋃

j=1

Vyj = {x}.

That is, AssG = {x}.
The additional condition follows easily for the affine open cover Vi := Vyi

supplemented by an arbitrary affine open cover {Uj}j of X \{x} (since SuppG =

{x}, it is easy to see that G (Uj) = 0, so these extra open sets do not spoil the
condition).

Remark 2.15. In general, there is, in contrast to the affine case, no single
coherent sheaf G x such that quasi-coherent sheaves F with x ∈ AssF are char-
acterized by the existence of a monomorphism G x →֒ G (in the affine case, the
module R/p plays such a role for associated prime p).

To see this, let ξ be the generic point of a projective lineX = P1
k = Proj k[x0, x1].

Then it easily follows from Lemma 2.14 that any quasi-coherent sheaf F with
ξ ∈ AssG contains some line bundle F . In fact, any line bundle L satisfies
AssL = {ξ} and it is not difficult to observe that such a testing sheaf G ξ needs
to be a line bundle7.

However, there is no single line bundle that would embed into arbitrary line
bundle, since HomX(O(m),O(n)) = 0 if n < m.

Lemma 2.14 has the following consequence regarding the associated points of
injective hulls.

6Cf. Remark B.8.
7This is because of the structure of coherent sheaves over P1

k as described in Example 1
together with the fact that the torsion sheaf Ox,r is supported only at the closed point x, see
[CK09, Chapter 5].
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Corollary 2.16. Let X be a Noetherian scheme and F ∈ QCohX . Denote
E(F ) the injective hull of F . Then AssF = AssE(F ).

Proof. Obviously, AssF ⊆ AssE(F ) as F is a subsheaf of E(F ).
Suppose for contradiction that there is a point x ∈ AssE(F ) \ AssF . By

Lemma 2.14, there is a nonzero coherent subsheaf G ⊆ E(F ) with AssG = {x}.
However, Ass (F ∩ G ) ⊆ (AssF )∩{x} = ∅. Thus, F∩G = 0, which contradicts
the essentiality of the inclusion F ⊆ E(F ).

Let us now compute the associated points of the indecomposable injectives
J (x) from Section 1.4.

Lemma 2.17. For a point x ∈ X, AssJ (x) = {x}.

Proof. First let us show that there are no associated points of J (x) outside
i(SpecOX,x). By the discussion in Section 1.4, we have

i(SpecOX,x) =
⋂

{U ⊆ X | x ∈ U, U is affine open}.

If y /∈ i(SpecOX,x) is an arbitrary point, then there is an affine neighbourhood
U of x such that y /∈ U. Denote the inclusion U → X by j and the inclusion
SpecOX,x → U by i′. Then clearly i∗ = j∗ ◦ i′∗. However, by Proposition 2.12,

y /∈ Ass j∗

(
i′∗

(
Ẽx

))
, so y /∈ Ass i∗

(
Ẽx

)
= AssJ (x).

Thus, AssJ (x) ⊆ i(SpecOX,x). However, since the fact whether a point
z ∈ i(SpecOX,x) is associated to J (x) or not depends on the stalks J (x)z,
OX,z(= O(SpecOX,x),z) (the latter understood as a ring) only, we see that

AssJ (x) = i
(
Ass Ẽx

)
= {x}.

Remark 2.18. Alternatively, one can prove Lemma 2.17 without computations
at stalks, using only the fact that SuppJ (x) ⊆ {x}. The argument is as follows.

First, observe that every point x is an associated point of a quasi-coherent

sheaf. This can be done e.g. by considering the sheaf i∗( ˜OX(U)/px), where
U ⊆ X is an affine open neighbourhood of x and i : U →֒ X the corresponding
open immersion, and applying Proposition 2.12. From Lemma 2.14 it follows
that for every point x, there is a quasi-coherent sheaf G with AssG = {x}, and
Corollary 2.16 implies that these G ’s can be taken injective. However, since for
injective G we have

G ≃
⊕

j∈J

J (xj),

by Corollary 2.11 (4) it follows that for every x ∈ X, there is a point y ∈ X with
AssJ (y) = {x}.

Now we use a version of Noetherian induction. Suppose that x0 is a coun-
terexample to the claim AssJ (x) = {x}. Then by the above considerations,

there is a point x1 such that J (x1) = {x0}. Since SuppJ (x1) ⊆ {x1} by the
computation in the above proof of Lemma 2.17, it follows that x1 is a generization
of x0 which is proper in the sense that x1 6= x0. In particular, AssJ (x1) 6= {x1},
hence the argument can be repeated to obtain a proper generization x2 of x1

such that AssJ (x2) 6= {x2}. Continuing in this manner, we obtain a sequence
of points

x0, x1, x2, · · · , xk, xk+1, · · ·
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such that each xk+1 is a proper generization of xk. This is a contradiction to the
Noetherian hypothesis, since by choosing affine open neighbourhood U of x0, in
the Noetherian ring OX(U) there is an infinite descending chain of primes

px0 ) px1 ) px2 ) · · · ) pxk
) pxk+1

) · · · ,

which is not possible.

2.3 Parametrization of hereditary torsion pairs in QCohX

We are now ready to proceed to the main part of the chapter. We classify the
hereditary torsion pairs in QCohX for X Noetherian in terms of associated points
and supports of quasi-coherent sheaves. To recognize the relevant subsets of X
for this goal, the following definition is needed.

Definition 2.19. Let X be a topological space. A subset Y ⊆ X is specializa-
tion closed if {y} ⊆ Y for every y ∈ Y .

Alternatively, a set is specialization closed if it is a union of closed subsets.
We start the classification by showing that to every specialization closed subset
Y , a hereditary torsion pair (T (Y ),F(Y )) can be assigned.

Proposition 2.20. Let Y ⊆ X be a specialization closed subset. Define

T (Y ) ={T ∈ QCohX | SuppT ⊆ Y },

F(Y ) ={F ∈ QCohX | AssF ∩ Y = ∅}.

Then the pair (T (Y ),F(Y )) is a hereditary torsion pair in QCohX .

Proof. It is easy to observe that the class T (Y ) is closed under arbitrary direct
sums, since, by Lemma 2.11 (4), for any collection {Gi | i ∈ I} of quasi-coherent
sheaves we have that

Supp
⊕

i∈I

Gi =
⋃

i∈I

SuppGi.

Similarly, whenever
0 −→ G ′ −→ G −→ G ′′ −→ 0

is a short exact sequence of quasi-coherent sheaves, by Lemma 2.11 (5) we have
that

SuppG ⊆ SuppG ′ ∪ SuppG ′′.

This shows that T (Y ) is closed under (quasi-coherent) subsheaves, homomorphic
images and extensions. Thus, T (Y ) is a hereditary torsion class in QCohX .

Next we show that HomX(T (Y ),F(Y )) = 0. Consider a morphism of quasi-
coherent sheaves f : T −→ F with T ∈ T (Y ), F ∈ F(Y ). Then Im f ∈ T (Y ),
as established above. In particular, Ass Im f ⊆ Supp Im f ⊆ Y . On the other
hand, Ass Im f ⊆ AssF ⊆ X \ Y , hence Ass Im f = ∅. It follows that Im f = 0
by Lemma 2.11 (3). Thus, f = 0.

What remains is to show that if G is a quasi-coherent sheaf on X such that
HomX(T ,G ) = 0 for all T ∈ T (Y ), then G ∈ F(Y ). Equivalently, whenever G
is a quasi-coherent sheaf with AssG ∩ Y 6= ∅, there is a quasi-coherent sheaf T
with SuppT ⊆ Y , and a nonzero morphism T −→ G .
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Suppose x ∈ AssG ∩Y . By Lemma 2.14, there is a coherent subsheaf G ′ ⊆ G
with SuppG ′ ⊆ {x} and AssG ′ = {x}. In particular, G ′ ∈ T (Y ) and G ′ is
nonzero.

Thus, there is a nonzero morphism

h : G ′ ⊆
→֒ G

with G ′ ∈ T (Y ), which proves the claim.

Finally, we prove the classification of hereditary torsion pairs in QCohX for a
Noetherian scheme X.

Theorem 2.21. There is a bijective correspondence between hereditary torsion
pairs in QCohX and specialization closed subsets of X, given by the mutually
inverse bijections

(T ,F) 7→ Supp T (= {x ∈ X | ∃T ∈ T : Tx 6= 0})

and
Y 7→ (T (Y ),F(Y )).

Proof. Clearly for any hereditary torsion pair (T ,F), the set Supp T is spe-
cialization closed (if G is a quasi-coherent sheaf with Gx 6= 0 and y ∈ {x}, then
Gx = Gy ⊗OX,y

OX,x, in particular, Gy 6= 0). Together with Proposition 2.20, this
shows that both the maps in the statement are well-defined.

Suppose that Y ⊆ X is a specialization closed subset. Clearly Supp T (Y ) ⊆ Y
from the definitions. On the other hand, suppose that x ∈ Y is an arbitrary
point. Consider a closed subscheme i : Z →֒ X whose underlying topological
space is {x}. Then G = i∗(OZ) is a quasi-coherent sheaf on X (by [GW10,
Corollary 10.27]) with SuppG = {x} ⊆ Y . Thus, G ∈ T (Y ) and x ∈ Supp T (Y ).
This proves that Supp T (Y ) = Y .

What remains is to prove that given a hereditary torsion pair (T ,F), we
have (T ,F) = (T (Supp T ),F(Supp T )). Clearly we have T ⊆ T (Supp T ), or,
equivalently, F ⊇ F(Supp T ). It remains to prove the other inclusion, that is, to
show that F ⊆ F(Supp T ). Suppose not, then we have

F ) F(Supp T ).

As both F ,F(Supp T ) are hereditary torsion-free classes in QCohX , it follows
from Lemma 2.7 that there exists an indecomposable injective quasi-coherent
sheaf J (x) ∈ F \ F(Supp T ), in particular, AssJ (x) ∩ Supp T 6= ∅. Since
AssJ (x) = {x} by Lemma 2.17, it follows that x ∈ Supp T , so one can
choose a quasi-coherent sheaf T ∈ T with Tx 6= 0. Our aim is to prove that
HomX(T ,J (x)) 6= 0, to get a contradiction with J (x) ∈ F . To this end, it is

enough to prove that HomSpecOX,x
(i∗(T ), Ẽx) 6= 0, since

HomX (T ,J (x)) = HomX

(
T , i∗

(
Ẽx

))
≃ HomSpecOX,x

(
i∗ (T ) , Ẽx

)
.

Thus, what remains is to prove that i∗ (T ) 6= 0, since Ẽx is an injective
cogenerator for QCohSpecOX,x

. This follows from [GW10, p. 180], since

i∗(T )x ≃ O(SpecOX,x),x ⊗OX,x
Tx = OX,x ⊗OX,x

Tx = Tx 6= 0.
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Consequently, we are able to prove that all hereditary torsion-free classes in
QCohX are closed under direct limits.

Lemma 2.22. Let X be a Noetherian scheme and Y ⊆ X a specialization
closed subset. The class F(Y ) is closed under direct limits.

Proof.
Consider S to be the class of all coherentOX-modules G such that AssG = {y}

for some y ∈ Y . Then it follows from Lemma 2.14 that

F(Y ) = KerHomX(S,−) =
⋂

G∈S

KerHomX(G ,−).

Indeed, F(Y ) ⊆ KerHomX(S,−) by the fact that S ⊆ T (Y ). On the other hand,
if F /∈ F(Y ), then there is a point y ∈ Y ∩ AssF . Then by Lemma 2.14, there
is a G ∈ S such that G ⊆ F , in particular, HomX(G ,F ) 6= 0.

However, sinceX is Noetherian, every coherent sheaf onX is finitely presented
object of QCohX , i.e. given a direct limit

F = lim−→
i

Fi

of quasi-coherent sheaves and a coherent sheaf G , the canonical homomorphism

lim−→
i

HomX(G ,Fi) −→ HomX(G , lim−→
i

Fi)

is an isomorphism, it follows that the class KerHomX(S,−) is closed under direct
limits.
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3. 1-cotilting sheaves over a Noetherian

scheme

3.1 Ext in Grothendieck categories

With the goal of studying the Ext-orthogonality relation of quasi-coherent
sheaves on a scheme X in mind, we begin this chapter by several remarks on the
Ext functor in Grothendieck categories.

Let A be a Grothendieck category. As in any Abelian category, the notion
of the Yoneda Ext groups YExtiA(A,B), A,B ∈ A makes sense and is functorial
both in A and in B.

Since A has enough injectives, we may also consider, for A ∈ A, the right
derived functor ExtiA(A,−) := RiHomA(A,−).

Remark 3.1. Given quasi-coherent sheaves F ,G on a scheme X, we may con-
sider either

YExtiMod–OX
(F ,G ) ≃ Ri

Mod–OX
HomMod–OX

(F ,−)(G ), or

YExtiQCohX
(F ,G ) ≃ Ri

QCohX
HomQCohX (F ,−)(G ).

We take the second one as our definition of Ext.
Note, however, that if X is locally Noetherian, RiHomQCohX (F ,−) is just

the restriction of the functor RiHomMod–OX
(F ,−) to the category of quasi-

coherent sheaves. This is because HomQCohX is just a restriction of HomMod–OX

to QCohX , and the injective objects in QCohX are just injective OX-modules
which happen to be quasi-coherent; thus, for quasi-coherent sheaves F ,G , both
RiHomMod–OX

(F ,−)(G ) and RiHomMod–OX
(F ,−)(G ) may be computed using

the same injective coresolution of G .
Since we consider primarily Noetherian schemes, we do not need to distinguish

between the above possible definitions.

For the rest of this section, let us assume that A is a Grothendieck category.
The fact that Ext exists as a right derived covariant Hom functor implies that

we have the following long exact sequence for Ext. This is a standard fact and
the proof (using the Horseshoe Lemma) is very well-known. We refer the reader
e.g. to [EJ11, Theorem 8.2.5 (1)] for proof.

Proposition 3.2. Consider a short exact sequence

(ξ) 0 B′ B B′′ 0ι π

in A, and an object A ∈ A. Then there is a long exact sequence

0 HomA(A,B
′) HomA(A,B) HomA(A,B

′′)

Ext1A(A,B
′) Ext1A(A,B) Ext1A(A,B

′′)

Ext2A(A,B
′) · · ·

ι◦− π◦−
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Since a Grothendieck category does not have enough projectives in general, we
cannot use a dual argument to prove the existence of the second (i.e. “contravari-
ant”) well-known long exact sequence for Ext. Despite that, it is well-known that
the result still holds.

Proposition 3.3 ([Har77, III.6.4]). Consider a short exact sequence

(ξ) 0 A′ A A′′ 0ι π

in A, and an object B ∈ A. Then there is a long exact sequence

0 HomA(A
′′, B) HomA(A,B) HomA(A

′, B)

Ext1A(A
′′, B) Ext1A(A,B) Ext1A(A

′, B)

Ext2A(A
′′, B) · · ·

−◦π −◦ι

Proof. Applying the bifunctor HomA(−,−) on an injective coresolution of B

0 B I0 I1 I1 · · ·

and the short exact sequence (ξ) give rise to the commutative diagram

0 HomA(A
′′, I0) HomA(A, I

0) HomA(A
′, I0) 0

0 HomA(A
′′, I1) HomA(A, I

1) HomA(A
′, I1) 0

0 HomA(A
′′, I2) HomA(A, I

2) HomA(A
′, I2) 0

...
...

...

−◦π −◦ι

−◦π −◦ι

−◦π −◦ι

where the rows are exact (they are induced by HomA(−,Ij), which is an exact
functor since Ij is injective).

That is, we have a short exact sequence of chain complexes

0 HomA(A
′′, I•) HomA(A, I

•) HomA(A
′, I•) 0

−◦π −◦ι

Now taking the long exact sequence in cohomology of chain complexes gives the
exact sequence
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0 Ext0A(A
′′, B) Ext0A(A,B) Ext0A(A

′, B)

Ext1A(A
′′, B) Ext1A(A,B) Ext1A(A

′, B)

Ext2A(A
′′, B) · · ·

and since HomA(A
′′,−) is naturally isomorphic to Ext0A(A

′′,−) (and the same for
A, A′′), the result follows.

As stated in Remark 1.29, another problematic feature of general Grothendieck
categories is that the direct product functors are not exact, in general. This
means, in particular, that we cannot expect to have the isomorphism

ExtjA

(
A,
∏

i∈I

Bi

)
≃
∏

i∈I

ExtjA(A,Bi) ,

which is known to exist in the case of modules (or, at least, we cannot obtain it
by the same methods as in Mod–R). The obstacle, in contrast to the categories of
modules, is that if one takes an injective coresolution of Bi for every i ∈ I, their
product does not need to be exact. Thus, one cannot use the resulting complex
as an injective coresolution of

∏
i∈I Bi.

We are, however, able to prove the following weaker statement, sufficient for
our purposes.

Proposition 3.4. For any object A ∈ A and any collection of objects Bi ∈ A,
i ∈ I, we have that

Ext1A

(
A,
∏

i∈I

Bi

)
= 0 if and only if ∀i ∈ I : Ext1A

(
A,Bi

)
= 0 .

In order to prove this, we need the following lemma. Although it is a standard
lemma when working in the category Mod–R for a ring R, it is especially useful
in our context, i.e. for the category QCohX (or a Grothendieck category with
products that are not exact, in general), as is demonstrated by the consequent
proof of Proposition 3.4.

Lemma 3.5. For a pair of object A,B of A, the following conditions are equiv-
alent:

(1) Ext1A(A,B) = 0.

(2) Every extension of A by B splits.

(3) Whenever there is a short exact sequence

0 K C A 0 ,

any morphism f : K → B can be extended to C, so that we have a commu-
tative diagram
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0 K C A 0

B .

f
f̃

Proof. The equivalence of (1) and (2) is just a consequence of the fact that the
Yoneda Ext YExt1A(A,B) is isomorpic to Ext1A(A,B).

Suppose (1) and consider a short exact sequence

0 K C A 0 .ι

Applying HomA(−, B) produces an exact sequence

HomA(C,B) HomA(K,B) Ext1A(A,B) = 0 ,
−◦ι

hence the above map − ◦ ι : f̃ 7→ f̃ ◦ ι is surjective. This is clearly equivalent to
(3).

Conversely, suppose that (3) holds. Given an extension

0 B C A 0 ,

we obtain a commutative diagram (by putting f = 1B)

0 B C A 0 ,

B

r

so r is clearly the splitting map of the extension. Thus, (2) holds.

Proof of Proposition 3.4. The left-to-right implication is clear: If there is j ∈ I
such that Ext1A(A,Bj) 6= 0, then we have

Ext1A

(
A,
∏

i∈I

Bi

)
= Ext1A

(
A,
( ∏

i∈I\{j}

Bi

)
⊕Bj

)

= Ext1A

(
A,

∏

i∈I\{j}

Bi

)
⊕ Ext1A

(
A,Bj

)
6= 0,

hence Ext1A
(
A,
∏

i∈I Bi

)
6= 0.

Conversely, assume that for every i, Ext1A(A,Bi) = 0. We will verify the
extension property (3) from Lemma 3.5 for A and

∏
i∈I Bi.

Consider a short exact sequence in A

0 K C A 0ι

and a morphism f : K →
∏

i∈I Bi.
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Fix i ∈ I and put fi := πif, where πi denotes the canonical projection∏
j∈I Bj → Bi. Since ExtiA(A,Bi) = 0, from Lemma 3.5 (3) it follows that

there is a morphism gi fitting into the commutative diagram

0 K C A 0

Bi .

ι

fi gi

By the universal property of product, the collection gi : C → Bi can be lifted to
a morphism g : C →

∏
i∈I Bi, i.e. so that πig = gi for every i.

It follows that we have the desired commutative diagram

0 K C A 0

∏
i∈I

Bi

ι

f
g

by checking that πigι = giι = fi = πif for every i ∈ I and using (the uniqueness
part of) the universal property of product once again.

3.2 1-cotilting in Grothendieck categories

The goal of this section is to compare the definition of 1-cotilting object in
a Grothendieck category (Definition 1.14) with the definition of 1-cotilting mod-
ules, more precisely, the direct analogues of axioms (C1)–(C3) in a Grothendieck
category.

We start our discussion by showing that a 1-cotilting object of a Grothendieck
category A always satisfies the axioms (C1)–(C3).

Proposition 3.6. Let C be a 1-cotilting object in A. Then injdimC ≤ 1.

Proof. Let F be an object of A. We show that Ext2A(F,C) = 0 by showing that
every 2-fold extension of F by C represents the trivial class of YExt2A(F,C).

Consider a 2-fold extension

(ξ) 0 C G2 G1 F 0 .α

Since ⊥C = Cogen(C) is generating (and closed under direct sums, e.g. by
Remark 1.7), there is an object C1 ∈ Cogen(C) and an epimorphism ε : C1 → G2.
Denote β = αε, so that we have a commutative diagram

0 C G2 G1 F 0

C1 F 0

α

β

ε

with exact rows (note that we used the fact that ε is an epimorphism to ensure
that β is an epimorphism).
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The map ε restricts to kernels of α and β, hence we have a commutative
diagram:

C G2 G1 F 0

Kerα

C1 F 0

Ker β

π

α

ε

β
ε′

Note that Ker β ∈ Cogen(C) as it is a subobject of C1 ∈ Cogen(C). Let C2 be
the pullback of π and ε, fitting into the diagram (with the canonical pullback
morphisms) with exact rows as follows:

(ξ) 0 C G2 G1 F 0

Kerα

(ξ′) 0 C C2 C1 F 0

Ker β

π

α

γ

π′′

ε

β

ε′

That is, the 2-extensions (ξ) and (ξ′) are equivalent in the sense of Yoneda
Ext. Now it is enough to show that (ξ′) is trivial by showing that γ is split monic.
Thus, we consider the short exact sequence

0 C C2 Ker β 0
γ π′′

and since Ker β ∈ Cogen(C) = ⊥C, we have that Ext1A(Ker β, C) = 0 and so
the above short exact sequence splits. In particular, γ is split monic and we are
done.

We prove the axiom (C2) next. This is rather straightforward.

Proposition 3.7. Let C ∈ A be 1-cotilting. Then Ext1A(C
×I , C) = 0 for any

set I.

Proof. This is immediate since Prod(C) ⊆ Cogen(C) = ⊥C.

Remark 3.8. Proposition 3.4 says that the condition (C2) is equivalent to the
seemingly stronger condition

Ext1A(Prod(C),Prod(C)) = 0,

as is the case for the category Mod–R for a ring R.
More generally, for any class S of objects in A we have

Ker Ext1A(−,S) = Ext1A(−,Prod(S)).

Finally, we prove the axiom (C3). The proof requires the following lemma,
which is an application of Proposition 1.8 of [CDT97] by R. Colpi, G. D’Este and
A. Tonolo in abstract setting.
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Lemma 3.9. Let G be an object of A satisfying ⊥G = Cogen(G). Assume that
K ∈ Cogen(G). Then there is a short exact sequence

0 K G×X L 0 ,

where X is a set and L ∈ Cogen(G).

Proof. Consider the set X = HomA(K,G). Consider the power G×X together
with the canonical projections πχ : G×X → G, χ ∈ X. Define ∆ as the diagonal
map ∆ : K → G×X , that is, ∆ is given as the unique map satisfying

πχ∆ = χ, χ ∈ X .

By the fact that K ∈ Cogen(G), we immediately see that ∆ is a monomorphism
(if α, β : F → K are two different morphisms, then, as G cogenerates K, there
is a morphism χ : K → G with χα 6= χβ; it follows that ∆α 6= ∆β, since
πχ∆α = χα 6= χβ = πχ∆β).

Thus, we obtain a short exact sequence

0 K G×X L 0∆

(with L = Coker∆), and it remains to check that L ∈ Cogen(G) = ⊥G.
Applying HomA(−, G), we obtain a long exact sequence

· · · HomA(G
×X , G) HomA(K,G) Ext1A(L,G) Ext1A(G

×X , G) · · ·
−◦∆

The map (− ◦ ∆) = HomA(∆, G) is clearly surjective from construction (if
χ ∈ HomA(K,G), then (− ◦ ∆)(πχ) = πχ ◦ ∆ = χ) and Ext1A(G

×X , G) = 0.
Thus, from exactness it follows that Ext1A(L,G) = 0, which concludes the proof.

The following argument is very similar to the one used by Colpi and Trlifaj
in [CT95b] where it is used for the category Mod–R. The purpose of the slight
modifications given here is to overcome the fact that we don’t have projective
generators and that covariant Ext does not preserve direct products, in general.

Proposition 3.10. Let C be a 1-cotilting object of A. Given an injective object
W (an injective cogenerator for A in particular), there is a short exact sequence

0 C1 C0 W 0

with C0, C1 ∈ Prod(C).

Proof. Since ⊥C = Cogen(C) is generating, one can consider an epimorphism
e : F ։ W , where F ∈ Cogen(C). By definition of Cogen(C), there is a
monomorphism ι : F →֒ C×I for some set I. By injectivity of W , e′ extends
along ι to a morphism e : C×I

Y ։ W , i.e. eι = e′ (clearly e is an epimorphism as
well).

Thus, we have a short exact sequence
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0 K C×I W 0i e

(where i = Ker e), and, obviously, K ∈ Cogen(C). By Lemma 3.9 there is a short
exact sequence

0 K C×J L 0
j

for some set J and some L ∈ Cogen(C).
Consider the pushout P of i and j, which gives rise to a commutative diagram

0 0

0 K C×I W 0

0 C×J P W 0

L L

0 0

i

j

e

with exact rows and columns. Observe that since L,C×I ∈ Cogen(C) and
Cogen(C) = ⊥C is closed under extensions, we have P ∈ Cogen(CY ) by the
exactness of the second column. The claim is that the exact sequence

(ξ) 0 C×J P W 0

(second row of the above diagram) is the desired exact sequence from the state-
ment of the proposition. To verify this, it remains to show that P ∈ Prod(C).

Applying Lemma 3.9 again for P ∈ Cogen(C), there is a short exact sequence

0 P C×L M 0

with M ∈ CogenC = ⊥C. We compute that Ext1A(M,P ) = 0, hence the above
exact sequence splits and thus, P ∈ Prod(C). Indeed, applying HomA(M,−) to
the exact sequence (ξ) yields a long exact sequence

· · · Ext1A(M,C×J) Ext1A(M,P ) Ext1A(M,W ) · · ·

where Ext1A(M,W ) = 0 (W is injective) and Ext1A(M,C×J) = 0 (using Propo-
sition 3.4 and the fact that M ∈ ⊥C). Thus, from exactness it follows that
Ext1A(M,P ) = 0, which completes the proof.

Note that the proof relied on the fact that the cotilting class ⊥C is generating.
We have thus proved that a 1-cotilting object always satisfies the axioms (C1)–
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(C3).
We now turn our attention to the converse implication. In order to do that,

a preparatory lemma is needed. Note that the proof of the lemma is basically a
“local version”1 of the Horseshoe Lemma.

Lemma 3.11. Consider an object G ∈ A such that Cogen(G) ⊆ ⊥G. Then the
class Cogen(G) is closed under subobjects, direct products and extensions. Thus,
the class Cogen(G) is a torsion-free class in a torsion pair in A.

Proof. The fact that Cogen(G) is closed under subobjects and direct products
is obvious (for direct products, note that this follows from the fact that direct
product functors are left exact). We only need to show that Cogen(G) is closed
under extensions.

Consider a short exact sequence

0 F ′ F F ′′ 0
j p

in A, where F ′, F ′′ ∈ Cogen(G). That is, we have monomorphisms i′, i′′

0 F ′ F F ′′ 0

G×I G×J ,

j

i′

p

i′′

where I and J are some sets. Without loss of generality, assume that I and J are
disjoint. Consider C×(I∪J) ≃ C×I ⊕ C×J . This biproduct structure on C×(I∪J)

comes with the canonical biproduct morphisms ιI , ιJ , πI , πJ , fitting into a split
exact sequence as follows:

0 F ′ F F ′′ 0

0 C×I C×(I∪J) C×J 0 .

j

i′

p

i′′

ιI

πI

πJ

ιJ

Put β := i′′p. By the fact that F ′′ ∈ Cogen(G) ⊆ ⊥G, we have Ext1A(F
′′, G) = 0

and thus, by Lemma 3.5, there is an extension α of i′ along j, i.e. so that the
following diagram commutes:

0 F ′ F F ′′ 0

0 C×I C×(I∪J) C×J 0

j

i′

p

α

β
i′′

ιI

πI

πJ

ιJ

1This is not meant geometrically. The intended meaning is that one uses the fact that
particular Ext1 group vanishes, instead of working with projectives or injectives.
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Put i := ιIα + ιJβ. Then

ij = ιIαj + ιJβj = ιIi
′ + ιJ i

′′pj = ιIi
′,

πJ i = πJ ιIα + πJ ιJβ = 0 + β = i′′p.

That is, the following diagram is commutative:

0 F ′ F F ′′ 0

0 C×I C×(I∪J) C×J 0

j

i′

p

i i′′

ιI πJ

By the Four Lemma, it follows that i is again a monomorphism. This shows that
F ∈ Cogen(G).

Since Cogen(G) is closed under subobjects, direct products and extensions, it
follows by Remark 2.3 4. that Cogen(G) is a torsion-free class in A.

Proposition 3.12. Suppose that C is an object of A satisfying the axioms
(C1)–(C3). Then ⊥C = Cogen(C).

Proof. By (C1) we have Prod(C) ⊆ ⊥C. Thus, in order to prove the inclusion
Cogen(C) ⊆ ⊥C it is enough to show that ⊥C is closed under subobjects. Let

us therefore consider an object F ∈ A and its subobject G
i
→֒ F. Applying the

functor HomA(−, C) to the exact sequence

0 G F C 0i

(where C = Coker i) yields an exact sequence

· · · Ext1A(F,C) Ext1A(G,C) Ext2A(H,C) · · · ,

where Ext1A(F,C) = 0 by assumption on F and Ext2A(H,C) = 0 by the fact that
injdimC ≤ 1. It follows that Ext1A(G,C) = 0, i.e. G ∈ ⊥C.

Let us now prove the converse inclusion. By Lemma 3.11, the class Cogen(C)
is a torsion-free class of a torsion pair in A.

Consider any object A ∈ ⊥C. There is a short exact sequence

0 T A F 0

with F ∈ Cogen(C) and T ∈ KerHomA(−,Cogen(C)). In order to prove that
A ∈ Cogen(C) we only need to show that T = 0.

To this end, consider the short exact sequence

0 C1 C0 W 0

ensured by the axiom (C3). That is, W is an injective cogenerator for A and
C0, C1 ∈ Prod(C). Applying HomA(T,−) to it, we obtain an exact sequence

· · · HomA(T,C0) HomA(T,W ) Ext1A(T,C1) · · ·
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Since Prod(C) ⊆ Cogen(C), we have HomA(T,C0) = 0, and by the fact that ⊥C
is closed under subobjects, we have T ∈ ⊥C. Thus, we also have Ext1A(T,C0) = 0
(by Remark 3.8). It follows that HomA(T,W ) = 0. But since W is a cogenerator,
this can happen only if T = 0. This concludes the proof.

Let us summarize the results of this section (in a less general but more compact
form).

Theorem 3.13. Let A be a Grothendieck category and C ∈ A an object in A.
Then the following conditions are equivalent:

(1) C is 1-cotilting.

(2) The class ⊥C is generating, and C satisfies

(C1) injdimC ≤ n.

(C2) ExtiR(C
×κ, C) = 0 for every cardinal κ and every i ≥ 1.

(C3) There is an exact sequence

0 C1 C0 W 0

where W is an injective cogenerator for A and C0, C1 ∈ Prod(C).

3.3 Construction of 1-cotilting sheaves on a Noetherian

scheme

Let X be a fixed Noetherian scheme. The goal of this section is to construct a
1-cotilting sheaf CY on X, such that the cotilting class Cogen(CY ) =

⊥CY is equal
to F(Y ). Our approach is analogical to the one used in [ŠTH14] for modules.

Suppose that Y ⊆ X is a specialization closed subset. Denote I(Y ) the class of
all injective quasi-coherent sheaves E with AssE ∩Y = ∅. That is, I(Y ) consists
of all the injectives contained in F(Y ). From this description it follows that I(Y )
is closed under direct limits: F(Y ) is closed under direct limits by Lemma 2.22,
and injectives are closed under direct limits by Corollary 1.33. Similarly, I(Y )
is closed under taking direct sums (also note that I(Y ) is closed under direct
products, which will be useful later on). Moreover, from the structure theorem
for injective quasi-coherent sheaves it follows that there is a set S ⊆ I(Y ) such
that I(Y ) = Lim−−→S - it is enough to take the set of all finite direct sums of the

sheaves J (x) for various (possibly repeating) points x ∈ X \ Y . Hence, by
[EB06, Theorem 3.2], I(Y ) is a covering class2.

The following proposition is a key to our construction. The argument of the
proof is based on the proof of implication (i)⇒(iii) of [ŠTH14, Lemma 2.10].

Proposition 3.14. Suppose that there is a generator G of QCohX such that
AssG ∩ Y = ∅. Then every I(Y )-precover of an injective quasi-coherent sheaf is
an epimorphism.

2See Definition C.2 of Appendix for definition of covers and precovers.
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Proof. Consider an I(Y )-precover of an injective quasi-coherent sheaf f : I → E .
Since G is a generator for QCohX , there is an epimorphism g : G ⊕I → E . Denote
i : G ⊕I →֒ E(G ⊕I) the injective envelope of G ⊕I . By the injectivity of E , there is
a morphism h : E(G ⊕I) → E such that h ◦ i = g. Since g is an epimorphism, so
is h. From the assumption it follows that G ⊕I ∈ F(Y ), hence E(G ⊕I) ∈ I(Y ).
Thus, there is a morphism k : E(G ⊕I) → I such that f ◦ k = h. Thus, f is an
epimorphism, since so is h.

Recall that our definition of 1-cotilting sheaf implies that ⊥CY is generating.
Since the class F(Y ) is closed under direct sums (by Remark 1.7), this means that
we restrict our attention to specialization closed subsets Y such that the class
F(Y ) contains a generator. That is, in the cases we are interested in, there indeed
is a generator G of QCohX such that AssG ∩ Y = ∅, and so the Proposition 3.14
applies.

Before proceeding to the construction of CY , let us briefly discuss several
circumstances that allow us to control (by a reasonable choice of the generator
for QCohX) the set of points that Y needs to avoid. In both cases we mention,
the resulting chosen generator has the set of associated points equal to (or is a
subset of) AssOX , so the condition on Y reduces to Y ∩ AssOX = ∅.

Definition 3.15. (1) We say that a scheme X has an ample family of line
bundles if there are global sections fi of line bundles Li, i ∈ I, such that the
sets D(fi) = {x ∈ X | f(x) 6= 0}, i ∈ I form an affine open cover of X.

(2) We say that a scheme X has the resolution property if every coherent sheaf
is an epimorphic image of a vector bundle (i. e. a locally free sheaf of finite
rank).

A Noetherian scheme X which has an ample family of line bundles has the
resolution property, which was proved by S. Kleiman and M. Borelli in [Bor67],
and independently by L. Illusie in [Ill71]. The above properties are satisfied for
a large class of Noetherian schemes, e.g. for quasi-projective schemes on affine
schemes. See [TT90, section 2.1] for more detailed discussion.

Let X be a Noetherian scheme. For any vector bundle F of nonzero rank
we have AssF = AssOX , as the associated points depend on the stalks only,
and any stalk Fx of F is isomorphic to (nonzero) direct sum of the stalk of the
structure sheaf OX,x.

Assume that X has the resolution property. Since any quasi-coherent sheaf
is a direct union of its coherent subsheaves, it follows that the quasi-coherent
sheaf G obtained as a direct sum of representatives of all vector bundles (up to
isomorphism) is a generator for QCohX , and AssG = AssOX .

The second case we mention is the case when the category QCohX has enough
flats.

Definition 3.16. Let X be a scheme. A quasi-coherent sheaf F on X is called
flat if for every x ∈ X, Fx is a flat OX,x-module.

Let F be a flat quasi-coherent sheaf on a scheme X. For each x ∈ X, Fx is a
flat OX,x-module, hence by Govorov-Lazard Theorem [Rot08, Theorem 5.40], Fx

is a direct limit of a direct system of finite-rank freeOX,x-modules, say (Fi | i ∈ I).
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By Lemmas 2.10 and 2.9 (1) we have

AssOX,x
Fx ⊆

⋃

i∈I

AssOX,x
Fi = AssOX,x

OX,x.

It follows that AssF ⊆ AssOX .
A result of D. Murfet states the following.

Proposition 3.17 ([Mur07, Corollary 3.21]). Let X be a quasi-compact sepa-
rated scheme. Then for every quasi-coherent sheaf on G on X, there exists a flat
quasi-coherent sheaf F on X and an epimorphism F → G .

Suppose that X is a Noetherian separated scheme. Let us fix a set S =
{G s | s ∈ S} of representatives of all isomorphism classes of coherent sheaves
(note that this is possible since CohX is skeletally small). For each G ∈ S,
choose a flat quasi-coherent sheaf F s admitting an epimorphism F s → G s. Put
F :=

⊕
s∈S F s. Then we have

Gen(F ) ⊇ Gen(S) = QCohX ,

i.e. F is a flat generator, and thus AssF ⊆ AssOX .
Let us summarize the above discussion.

Proposition 3.18. Let X be a Noetherian scheme which either has the reso-
lution property, or is separated. Consider a specialization closed subset Y ⊆ X
satisfying AssOX∩Y = ∅. Then any I(Y )-precover of an injective quasi-coherent
sheaf is an epimorphism.

Finally, we proceed to the construction itself. In what follows throughout the
rest of the chapter, let us fix a specialization closed subset Y ⊆ X that does not
contain any associated point of a fixed generator of the category QCohX .

Construction 3.19. Let X be a Noetherian scheme with the resolution prop-
erty and Y ⊆ X a specialization closed subset satisfying AssOX ∩ Y = ∅. For
any y ∈ Y , we have an exact sequence

0 K (y) I (y) J (y) 0,
αy βy

where αy : I (y) −→ J (y) is a I(Y )-cover.
Define quasi-coherent sheaves

KY :=
∏

y∈Y

K (y), JY :=
∏

x∈X\Y

J (x),

and finally, put
CY := KY × JY .

Our aim is to prove that ⊥CY = Cogen(CY ) = F(Y ). We do this by showing
the equalities Cogen(CY ) = F(Y ), ⊥CY = F(Y ) separately. Then we will be
done, since the specialization closed subset Y was chosen in a way that ensures
that the class F(Y ) is generating.
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Remark 3.20. If Y = ∅, the resulting quasi-coherent sheaf is easily seen to be
an injective cogenerator for QCohX , and

⊥CY = Cogen(CY ) = F(Y ) = QCohX .

From now on, let us additionally assume that Y 6= ∅.

We start with the less difficult equality Cogen(CY ) = F(Y ).

Proposition 3.21. Under the above assumptions, F(Y ) = Cogen (CY ).

Proof. For any y ∈ Y , we clearly have K (y) ∈ F(Y ) (as it is a subobject of
I (y) ∈ F(Y )). Also, for any x ∈ X \ Y , we have J (x) ∈ F(Y ) directly from
the definition of F(Y ). This shows that CY ∈ F(Y ) and Cogen (CY ) ⊆ F(Y ),
since F(Y ) is closed under direct products and subobjects.

Conversely, consider any F ∈ F(Y ) and its injective hull

F E(F ) ≃
⊕

i∈I J (xi),

where xi, i ∈ I is a suitable collection of points in X (E(F ) can be written in this
form by structure theorem for injective quasi-coherent sheaves, Theorem 1.32).
Since the torsion pair (T (Y ),F(Y )) is hereditary, F(Y ) is closed under injective
hulls and it follows that

⊕
i∈I J (xi) ∈ F(Y ). From this it is clear that all the

points xi lie outside Y .
Thus, we can write

E(F ) ≃
⊕

x∈S

J (x)⊕Ix ,

where S ⊆ X \Y is a subset of X disjoint with Y and Ix, x ∈ S are suitable index
sets. Denote J =

⋃
x∈S Ix. We have a monomorphism obtained as a composition

of the following inclusions and isomorphisms (the obvious ones):

F ⊆ E(F ) ≃
⊕

x∈S

J (x)⊕Ix ⊆

(
⊕

x∈S

J (x)

)⊕J

⊆

⊆

(
∏

x∈S

J (x)

)×J

⊆


∏

y∈Y

K (y)×
∏

x∈X\Y

J (x)




×J

= C ×J
Y .

This shows that F ∈ Cogen(CY ).

Next we prove the equality ⊥CY = F(Y ). Both inclusions of this equality are
non-trivial. The proof is split to a series of lemmas, studying the behaviour (both
vanishing and non-vanishing) of ExtX(−,CY ). The proof is conducted in analogy
to [ŠTH14, Chapter 4].

Lemma 3.22. Consider y ∈ Y . Then Ext1X(E ,K (y)) = 0 for any E ∈ I(Y ).

Proof. Applying the functor HomX(E ,−) to the exact sequence

0 K (y) I (y) J (y) 0
αy βy
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as described in Construction 3.19 yields a long exact sequence

0 HomX(E ,K (y)) HomX(E ,I (y)) HomX(E ,J (y))

Ext1X(E ,K (y)) Ext1X(E ,I (y)) = 0 .

βy◦−

The I(Y )-precover property of the map I (y) → J (y) guarantees that the
map βy ◦ − : HomX(E ,I (y)) → HomX(E ,J (y)) is surjective (since E ∈ I(Y )),
hence it follows that Ext1X(E ,K (y)) = 0.

Lemma 3.23. Consider a point y ∈ Y and a quasi-coherent sheaf F such that
y ∈ AssF . Then Ext1X(F ,K (y)) 6= 0.

Proof. Consider a coherent subsheaf G ⊆ F with the properties SuppG = {y}
and AssG = {y}, as in Lemma 2.14.

Firstly, observe that HomX(G ,I (y)) = 0. This follows from the fact that
G ∈ T (Y ) and I (y) ∈ F(Y ).

Next we claim that Ext1X(G ,K (y)) 6= 0. Indeed, consider the short exact
sequence

0 K (y) I (y) J (y) 0 .
αy βy

Applying HomX(G ,−), we obtain a long exact sequence

0 HomX(G ,K (y)) HomX(G ,I (y)) HomX(G ,J (y))

Ext1X(G ,K (y)) Ext1X(G ,I (y)) .

From Corollary 2.16 it follows that AssE(G ) = AssG = {y} and by the struc-
ture theorem for injective quasi-coherent sheaves (Theorem 1.32) it follows that
E(G ) ≃ J (y)⊕I for some set I. That is, there is a nonzero (mono-) morphism

G J (y)⊕I J (y)×I

In particular, we necessarily have that HomX(G ,J (y)) 6= 0 (this is because

0 6= HomX(G ,J (y)×I) ≃ HomX(G ,J (y))×I).

However, Ext1X(G ,I (y)) = 0 and we also have that HomX(G ,I (y)) = 0 by the
first part. Thus, we obtain an isomorphism

Ext1X(G ,K (y)) ≃ HomX(G ,J (y)) 6= 0.

Finally, we show that Ext1X(F ,K (y)) 6= 0. We start with a short exact
sequence

0 G F H 0 .
⊆
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(with H = Coker (G →֒ F )) and apply HomX(−,K (y)) to obtain a long exact
sequence

· · · Ext1X(F ,K (y)) Ext1X(G ,K (y)) Ext2X(H ,K (y)) .

Since injdimK (y) ≤ 1 (it is a kernel of an epimorphism between injective
sheaves), Ext2X(H ,K (y)) = 0. Thus, we have obtained a group epimorphism

Ext1X(F ,K (y)) Ext1X(G ,K (y))

with Ext1X(G ,K (y)) 6= 0, which proves that Ext1X(F ,K (y)) 6= 0.

The following lemma is a partial remedy to the fact that products are not
exact in the category of quasi-coherent sheaves in general. Here we use fully the
fact that the class I(Y ) is precovering. The reader is encouraged to compare the
given argument with the proof of Proposition 3.4.

Lemma 3.24. For every y ∈ Y, consider the exact sequence

0 K (y) I (y) J (y) 0,
αy βy

from Construction 3.19. Given any family (yj | j ∈ J) of points from Y , the
sequence

0
∏
j∈J

K (yj)
∏
j∈J

I (yj)
∏
j∈J

J (yj) 0

∏

j∈J

αyj

∏

j∈J

βyj

is also exact.

Proof. The product functor is left exact, since it preserves limits, in particular,
it preserves kernels. We need to show that

∏
j∈J βyj is an epimorphism.

For j ∈ J , in the exact sequence

0 K (yj) I (yj) J (yj) 0,
αyj

βyj

the morphism βyj is an I(Y )-cover. We claim that

∏

j∈J

βyj :
∏

j∈J

I (yj) −→
∏

j∈J

J (yj)

is an I(Y )-precover. Firstly, the sheaf
∏

j∈J I (yj) belongs to I(Y ) as the class
I(Y ) is closed under direct products. Consider an arbitrary morphism

f : E −→
∏

j∈J

J (yj)

with E ∈ I(Y ). For each j ∈ J, we obtain, using the I(Y )-precover property of
βyj , a commutative diagram
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I (yj) J (yj)

E ,

βyj

πjfγj

where πj :
∏

i∈J J (yi) → J (yj) is the canonical projection (coming with the
product). Using the universal property of product, it is easy to see that we have
the commutative diagram

∏
j∈J

I (yj)
∏
j∈J

J (yj)

E

∏

j∈J

βyj

f
∏

j∈J

γj

as well. Thus, the I(Y )-precover property for
∏

j∈J βyj is satisfied.
By Corollary 3.14, it follows that the map

∏
j∈J βyj is an epimorphism.

Proposition 3.25. injdimCY = 1.

Proof. Let us first show that CY is not injective. Consider a point y ∈ Y and a
quasi-coherent sheaf F with y ∈ AssF . Denote by G the quasi-coherent sheaf

G =
∏

z∈Y \{y}

K (z)×
∏

x∈X\Y

J (x)

so that we have
CY ≃ K (y)⊕ G .

Then we obtain

Ext1X(F ,CY ) ≃ Ext1X(F ,K (y)⊕ G ) ≃ Ext1X(F ,K (y))⊕ Ext1X(F ,G ) 6= 0,

since Ext1X(F ,K (y)) 6= 0 by Lemma 3.23.
Next we prove that injdimCY ≤ 1. Using the product complex

0
∏
y∈Y

K (y)
∏
y∈Y

I (y)
∏
y∈Y

J (y) 0 ,

∏

y∈Y

αy

∏

y∈Y

βy

which is a short exact sequence by Lemma 3.24, we obtain an exact sequence

0 CY

∏
y∈Y

I (y)⊕
∏

x∈X\Y

J (x)
∏
y∈Y

J (y) 0

by adding the injective direct summand
∏

x∈X\Y J (x) to the first two terms.
This is an injective coresolution of CY of the length 2. Thus, we infer that
injdimCY ≤ 1.

Corollary 3.26. The class ⊥CY is closed under subobjects.
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Proof. Consider a short exact sequence of quasi-coherent sheaves

0 F G H 0

with G ∈ ⊥CY . Our aim is to prove that F ∈ ⊥CY .
The long exact sequence arising from application of HomX(−,CY ) contains

the terms

· · · Ext1X(G ,CY ) Ext1X(F ,CY ) Ext2X(H ,CY ) · · ·

However, Ext1X(G ,CY ) = 0 by the assumptions and Ext2X(H ,CY ) = 0, since
injdimCY = 1. Thus, Ext1X(F ,CY ) = 0.

Finally, we are prepared for proof of the second equality.

Proposition 3.27. ⊥CY = F(Y ).

Proof. First we prove that ⊥CY ⊆ F(Y ). Suppose for contradiction that there
is a quasi-coherent sheaf F ∈ ⊥CY \ F(Y ). That is, there is a point y ∈ Y such
that y ∈ AssF . From Lemma 3.23 it follows that Ext1X(F ,K (y)) 6= 0. Denote
by G the quasi-coherent sheaf

G =
∏

z∈Y \{y}

K (z)×
∏

x∈X\Y

J (x).

That is, we have
CY ≃ K (y)⊕ G .

Then, as Ext1X(−,−) is an additive functor in each variable, we have that

Ext1X(F ,CY ) ≃ Ext1X(F ,K (y)⊕ G ) ≃ Ext1X(F ,K (y))⊕ Ext1X(F ,G ) 6= 0.

This is a contradiction.
Next we prove that F(Y ) ⊆ ⊥CY . In order to do this, it is enough to show

that I(Y ) ⊆ ⊥CY , since F(Y ) is closed under injective envelopes (i.e. F(Y )
consists precisely of all subobjects of I(Y )) and ⊥CY is closed under subobjects
by Corollary 3.26.

Let us choose E ∈ I(Y ) and compute that Ext1X (E ,CY ) = 0. Firstly, we have

Ext1X

(
E ,CY

)
≃Ext1X

(
E ,
∏

y∈Y

K (y)⊕
∏

x∈X\Y

J (x)
)

≃Ext1X

(
E ,
∏

y∈Y

K (y)
)
⊕ Ext1X

(
E ,

∏

x∈X\Y

J (x)
)

≃Ext1X

(
E ,
∏

y∈Y

K (y)
)

(the sheaf
∏

x∈X\Y J (x) is injective). To prove that Ext1X

(
E ,
∏

y∈Y K (y)
)
= 0,

by Proposition 3.4 it is enough to check that Ext1X (E ,K (y)) = 0 for every y ∈ Y .
This holds by Proposition 3.22, so the proof is complete.

Once again, we summarize the main result of this section.
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Theorem 3.28. Let X be a Noetherian scheme and Y ⊆ X be a specialization
closed subset.

(1) If X has the resolution property or is separated and the set Y satisfies
AssOX ∩ Y = ∅, the construction 3.19 yields a 1-cotilting quasi-coherent
sheaf CY such that the associated 1-cotilting class is equal to F (Y ).

(2) More generally, if there is a generator G for QCohX satisfying AssG ∩Y = ∅,
the construction 3.19 again yields a 1-cotilting quasi-coherent sheaf CY such
that the associated 1-cotilting class is equal to F (Y ).

We close the chapter with an additional corollary of Lemma 3.24, interesting
by itself.

Corollary 3.29. Let G be any quasi-coherent sheaf. Given a family (yj | j ∈ J)
of points from Y and any i ≥ 0, we have

ExtiX

(
(G ,

∏

j∈J

K (yj)
)
≃
∏

j∈J

ExtiX(G ,K (yj)).

In particular, for any set I we have

ExtiX

(
G ,C ×I

Y

)
≃ ExtiX

(
G ,CY

)×I

if i ≥ 1.

Proof. For any j ∈ J, the exact sequence

0 K (yj) I (yj) J (yj) 0,
αyj

βyj

provides an injective coresolution of K (yj).
By Lemma 3.24, the product sequence

0
∏
j∈J

K (yj)
∏
j∈J

I (yj)
∏
j∈J

J (yj) 0

∏

j∈J

αyj

∏

j∈J

βyj

is also exact, and since
∏

j∈J I (yj),
∏

j∈J J (yj) are injective, it provides an
injective coresolution of

∏
j∈J K (yj).

Applying HomX(G ,−), we obtain a complex

0 HomX

(
G ,
∏
j∈J

K (yj)

)
HomX

(
G ,
∏
j∈J

I (yj)

)
HomX

(
G ,
∏
j∈J

J (yj)

)
0,α̃ β̃

where α̃ =
(∏

j∈J αyj

)
◦ −, β̃ =

(∏
j∈J βyj

)
◦ −. Since HomX(G ,−) preserves

direct products, this complex is isomorphic to

0
∏
j∈J

HomX (G ,K (yj))
∏
j∈J

HomX (G ,I (yj))
∏
j∈J

HomX (G ,J (yj)) 0,α′ β′

with α′ =
∏

j∈J

(
αyj ◦ −

)
, β′ =

∏
j∈J

(
βyj ◦ −

)
(that is,

∏
j∈J HomX

(
G , αyj

)
,∏

j∈J HomX

(
G , βyj

)
, resp.).
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By taking the i-th homology of the second (deleted) complex instead of the
first one, the first claim follows.

The second part follows from the first one by observing that (for i ≥ 1)

ExtiX (G ,CY ) = ExtiX (G ,KY ⊕ JY ) ≃ ExtiX (G ,KY )⊕ ExtiX (G ,JY )

= ExtiX

(
G ,
∏

y∈Y

K (y)

)

and

ExtiX

(
G , (CY )

×I
)
= ExtiX

(
G , (KY ⊕ JY )

×I
)

= ExtiX
(
G ,
(
K ×I

Y ⊕ J ×I
Y

))

≃ ExtiX
(
G ,K ×I

Y

)
⊕ ExtiX

(
G ,J ×I

Y

)

= ExtiX


G ,

(
∏

y∈Y

K (y)

)×I



since JY ,J
×I
Y are injective, hence the respective summands vanish. Using the

first part it easily follows that both ExtiX(G ,CY )
×I and ExtiX(G ,C ×I

Y ) are iso-
morphic to

ExtiX

(
G ,
∏

y∈Y

K (y)×I

)
≃
∏

y∈Y

ExtiX (G ,K (y))×I .
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Appendix

In this chapter, additional supporting facts are presented, mostly without
proofs or with just sketches of proofs. In each section we refer the reader to
appropriate literature.

A Sheaf on a topological space

The general references for this section and the next one are [GW10], [Har77].
Before we begin, let us introduce the following terminology regarding non-

Hausdorff topological spaces:

(1) A topological space X is called quasi-compact if every open cover admits a
finite subcover. That is, a quasi-compact space is a space that enjoys the
compactness property but is not necessarily Hausdorff.

(2) If a point x ∈ X is in the topological closure of a point y ∈ X, we call x
specialization of y, and the point y generization of x.

(3) A topological space X is Noetherian if every strictly descending chain of
closed subsets terminates (i.e. is finite).

Definition A.1. Let X be a topological space and C be a complete and co-
complete concrete category. Denote by OuvX the category of open subsets of X
(i.e. objects are open subsets of X and morphisms are set-theoretic inclusions).

A presheaf with values in C is a functor F : OuvopX → C.
If U ⊆ X is an open set and s ∈ F (U), s is called a section of F over U .
If V ⊆ U are two open subsets in X, we will denote the image of the inclu-

sion under F by resUV , and call it restriction of F from U to V . That is, the
restrictions of F satisfy

resUW = resVW ◦ resUV , resUU = 1F (U), W ⊆ V ⊆ U ⊆ X open.

If there is a danger of confusion (for example, when one considers several
presheaves on X), we will denote the restrictions FU

V instead. If C is a concrete
category and s ∈ F (U), we may occasionally write s ↾V instead of resUV (s).

A morphism of presheaves F ,G is a natural transformation f : F ⇒ G . That
is, it is given as a collection of morphisms (in C)

fU : F (U) → G (U), U ⊆ X open,

such that for every V ⊆ U ⊆ X open, the square

F (U) G (U)

F (V ) G (V )

fU

FU
V GU

V

fV

is commutative.
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A presheaf F : OuvopX → C on X is called a sheaf if for any open subset
U ⊆ X and any its open cover U =

⋃
i∈I Ui, the sequence

F (U)
∏

i∈I F (Ui)
∏

(i,j)∈I×I F (Ui ∩ Uj)
α

β

β′

is an equalizer sequence, where

α : s 7→ (s ↾Ui
)i∈I ,

β : (si)i∈I 7→ (si ↾Ui∩Uj
)(i,j)∈I×I ,

β′ : (si)i∈I 7→ (sj ↾Ui∩Uj
)(i,j)∈I×I .

A morphism of sheaves F ,G is just a morphism of presheaves. That is,
the category of sheaves with values in C is a full subcategory of the category of
presheaves with values in C.

Denote by Cpre
X the category of C-valued presheaves on X and by CX the

category of C-valued sheaves on X.

Remark A.2. The axiom in Definition A.1 imposed on a presheaf in order to
be a sheaf is called the gluing axiom. There are several equivalent restatement of
the condition, each of them useful in some contexts. We mention additional two
such reformulations.

The first is geometrically motivated and justifies the name “gluing axiom”:
For any open set U ⊆ X and any open cover U =

⋃
i∈I Ui, given a collection

si ∈ F (Ui), i ∈ I such that it is compatible in the sense that

∀i, j ∈ I : si ↾Ui∩Uj
= sj ↾Ui∩Uj

,

there is a unique s ∈ F (U) such that

∀i ∈ I : s ↾Ui
= si.

That is, a sheaf is a presheaf such that collections of sections over smaller open
sets Ui uniquely “glue together” to a section over the union

⋃
i∈I Ui provided that

they “agree on overlaps” – that is, if they pairwise restrict to the same section
over the relevant intersections.

The second reformulation is as follows.
For every open set U ⊆ X and every open cover U =

⋃
i∈I Ui, consider the

diagram D consisting of all the restrictions

F (Ui)
res

Ui
Ui∩Uj

−→ F (Ui ∩ Uj), i, j ∈ I.

Then F (U) together with the restrictions resUUi
, resUUi∩Uj

i, j ∈ I is the limit cone
for D.

Note that this version of the gluing axiom includes instructions how to define
sections and restrictions over larger open sets (U) out of the same data on smaller
open sets (Ui’s and their intersections). This is useful e.g. for constructing a sheaf
from its prescription on a base of open sets.
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There are two instances of the concrete category C that are of our interest.
Namely, if F is an Ab-valued (pre)sheaf, we talk about a (pre)sheaf of Abelian
groups. Similarly, a CRing-valued3 (pre)sheaf is called (pre)sheaf of commutative
rings.

Remark A.3. The full category CX of C-valued sheaves on X is in fact a reflec-
tive subcategory of Cpre

X . The reflector is usually called a sheafification functor,
denoted by

(−)sh : Cpre
X −→ CX .

See e.g. [GW10, (2.7)] for its explicit description.

Remark A.4. 1. Note that the gluing axiom for the situation when U = ∅
and the cover of U is an empty cover translates to

F (∅) is the terminal object of C.

2. If X = {x}, the above condition is equivalent to the gluing axiom. In fact,
in this case the category Cpre

X is clearly equivalent to the category of arrows
C→, and the category CX is equivalent to C itself.

Definition A.5. Let C be a complete and co-complete concrete category and
X be a topological space. For an open set U ⊆ X, the functor of sections on U
Γ(U,−) is defined as follows.

1. If F ∈ CX is a C-valued sheaf, put

Γ(U,F ) = F (U).

2. If f : F → G is a morphisms of C-valued sheaves, put

Γ(U, f) = fU : F (U) → G (U)

(that is, the U -th component of the natural transformation f).

If U = X, the functor Γ(X,−) is called the global sections functor.

Definition A.6. Let C be a complete and co-complete concrete category and
π : X → Y be a continuous map between topological spaces X, Y .

Define the functor π∗ : CX → CY as follows.

(1) Given a C-valued sheaf F on X, for an open set U ⊆ Y put

π∗F (U) := F (π−1(U)) ,

and for a pair of open subsets V ⊆ U ⊆ X, define the restriction from U to
V as

(π∗F )UV := F π−1(U)

π−1(V ) : F (π−1(U)) −→ F (π−1(V )) .

This is indeed a sheaf on Y , called the pushforward (or direct image) of F
along the map π.

3CRing denotes the category of commutative rings and ring homomorphisms.
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(2) Similarly, if f : F → G is a morphism of sheaves on X, define a morphism
of sheaves on X π∗f : π∗F → π∗G by

(π∗f)U := fπ−1(U) : F (π−1(U)) −→ G (π−1(U)), U ⊆ Y open.

The functor π∗ : CX → CY is called the pushforward functor (or direct image
functor) along π.

We now define a functor π−1 : CY → CX going in the opposite direction.

Definition A.7. Let C be a complete and co-complete concrete category and
π : X → Y be a continuous map between topological spaces X, Y .

(1) Given a C-valued sheaf F on Y , for an open set U ⊆ Y put

π′F (U) := lim−→
W

F (W ) ,

where W goes over all open sets W ⊆ Y containing π(U), and all the possible
restrictions between such W ’s. Given open subsets V ⊆ U ⊆ X, define the
restriction from U to V as the induced morphism π′F (U) → π′F (V ) from
the universal property of the direct limit π′F (U) = lim−→W

F (W ) (note that
π(V ) ⊆ π(U), hence ifW contains π(U), then it contains π(V )). The resulting
collection π′F is then easily seen to be a presheaf on X.

(2) If f : F → G is a morphism of sheaves on Y , define a morphism of presheaves
on X π′f : π′F → π′G by the universal property of direct limits again. More
precisely, if U ⊆ X is an open subset, the collection of the compositions

F (W ) G (W ) π′G (U),
fW

where W runs over all W ⊆ Y open containing π(U) (the second map comes

from the universal co-cone of the direct limit) gives a co-cone for the directed
system definining π′F (U), and so they induce a map

(π′f)U : π′F (U) −→ π′G (U).

the resulting collection π′f : F → G is a morphism of presheaves. Altogether,
π′ : CY → Cpre

X is a functor, called the presheaf pullback functor along π.

Define the functor π−1 by

π−1 = (−)sh ◦ π′.

That is, π−1 : CY → CX which assigns to a C-valued sheaf F the sheafification
of presheaf the presheaf pullback of F along π. The functor π−1 is called the
pullback functor along π.

Theorem A.8. Let C be a complete and co-complete concrete category and
π : X → Y be a continuous map between topological spaces X, Y . Then the pair
of functors (π−1, π∗) is an adjoint pair. That is, π−1 is the left adjoint to π∗ (and
thus, π∗ is the right adjoint to π−1).
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There are two situations when the pullback functor is especially important for
our purposes.

Definition A.9. Let C be a complete and co-complete concrete category and
X be a topological space. Let F be a C-valued sheaf on X.

(1) If x ∈ X is a point and ix : {x} → X the inclusion of {x} into X, from
Remark A.4 it follows easily that the presheaf i′xF is already a sheaf. Thus,
we have i−1

x F = i′xF and this sheaf can be further identified with the object
i−1
x F ({x}), which is given by

i−1
x F ({x}) = lim−→

x∈U⊆X
U open

F (U).

We call this object of C (or a sheaf over {x}) the stalk of F at the point
x and denote it by Fx. Given an open neighbourhood U of x there is a
map F (U) → Fx obtained from the co-cone of the above direct limit. If
s ∈ F (U) is a section, call the image sx of s under this map a germ of s at
x.

(2) Consider U ⊆ X an open subset and iU : U → X the open embedding of U
into X. Since for any open subset W ⊆ U , the set iU(W ) = W is open in X,
it follows that

∀W ⊆ U open: i−1
U F (W ) = F (W )

(and the restrictions of i−1
U F agree with agree with the restrictions of F as

well). We call the sheaf i−1
U F the restriction sheaf of F to U (or sheaf F

restricted to U) and denote it by F↾U .

B Locally ringed spaces and schemes

Definition B.1. A locally ringed space (X,OX) consists of a topological space
X together with a sheaf of commutative rings OX on X such that for each point
x ∈ X, the stalk OX,x = (OX)x is a local ring. We call X the underlying
(topological) space andOX the structure sheaf of the locally ringed space (X,OX).

Given two locally ringed spaces (X,OX) and (Y,OY ), a morphism of locally
ringed spaces (π, π♯) : (X,OX) → (Y,OY ) consists of

(1) a continuous map π : X → Y, and

(2) a morphism of sheaves of rings π♯ : OY → π∗OX ,

such that for every point x ∈ X, the induced ring homomorphism on stalks

(π♯)x : OY,π(x) −→ (π∗OX)π(x) = OX,x

takes the maximal ideal of OY,π(x) onto the maximal ideal of OX,x.

Note that if (X,OX) is a locally ringed space and U ⊆ X is an open subset, U
has a natural structure of locally ringed space given by restriction of the structure
sheaf OX to U . In other words, (U,OX↾U) is a locally ringed space as well.
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Construction B.2. Let R be a commutative ring. We construct a locally
ringed space SpecR = (X,OX) as follows:

1. The topological space X = SpecR consists of all prime ideals of R endowed
with the Zariski topology. That is, the closed sets are the sets of the form

V (I) := {p ∈ SpecR | I ⊆ p},

where I runs over the set of all ideals of R. Alternatively, the topology is
given by a basis of open sets {Df | f ∈ R}, where

Df = {p ∈ SpecR | f /∈ p} = SpecR \ V ((f)).

Note that Dfg = Df ∩Dg. Call the open sets of the form Df distinguished
open sets in SpecR.

2. When U = Df is a distinguished open set, put

OX(U) = Rf ,

the localisation of R with respect to the multiplicative set Sf = {fk | k ∈ N}
(in particular, if U = D1 = X, then OX(X) = R). Note that by the
correspondence theorem for ideals under localization, there is a bijection
between SpecRf and U . Also observe that Df = Dg for some f, g ∈ R if

and only if
√

(f) =
√
(g). In that case, there is a canonical isomorphism

Rf ≃ Rg, i.e. the unique isomorphism making the diagram

R

Rf Rg

locf locg

≃

commutative (here locf , locg are the localization morphisms). That is, the

ring OX(U) depends on the distinguished open set U only, and not on its
representation by an element f ∈ R.

3. If Df , Dg is a pair of distinguished open sets such that Df ⊆ Dg, we have
Df = Df ∩ Dg = Dgf , hence Rf ≃ Rgf ≃ (Rg)f can be treated as the

localization of Rg whith respect to the multiplicative set {
(
f

1

)k
| k ∈ N}.

Put (
OX(Dg)

res
Dg
Df

−→ OX(Df )

)
:=

(
Rg

locf
−→ Rgf

)
.

(Note that this is again uniquely determined up to a canonical isomor-
phism.)

4. Given an open set U ⊆ X, define OX(U) according to the gluing axiom
as described in Remark A.2. That is, consider all open sets Ui, i ∈ I
distinguished in X and contained in U , the rings OX(Ui) and all restriction
among them (these were defined in the previous two steps). Then put

OX(U) := lim
i∈I

OX(Ui).
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For any pair of open sets V ⊆ U ⊆ X, from the universal property of the
limit (defining OX(V )) we obtain a unique morphism

resUV : OX(U) −→ OX(V ) .

The result is a locally ringed space – it is not difficult to verify that the
stalk OX,x at the point x corresponding to a prime ideal p ⊆ R is isomorphic
to the localization at the prime ideal Rp, and the canonical map to the stalk
OX(X) → OX,x is the localization morphism R → Rp.

Definition B.3. A locally ringed space (X,OX) is called an affine scheme if it
is isomorphic to a locally ringed space of the form SpecR for some commutative
ring R.

An open subset U of a locally ringed space (X,OX) is called affine if the
induced locally ringed space (U,OX↾U) is an affine scheme.

A locally ringed space (X,OX) is a scheme if X can be covered by affine open
sets.

Remark B.4. Note that if U = SpecR is an affine scheme and f ∈ OU(U) is
a function, then the open subscheme (Df ,OU↾Df

) is again affine. Consequently,
the set of all affine open sets of a scheme X forms a basis for the topology on X.

Moreover, observe that if U, V are affine open subsets of a scheme X, the
intersection U ∩V can be covered by affine open sets that are distinguished both
in U and in V . This can be inferred as follows: given a point x ∈ U ∩ V, choose
f ∈ OX(U) so that we have

x ∈ Df ⊆ U ∩ V.

Now choose g ∈ OX(V ) such that

x ∈ Dg ⊆ Df .

Consider the restriction g′ = gresDf
. Interpreting OX(Df ) as OX(U)f , g

′ is of the
form g′ = g′′/fk for some g′′ ∈ OX(U) and some k. Now it is enough to observe
that

Dg = Dg′′ ,

ie the above neighbourhood of x is distinguished both in U and in V .

Notation B.5. Let X be a scheme. We use the following notation:

(1) Given a point x ∈ X and an affine open set U containing x, denote the prime
ideal of OX(U) corresonding to x by px or qx. Conversely, the point of x
corresponding to a prime ideal p ⊆ OX(U) is denoted by [p].

(2) Given a point x ∈ X, denote the maximal ideal of the stalk OX,x by mx. The
field OX,x/mx is called the residue field at x and denoted by κ(x).

Remark B.4 leads to a notion of “affine localness”, intrinsic to schemes. The
following (meta-)lemma makes this notion precise.

Lemma B.6 (Affine Communication Lemma). Let (P) be a property that can
be stated about an affine open set of a scheme X. Suppose that the following
holds:
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(1) If an affine open set U enjoys the property (P) and V is a distinguished open
set in U , then V has the property (P).

(2) If an affine open set U is covered by a collection of its distinguished open sets

U =
⋃

i∈I

Vi

and each Vi has the property (P), then U has the property (P).

Suppose that there is an affine open cover X =
⋃

i∈I Ui by affine open sets such
that each Ui has the property (P). Then every affine open subset of X enjoys the
property (P).

Proof. If U is an affine open subset of X, we have

U = X ∩ U =
⋃

i∈I

(Ui ∩ U).

For each i, cover Ui ∩ U by affine open sets

Ui ∩ U =
⋃

j

Vi,j

distinguished both in U and in Ui. The sets Vi,j enjoy the property (P) by
assertion (1), since they are distinguished in Ui. On the other hand, all the sets
Vi,j are distinguished in U and they cover U , hence U has the property (P) by
the assumption (2).

We use this affine localness to define locally Noetherian schemes in particular.
Recall the fact that the property “being a Noetherian commutative ring” satisfies
the assumptions (1) and (2) of Lemma B.6. Algebraically, this means that

(1) Whenever R is a commutative Noetherian ring and f ∈ R, the ring Rf is
again Noetherian, and

(2) given f1, f2, . . . , fk ∈ R such that (f1, f2, . . . , fk) = R4 and each Rfi is Noethe-
rian, then R is Noetherian.

Definition B.7. A scheme X is called locally Noetherian if either one of the
two following conditions holds:

(1) There is an affine open cover X =
⋃

i Ui such that each of the rings OX(Ui)
is Noetherian.

(2) For every affine open subset U ⊆ X, the ring OX(U) is Noetherian.

A scheme X is called Noetherian if it is locally Noetherian and quasi-compact.

Remark B.8. It is easily seen that the underlying space X of a Noetherian
scheme is Noetherian. Note that the fact that X is a Noetherian topological
space implies that every subset Y ⊆ X is quasi-compact.

4This is just a restatement of SpecR =
⋃k

i=1
Dfi .
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Example B.9. As an example of a non-affine scheme, let us now describe the
construction of a projective line X = P1

k where k is an algebraically closed field.
Consider two affine schemes Spec k[x0], Spec k[x1] (that is, two copies of the

scheme A1
k, an affine line over k) and their affine open subsets

U = Dx0 =Spec k[x0] \ {[(x0)]} ⊆ Spec k[x0],

V = Dx1 =Spec k[x1] \ {[(x1)]} ⊆ Spec k[x1].

By Hilbert’s Nullstellensatz, we have

Dxi
= {[(0)]} ∪ {[(x1 − a)] | a ∈ k, a 6= 0}.

The space of points of X is the topological space obtained from the union of
spaces Spec k[x0], Spec k[x1] after identification of U and V as follows:

[(0)] = [(0)] (the generic points of Spec k[x0], Spec k[x1] are identified),

[(x0 − a)] = [(x1 − a−1)], a ∈ k, a 6= 0 .

That is, the space is obtained as the “adjunction space” Spec k[x0]∐ϕ Spec k[x0],
where ϕ : U → V is the homeomorphism given by ϕ([(0)]) = [(0)] and ϕ([(x0 −
a)]) = [(x1 − a−1)] for each nonzero element a ∈ k. Denote the open subset of X
consisting of all the points originating from U, V by W .

To prescribe the structure sheaf on X, it is enough to proclaim the sets
U ′ = W ∪ {[(x0)]}, V

′ = W ∪ {[(x1)]} and W affine open, and set

OX(U
′) = k[x0], OX(V

′) = k[x1], OX(W ) = k[y,y−1],

resU
′

W : f(x0) 7→ f(y), f(x0) ∈ k[x0],

resV
′

W : g(x1) 7→ g(y−1), g(x1) ∈ k[x1]

(where y denotes a new indeterminate). In other words, the maps resU
′

W , resV
′

W are
localizations with respect to x0, x1, resp., and in the common localized ring, x0

and x1 are inverse to each other. The rest of the information is uniquely (and
indeed, correctly) obtained using the procedure analogous to Construcion B.2.

C Preenvelopes, precovers and injectives in an Abelian

category

The definitions from this section and their further developement can be found
e.g. in [GT12] or [EJ11].

Definition C.1. Let A be an Abelian category and S ⊆ A a class of objects.

(1) An S-preenvelope of an object A ∈ A is a morphism α : A → S with S ∈ S
such that the map −◦α : HomA(S, S

′) → HomA(A, S
′) is surjective for every

S ′ ∈ S.

That is, given any morphism A → S ′ with S ′ ∈ S, there is a morphism
S → S ′ such that the diagram
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S S ′

A

α

is commutative.

(2) An S-preenvelope α : A → S is called an S-envelope if additionally, whenever
we have a commutative diagram of the form

S S

A ,

ϕ

α α

the morphism ϕ is an automorphism of S.

(3) The class S is said to be preenveloping if every object A ∈ A admits an
S-preenvelope; S is called enveloping if every object A ∈ A admits an S-
envelope.

Definition C.2. Let A be an Abelian category and S ⊆ A a class of objects.

(1) An S-precover of an object A ∈ A is a morphism α : S → A with S ∈ S
such that the map α◦− : HomA(S

′, S) → HomA(S
′, A) is surjective for every

S ′ ∈ S.

(2) An S-precover α : S → A is called an S-cover if additionally, whenever we
have a commutative diagram of the form

S S

A ,

ϕ

α α

the morphism ϕ is an automorphism of S.

(3) The class S is said to be precovering if every object A ∈ A admits an S-
precover; S is called covering if every object A ∈ A admits an S-cover.

Definition C.3. Let A be an Abelian category. An object I ∈ A is called
injective if for every monomorphism m : A → B in A and every morphism
f : A → I there is a morphism f̃ : B → I such that the following diagram
commutes:

A B

I

m

f

f̃
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A monomorphismm : A → C is called essential if for every nonzero monomor-
phism n : B → C, the pullback of m and n

A C

A ∩ B B

m

n

is nonzero.

Let A ∈ A be an object. An injective hull of A is an injective object E(A) ∈ A
together with an essential monomorphism m : A → E(A).

We say that A has enough injectives if every object can be embedded into an
injective object.

We say that A has injective hulls if for every object of A, there exists an
injective hull.

Proposition C.4. Let A be an Abelian category. Denote by I the class of all
injective objects in A and by P the class of all projective objects in A.

(1) Assume that A has enough injectives. Then the class I is preenveloping. In
fact, a morphism ι : A → E with E injective is an I-preenvelope if and only
if ι is monic.

(2) Dually, assume that A has enough projectives. The class P is precovering.
More precisely, a morphism P → A with p ∈ P is a P-precover if and only if
it is epic.

Proof. Let us prove (1) only, since (2) is obtained by dualization.
Consider an object A ∈ A and a monomorphism ι : A →֒ E with E injective.

If E ′ is another injective object and α : A → E ′ morphism, by the injectivity of
E ′ it follows that ι can be extended so that we have a commutative diagram

E E ′

A

ι α

Thus, the preenvelope property of ι holds.
Conversely, assume that ι : A → E is an I-preenvelope. Since there are

enough injectives, consider a monomorphism α : A →֒ E ′ with E ′ injective. By
the I-preenvelope property of ι there is a commutative diagram

E E ′

A

ι α

and since α is monic, it follows that ι is monic as well.
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D Yoneda Ext and derived Hom functors

A very thorough reference of the results presented here is given in the Mitchell’s
book [Mit65, Chapter 7].

Definition D.1. Let A be an Abelian category and n be an integer.
For a pair of objects A,B ∈ A, an n-fold extension of A by B (or an n-

extension of A by B) is an exact sequence of the form

(ε) 0 B Xn · · · X1 A 0 .

Given two n−fold extensions of A by B (ε) and (ε′), we write (ε) ∼ (ε′) if
there is a commutative diagram of the form

(ε) 0 B Xn · · · X1 A 0

(ε′) 0 B X ′
n · · · X ′

1 A 0

and denote by ≈ the equivalence generated by ∼. If n = 1 and

(ε) 0 B X A 0

(ε′) 0 B X ′ A 0

α β

α′ β′

is a pair of extensions, consider the pullback P of β and β′. P (together with
the pair of associated canonical morphisms γ, γ′) induces a commutative diagram

0 0

0 B X A 0

0 B P X ′ 0

B B

0 0

α β

δ′ γ′

γ β′

δ α′

with exact rows and columns. Put Y = Coker (δ − δ′) and denote the cokernel

morphism by π. Then it is easy to see that we obtain an exact sequence

(ε) + (ε′) 0 B Y A 0 .πδ=πδ′ γβ=γ′β′

We call the result the Baer sum of (ε) and (ε′).
Suppose n ≥ 2. Consider a pair of n-extensions
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(ε) 0 B Xn · · · X1 A 0

(ε′) 0 B X ′
n · · · X ′

1 A 0

Let Z be the pushout of B → Xn and B → X ′
n and Y be the quotient of

the pullback of X1 → A and X ′
1 → A, as above. Define then (ε) + (ε′) as the

n-extension

0 B Z ′ Xn−1 ⊕X ′
n−1 · · · X2 ⊕X ′

2 Y ′ A 0 .

Proposition D.2. The addition of n-extensions is well-defined on the≈-equivalence
classes of n-extensions of A by B. The set of ≈-equivalence classes of n-extensions
of A by B is an Abelian group under this addition, denoted by YExtnA(A,B). The
neutral element is represented by the split exact sequence

0 B B ⊕ A A 0
ιB πA

in case when n = 1, and by the n-extension

0 B B 0 · · · 0 A A 0
1B 1A

if n ≥ 2. More generally, any n-fold extension

0 B Xn · · · X1 A 0
β α

where β is split mono or α is split epi, represents the trivial class inYExtnA(A,B).
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avec générateurs et limites inductives exactes, Les Comptes Rendus
de l’Académie des Sciences 258 (1964), 4188–4190.

[Gro57] A. Grothendieck, Sur quelques points d’algèbre homologique, I, To-
hoku Math. J. 9 (1957), no. 2, 119–221.
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