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Chapter 1

Introduction

In 1985 the world was fascinated by the eyes of a young girl photographed
in Nasir Bagh. Nasir Bagh was a Pakistan camp for Afghan refugees orphaned
during the Soviet invasion of Afganistan. Her bright green eyes captivated readers
for years and the photo became the National Geographic Society’s most recognized
photograph in its 114-year history. [1] Nobody knew her name though. She became
known simply as Afghan girl. [2]

17 years later in 2002 photographer Steve McCurry, author of the original
image, returned back to the still standing Nasir Bagh to search for his Afghan
girl. Some recognized their own friends in the photo, but after seeing their faces
McCurry knew it wasn’t them. Finally, in a remote village a week of walk away
from the camp he found a woman called Sharbat Gula. She remembered that
moment from Nasir Bagh. She had never been photographed before, nor after.
McCurry knew it was her. But nothing was certain until he provided his photos,
both old and new, to John Daugman. With his new Gabor-wavelet-based iris
recognition method he finally proved that with the probability of error 1 : 6 · 1016,
both the pairs of eyes belonged to the same person. [3] The Afghan girl was found. [4]

Iris recognition systems constitute a powerful method for identification and
authentication of people. They provide some of the most reliable results including
all the benefits and drawbacks that biometrics yield. In my thesis I would like to
name them, discuss their potentials and provide a mathematical background of
the methods used. I would like to provide arguments for why these algorithms
are used and what their alternatives are or how they can be improved.

1.1 Biometric Recognition

Biometrics as a word comes from Greek bios (life) and metron (measure) and
it refers to a process by which a person’s unique characteristics are detected and
recorded by an electronic device or system for retrieval or confirmation of an
identity.

Biometrics generally faces a few cardinal problems. The first one is an in-
accuracy of measurement. While digital systems require accurate numbers for
delivering correct responses, biometric characteristics registration can hardly be
always the same.

Another disadvantage of biometrics is its consistancy. While stability is a
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corner-stone of biometric recognition, it is simultaneously one of its major draw-
backs. Once a pattern is in some way stolen, it can never be changed like a
password.

The next problem is opposite to the previous one. While the patterns remain
more-or-less constant, they are not constant absolutely. Their changes over years
can cause incorrect system response after a long period of time. Some biometric
characteristics are more stable (such as DNA), while some are influenced more
(such as face geometry).

There are 2 basic types of biometrics: physiological and behavioral.

1.1.1 Physiological Biometrics

Physiological biometrics is a group of biometrics which is concerned by the
biological and physiological features as captured by a biometric system. [5]

It specifically contains:

• DNA: examination of the unique strands found in DNA samples.

• Fingerprint : location and determination of the unique characteristics (’minu-
tiae’ – ridge endings and bifurcations) of the fingerprint.

• Hand : taking a 3-D image of a user’s hand and its unique characteristics,
such as thickness, length and width of fingers, distance between their joints
and the bone structure.

• Face: measurement of distances between characteristic face features, such
as ears, nose, eyes, mouth and cheeks.

• Earlobe: examination of the geometry of the earlobe.

• Last, but not least Iris : this technique will be described later in the thesis.

A comparison of the 4 most widely used biometrics from the point of view of
effort, intrusiveness, accuracy and price is displayed in Table 1.1.

Accuracy Iris > Finger > Face > Hand
Non-intrusiveness Face > Iris > Hand > Finger
Effortlessness Iris > Face > Finger > Hand
Cheapness Finger > Face > Iris > Hand

Table 1.1: A comparison of the most widely used biometric methods from the
view of effort, intrusiveness, accuracy and price.

1.1.2 Behavioral Biometrics

Behavioral biometrics is a group of biometrics which is concerned by the non-
biological or non-physiological identifiers as captured by a biometric system. [5]

It consists of these 4 categories:

• Signature: analysis of the way and manner in which the user writes, cha-
racteristic in pressure and speed during the writing process.

4



Figure 1.1: An eye from the frontal view

Figure 1.2: Human eye

• Voice: examination of patterns of an individual’s voice as produced by the
vocal tract.

• Keystroke: analysis of the way in which a user types on a computer key-
board; especially typing speed, length of holding down the keys and intervals
between keystrokes are analysed.

• Gait : examination of the way and manner in which somebody walks.

1.2 Iris Anatomy

Iris (from Greek word for rainbow – iris) is an annulus-shaped part of eye,
from the frontal view bounded by sclera on the outer and pupil on the inner
periphery (see Figure 1.1). It is connected to the rest of eye by a ciliary muscle.
Its principal function is to operate as a shade and control the amount of light
entering retina via pupil. It is covered by a transparent, ca 0.6 mm thick cornea,
which fluently merges into white sclera with visible red blood vessels. While eye
is a ball with radius of 12 mm, cornea is the only protrusion (see Figure 1.2). It
is another ball-shaped part of radius around 8 mm. Cornea is protecting only iris
and partially also ciliary muscle. That is a reason why iris is always fully visible,
either in a full contraction (which is arranged by dilator muscles) or full stretch
(provided by sphincter). [6]

Iris is formed from the third one, up to the eigth month of gestation. At
the time of delivery, the eye is complete and only color can finely change due to
pigment accretion. [7] Iris is the only colored part of an eye and when one speaks
about a color of eye, it is generally meant a color of iris. Despite a variety of
different colors, all are generated by a single pigment – dark brown melanin.
Its amount and distribution between stroma and epithelial cells determine the
final color. [8] Although the color of both eyes of one person appears the same,
it does not have to be the case. The quantity of melanin is only one factor and
it sets the mean hue, but the real one can be whichever, according to a normal
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distribution [9] (the phenomenon of two apparently different eyes of a single person
is called heterochromia).

However, a color is not the most important attribute for iris recognition.
There are also ligaments, furrows, ridges, crypts and freckles visible in any iris
and their distribution is as random as genetics can be. [10] Nevertheless, their
position within an eye is stable lifelong. That is an inevitable condition for a
successful iris recognition.

1.3 History of Iris Recognition

Iris color as a biometric identifier has been used ever; however, Alphonse
Bertillon was the first to start recording it for the French police record cards in
1886. [11]

More than 100 years later in 1987 Leonard Flom and Aran Safir patented an
idea of the first iris recognition system; however, without any algorithm yet. [12]

John Daugman was the first to introduce modern automated iris recognition
system no later than in 1994. [13] Although nearly 20 years have passed since
Daugman’s patent, almost all contemporary iris recognition systems still use the
same algorithm. This algorithm, together with its potential improvements, will
be described in this thesis.

1.4 Iris Recognition Deployment

The breakthrough in deployment of iris recognition methods happened in
2001, when the United Arab Emirates Ministry of Interior ordered to use iris
recognition for all foreigners entering the country at all 32 air, land and sea
ports. Since that time about 7,500,000 enrollments have been made and checked
against a watch list resulting in more than 7 trillion iris comparisons altogether.
So far 73,180 matches have been found between a person entering the country
and one of ’persona non grata’ on the watch list. [14]

During the same year iris recognition was also implemented in Netherlands,
Amsterdam airport Schiphol. In contrast with the above-mentioned system,
only those passengers who want to avoid waiting for the passport inspection
are scanned (once registered, average time spent on iris-based control is 15 – 30
s).

The same approach was chosen in 2002 for Iris Recognition Immigration Sys-
tem in United Kingdom. In the past 10 years, over 1 million frequent travellers
were enrolled at British airports. [15;16]

Nowadays, iris recognition is deployed at more than 100 airports all around
the world.

However, immigration is only one of the high-visibility deployments of iris
recognition. It is also an identification system in many prisons, first one being
the York County Prison in Pennsylvania, USA.

The most massive project deploying iris recognition was for a long time the
one organized by United Nations High Commissioner for Refugees. Within this
project, all the refugees older than 6 years returning back home to Afghanistan
after the war were enrolled in order to receive a repatriation assistance package.
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Figure 1.3: Interrelation between FAR and FRR

Between September 2002 and the end of the project in March 2006, 2.26 million
irides – without any additional information – were captured. [17]

However, the most massive project in history of iris recognition, and bio-
metrics at all, is without a doubt the project of Aadhaar. Aadhaar is a unique
12-digit identification number planned to be issued to every Indian citizen. This
number is connected with personal and biometric information, including a pho-
tograph, ten fingerprints and iris code. The project was started in 2009 by the
Unique Identification Authority of India to provide a universal identification for
every individual including the underprivileged. By February 2012, more than 200
million Indian citizens have already undergone the iris scan. [16]

Within last years, iris recognition technics is becoming more and more feasible.
This yields to its deployment also in smaller and less specific projects. [18]

1.5 Performance Measurement

Depending on priorities, there are several ways to compare the performance
between iris recognition systems. It can be the speed of algorithm, variability of
deployment between different systems etc. However, the numbers most significant
for the performance of the system are called FAR, FRR and EER.

Every system can be, with respect to sample data, characterized by informa-
tion about False Rejection Rate (FRR) at fixed False Acceptance Rate (FAR).
False Acceptance Rate refers to the proportion of verification transactions with
zero-effort wrongful claims of identity that are incorrectly confirmed, while False
Rejection Rate is the proportion of verification transactions with truthful claims
of identity that are incorrectly denied. [19]

Both the functions intersect at some point (i.e. FAR = FRR), defining Equal
Error Rate (EER) of the system. Generally, decrease of FAR leads to increase
of FRR and vice versa – this interrelation can be seen on Figure 1.3. Genuine
Rejection Rate (GRR), defined as GRR := 1 – FAR, represents a complementary
area to FAR.

False acceptance is usually worse than false rejection (letting an invader to
enter a system is usually a more serious problem than incorrect refusal of entry
as a genuine user can re-enroll). Therefore, the maximal acceptable FAR is often
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Figure 1.4: The problem of setting a suitable level of FAR and FRR

stated and then the FRR is measured according to it. For a fixed FAR, the
performance of the system can be then characterized by a single number.

The problem of setting a suitable threshold value is also displayed in Fi-
gure 1.4, where distribution of distances between authentic and impostor irides
is visualised. According to a chosen threshold, FAR either increases or decreases
conversely to FRR.
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Part I

Iris Recognition
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Chapter 2

Image Acquisition

2.1 Eye Capture

Eye capture and image acquisition generally play a crucial role in iris recog-
nition. Poor quality of the image results in a radical increase of FRR since it
randomizes the image, while an acceptance is based on fail of the test of statis-
tical independence between two iris captures. On the other hand, GRR remains
more or less the same as it is largely independent of image quality.

Image segmentation and processing phases are especially sensitive to the fol-
lowing factors:

• occlusions (blink, eyelashes, hair etc.),

• incorrect illumination (reflections, light transitions etc.),

• blur (either motion or out-of-focus),

• off-gaze,

• insufficient resolution.

While other phases can be done repeatedly without further interaction of an
investigated person, even the finest algorithm fails once the image source is poor.

The best results are claimed for the iris images taken in near-infrared illumi-
nation (which will be denoted as NIR hereafter). There are several reasons why
it is preffered to visible wavelength light sources (VW).

The first one is the relative unintrusiveness and elimination of human eye light
avoiding mechanisms, such as blinking and pupil motion (contraction). Another
reason is better resistivity against the light pollution and reflections. Last, but not
least, NIR rays are able to penetrate the surface of the iris and reveal structural
patterns barely visible for heavily pigmented (dark-colored) irides. [16] On the
other hand, less pigmented irides (such as blue) exhibit a more irregular pattern
under VW light. VW images are also easier to implement in the multibiometric
systems such as a combination with face recognition, which also operates under
VW illumination.

In any case, NIR illumination sources emitting light with wavelengths between
700 and 900 nm are predominantly used (see Figure 2.1). [16;7] However, there are
also several open VW iris databases.
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Figure 2.1: An example of eye captured under NIR illumination

To capture sufficient richness of iris pattern John Daugman suggests to expand
the iris radius over a minimum of 70 pixels. [7] However, VGA images with an iris
radius of 100 – 150 px are prevalent today.

2.2 Image Storage

There are several approaches to store an iris image for later use.
One way is to store just the extracted iris code. This approach has an advan-

tage in its need for limited space only and fast iris code comparison. However,
a significant drawback is the impossibility of re-processing the code extraction in
the future as there could be a result of different algorithm requested.

Another approach is to store a full image of the iris. This option is also pre-
ferred by International Organization for Standardization. [20] Standard ISO/IEC
19794-6:2011 suggests to use the images in raw format. However, Rathgeb et
al. [16] claim better results with the use of compressed format. Compressing algo-
rithms smooth the peak intensity values for small areas which are in nature largely
caused by noise. The best results are reported with the use of Joint Photographic
Experts Group standards, especially JPEG 2000. [21]

As different algorithm authors claim different performance on different image
sets there are several requirements for good databases:

• relevancy (large number of samples of the same person under different con-
ditions)

• robustness (sufficient number of samples for supporting the claimed accu-
racy)

• representativeness (samples differing in gender, age etc.)

• sensor-variance
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• time-variance (samples captured over large time spans, especially of the
same person)

• pureness (images should not be edited)

A full list of open iris databases together with a brief description can be found
in Iris Biometrics book by Rathgeb et al. [16]

12



Chapter 3

Image Preprocessing

3.1 Image Segmentation

The primary goal of image segmentation is to determine iris boundaries as
accurately as possible. This process proceeds in two phases – in the first one
region of interest with a probable iris center of gravity is selected. In the second
iris boundaries are computed and iteratively precised.

3.1.1 ROI Definition

Precise definition of both iris center and the boundaries is computationally
demanding and time complex. This is the main reason for incorporation of the
first phase – thresholding – to roughly localize one of the iris boundaries and its
center.

The thresholding process uses the difference in brightness between particular
parts of an eye. Let bp denote mean brightness of the pupil, bi mean iris brightness,
bsc mean brightness of sclera, bsk mean skin brightness and bh mean brightness of
hair and eyelashes. Then it holds [16]

• bp < bi < bsc,

• bp < bsk < bsc,

• bi < bh.

The approach to the localization process of an iris center can vary in depen-
dence to the properties of the image. If the eye was captured under VW, then
there is a significant difference between bi and bsc, while there is no sharp edge
at the limbic boundary. Conversely, images acquired under NIR light conditions
do not provide a sharp edge between iris and sclera, while there is a well distin-
guishable pupillary boundary. [16]

Regardless of the interdatabase variability, we will only consider the eye and
its close neighborhood on the images now. Then investigating a horizontal line in
the middle of the image, the brigtness function has the lowest values in the middle
(around bp), rises in both the directions to the right and to the left through the
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Figure 3.1: Investigation of a horizontal line in the middle of the image

values of bi up to bsc (see Figure 3.1). Depending on the image, there can be a
brightness drop down to bsk around the image sides.

Let us set the threshold value

tsc :=
1

2

(
bsc +

1

2
(bi + bsk)

)

according to the past experience and define a new image J in a following way:

J (x, y) :=

{
0 if I (x, y) ≤ tsc,

255 if I (x, y) > tsc,

where I (x, y) denotes the brightness (i.e. value) of image I at point [x, y], 0
denotes black color and 255 the white one. Then the image J is white only on
those places, where there is sclera on I, except for noise such as reflection.

There are two big white areas one on each of the left and the right halves
of the image J . Let c1 and c2 denote their centers of gravity. In the case of
the right capture of the eye, the joining of c1 and c2 should be a horizontal line.
In the opposite case (let ϕ ∈ (−π

2
, π
2
] denote an angle between the joining and

the horizontal line), the face was probably tilted during the acquisition. Then
we rotate the image over −ϕ and continue the segmentation process with the
adjusted image.

If the eye was captured correctly and the image covers the entire eye, then the
center of the joining lies in close neighborhood of the center of iris gravity and
represents the mid-point of the region of interest (ROI) R for precise iris center
localization in the next phase. Meanwhile, the length of the black part of the
joining represents an approximate value of the iris diameter. However, the image
does not always contain a full sclera so there are also alternative ways to find the
center of gravity area, such as the following one:

By setting a threshold value

tp :=
1

2

(
1

2
(bi + bsk) + bp

)

and creating an image

J (x, y) :=

{
0 if I (x, y) ≤ tp,

255 if I (x, y) > tp,
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in the same way as with the previous method, we obtain a white image with a
black circle in the middle representing the pupil. Depending on the illumination
system there is probably a white figure inside the pupil caused by a reflection and
black lines representing the eyelashes. However, this does not confuse the results
significantly.

The center of gravity of the black area defines ROI R and the longest black
line in J going through the center of gravity describes an approximate value of
the pupil diameter.

In the case of VW images a threshold value for finding both iris and pupil can
be implemented instead. However, the possibility of confusing the iris with the
skin arises.

By both methods in the previous phase we have specified ROI R, dom(R) ⊂
dom(I), which is a reduced area of I domain containing an iris center. We have
also roughly estimated either the pupil (let it be denoted 2rp) or the iris (2ri)
diameter. According to the accuracy of estimation we set the toleration constants
δ1, δ2 ∈ R

+
0 .

Depending on the light conditions during the image acquisition, pupil radius
extensibility ranges from 11.5% – 14,7% (in miosa – full stretch of iris) to 69,2% –
91,8% (in mydriasa – full contraction of iris) of the outer iridian border radius. [6;22]

To simplify the formulas, we will use values 10% and 80% as John Daugman
does. [7]

Then an interval of radius interest for both the pupillary and limbic boundaries
is

Ri := [0.1 · ri − δ1, ri + δ2]

in the case of estimated iris radius ri,

Rp := [rp − δ1, 10 · rp + δ2]

respectively, if rp has been estimated. If the full knowledge of radii is known, we
can focus only on the smallest interval

Rip := [rp − δ1, ri + δ2] ,

Ri ⊃ Rip ⊂ Rp.

While an image is from the mathematical point of view a continuous function,
in the computer implementation pseudocodes (and in the Hough transform and
noise mask generation phases), we always consider image to be a finite 2-D matrix
consisting of 8-bit brightness values {0, . . . , 255}.

Despite the fact that matrices have rows as a first coordinate and columns
as a second one, we will use an inverse notation [column, row] – which is more
similar to the cartesian system used for functions – not to confuse the reader.

In this phase, there is no demand for precise results yet so we can work with
a downscaled image to increase the processing speed. [23]
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Algorithm: ROI Definition (1 of 2)

Input: Discrete image image of resolution width× height.
Output: Potential centres of gravity region corners tl, tr, bl, br and limits

of boundary radius minRadius and maxRadius.

for i← Round
(
1
4
width

)
to Round

(
3
4
width

)

do line
[
i− Round

(
1
4
width

)]
← image

[
i,Round

(
1
2
height

)]

if min (line) ≤ 16
then threshold← min (mean (line) , 16)
else threshold← mean (line)

for i← 0 to width

do





for j ← 0 to height

do





if image [i, j] ≤ threshold
then image [i, j]← 0
else image [i, j]← 255

w ← 0
h← 0
count← 0
for i← Round

(
1
4
width

)
to Round

(
3
4
width

)

do





for j ← Round
(
1
4
height

)
to Round

(
3
4
height

)

do





if image [i, j] = 0

then





w ← w + i
h← h+ j
count← count+ 1

center ←
[
Round

(
w

count

)
,Round

(
h

count

)]

tl← [center [0]− δ1, center [1]− δ2]
tr ← [center [0]− δ1, center [1] + δ2]
bl← [center [0] + δ1, center [1]− δ2]
br ← [center [0] + δ1, center [1] + δ2]
for i← Round

(
1
4
width

)
+ 1 to Round

(
3
4
width

)
− 1

do





for j ← Round
(
1
4
height

)
+ 1 to Round

(
3
4
height

)
− 1

do





count← 0
for m← −1 to 1

do





for n← −1 to 1

do

{
if image [i+m, j + n] = 0
then count← count+ 1

neighbors [i, j]← count
index← 0
for i← Round

(
1
4
width

)
+ 1 to Round

(
3
4
width

)
− 1

do





for j ← Round
(
1
4
height

)
+ 1 to Round

(
3
4
height

)
− 1

do





if neighbors [i, j] ≥ 8

then

{
black [index]← [i, j]
index← index+ 1

16



Algorithm: ROI Definition (2 of 2)

dist← 0
for i← 0 to index− 1

do





for j ← i+ 1 to index− 1

do

{
distances [dist]← DistanceBetween (black [i] , black [j])
dist← dist+ 1

minRadius← 1
2
max (distances)− δ3

maxRadius← 5max (distances)− δ4
return (ul, ur, ll, lr,minRadius,maxRadius)

3.1.2 Boundary Localization

Boundary localization is a process of finding both the pupillary and the limbic
boundary, as accurate as possible, together with their centers. There are 2 major
approaches to the boundary localization: Integro-differential operator and Hough
transform.

3.1.2.1 Integro-Differential Operator

Integro-differential operator is a method proposed by John Daugman. [7;13] It
is an iterative process of exhaustive searching for the greatest gradient over the
circles with an origin from a specified region and radius within a given interval.

For each iteration a Gaussian smoothing is applied to an image. Gaussian
smoothing Gσ is a filter which assigns each point a combination of its brightness
and the brigtness of surrounding points according to a 2-D Gaussian distribution:

Definition 1. Let σ ∈ R. Then symmetric 2-D Gaussian function is a function
Gσ : R2 → R defined by

Gσ (x, y) :=
1

2πσ2
e−

x2+y2

2σ2 .

We call σ a standard deviation.

A Gaussian filter smooths the image, especially high brightness differences
between close pixels or regions within the image. It therefore eliminates small
edges such as those produced by eyelashes, veins etc., while it emphasizes the
brigtness differences between large areas such as pupil, iris or sclera.

First iterations of the operation proceed on highly smoothed eye images to
avoid indication of incorrect edges as boundaries. With each repetition and spe-
cification of center regions and radius intervals, the level of Gaussian smoothing
decreases (i.e. σ lowers) to refine the edge localization. In each iteration we look
for the circle with the maximum gradient using the formula

argmaxr∈Rp,(x0,y0)∈dom(R)

∣∣∣∣
∂

∂r

∮

(r,x0,y0)

I (x, y)

2πr
ds

∣∣∣∣ . (3.1)

Let us have a closer look at the equation (3.1) now. We are integrating over
the circles in I, which are simple, piecewise smooth curves in R

2:
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Definition 2. A simple, piecewise smooth curve in R
2 is a set of points [x, y]

given by
x = ϕx(t),

y = ϕy(t), t ∈ [a, b] ,
(3.2)

where a, b ∈ R and

• functions ϕx(t), ϕy(t) are continuous on [a, b],

• (ϕx(t1) = ϕx(t2)) ∧ (ϕy(t1) = ϕy(t2)) holds for no t1, t2 ∈ (a, b) , t1 6= t2,

• functions ϕ
′

x(t), ϕ
′

y(t) are piecewise continuous on [a, b],

• ϕ′

x(t) = ϕ
′

y(t) = 0 holds for no t ∈ [a, b].

Note. A simple, piecewise smooth curve is said to be closed iff

(ϕx(a) = ϕx(b)) ∧ (ϕy(a) = ϕy(b)) .

Example. A circle with center [a, b] ∈ R
2 and radius r ∈ R

+, given by

x= a+ r cos t,

y = b+ r sin t, t ∈ [0, 2π] ,

is a closed, simple, piecewise smooth curve on R
2.

Definition 3. Let Γ ⊆ R
2 be a simple, piecewise smooth curve given by (3.2) and

function f (x, y) is continuous on Γ. Then we define a line integral as follows:

∫

Γ

f(x, y)ds :=

∫ b

a

√
(ϕ′

x (t))
2 +

(
ϕ′

y (t)
)2
f (ϕx (t) , ϕy (t)) dt.

Note. If Γ is closed, then we write a line integral with a small circle in the middle:
∮

Γ

f(x, y)ds.

Example. Let Γ ⊆ R
2 be a circle with center [a, b] ∈ R

2 and radius r ∈ R
+, given

by

x= a+ r cos t,

y = b+ r sin t, t ∈ [0, 2π] ,

and I : R2 → R is an image. Then

∮

Γ

I (x, y)

2πr
ds =

1

2πr

∫ 2π

0

√
(−r sin t)2 + (r cos t)2I (a+ r cos t, b+ r sin t) dt

=
1

2πr

∫ 2π

0

√
r2

(
sin2 t+ cos2 t

)
I (a+ r cos t, b+ r sin t) dt

=
1

2πr

∫ 2π

0

√
r2I (a+ r cos t, b+ r sin t) dt

=
1

2π

∫ 2π

0

I (a+ r cos t, b+ r sin t) dt
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Definition 4. Let V be a vector space over R. A function m : V×V → R is called
a metric iff it satisfies following three properties for any elements x, y, z ∈ V:

• non-negativity: (m (x, y) ≥ 0) ∧ (m (x, y) = 0⇔ x = y),

• symmetry: m (x, y) = m (y, x),

• triangle inequality: m (x, y) +m (y, z) ≥ m (x, z).

Definition 5. Let Γ ⊆ R
2 be a set, x ∈ Γ its point and m (·, ·) a metric.

Then we call x an interior point of Γ iff

∃δ>0 ∀y∈R2 m(x, y) < δ =⇒ y ∈ Γ.

Definition 6. Let Γ ⊆ R
2, f : Γ → R, a ∈ R

2 and x be an interior point of Γ.
If the limit

lim
h→0

f(x+ ha)− f(x)
h

,

exists and if it is finite, then we call it a directional derivative of f along the
vector a at point x. We denote it ∂

∂a
f (x) or f

′

a (x).

Then

∂

∂r

∮

(r,x0,y0)

I (x, y)

2πr
ds = lim

h→0

1

h

(∮

(r+h,x0,y0)

I (x, y)

2πr
ds−

∮

(r,x0,y0)

I (x, y)

2πr
ds

)

and in the equation (3.1), we are looking for the greatest absolut value of circle
gradient over all the potential centers and radii.

In the integro-differential operator pseudocode, we consider the use of ’pupil’
method in the ROI definiton phase, i.e. ROI defined according to an approximate
pupil center and the radius interval set by an approximate pupil radius.

Algorithm: Integro-Differential Operator (1 of 3)

Input: Discrete image image of resolution width× height, region of
interest roi and boundary radius limits minRadius and maxRadius.

Output: Center of pupil [pupilX, pupilY ] , pupil radius pupilRadius,
center of iris [irisX, irisY ] and iris radius irisRadius.

procedure LineInt(center, integral, i, j)
x← center[0]− i sin

(
2πj

vertices

)

y ← center[1] + i cos
(

2πj
vertices

)

integral← integral + image[x, y]
return (integral)

19



Algorithm: Integro-Differential Operator (2 of 3)

procedure Blur(image)
for i← 0 to width− 1

do

{
for j ← 0 to height− 1
do temp[i, j]← image[i, j]

for i← 0 to width− 1

do

{
temp[i,−1]← temp[i, 0]
temp[i, height]← temp[i, height− 1]

for j ← 0 to height− 1

do

{
temp[−1, j]← temp[0, j]
temp[width, j]← temp[width− 1, j]

temp[−1,−1]← temp[0, 0]
temp[−1, height]← temp[0, height− 1]
temp[width,−1]← temp[width− 1, 0]
temp[width, height]← temp[width− 1, height− 1]
for i← 0 to width− 1

do





for j ← 0 to height− 1
do blur[i, j]← 0.64 · temp[i, j] + 0.08 · (temp[i− 1, j]+
+temp[i+ 1, j] + temp[i, j − 1] + temp[i, j + 1])+
+0.01 · (temp[i− 1, j − 1] + temp[i+ 1, j − 1]+
+temp[i+ 1, j − 1] + temp[i+ 1, j + 1])

return (blur)

procedure FindBoundary(type, image, roi,minRadius,maxRadius)
for each center in roi

do





for i← minRadius to maxRadius

do





int[center, i]← 0
if type = ’pupil’

then





for j ← 1 to vertices

do

{
int[center, i]←
← LineInt(center, int[center, i], i, j)

else





for j ← 1 to 1
8
vertices

do

{
int[center, i]←
← LineInt(center, int[center, i], i, j)

for j ← 3
8
vertices to 5

8
vertices

do

{
int[center, i]←
← LineInt(center, int[center, i], i, j)

for j ← 7
8
vertices to vertices

do

{
int[center, i]←
← LineInt(center, int[center, i], i, j)

int[center, i]← 2 · int[center, i]
if i = minRadius
then partial[center, i]← 0
else

{
partial[center, i]← int[center, i]− int[center, i− 1]

[center, radius]← argmax (partial[center, i])
return (center[0], center[1], radius)
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Algorithm: Integro-Differential Operator (3 of 3)

main

vertices← 400
[pupilX, pupilY, pupilRadius]← FindBoundary(’pupil’,Blur(image), roi,

minRadius,Round (minRadius+ δ))
[irisX, irisY, irisRadius]← FindBoundary(’iris’,Blur(image), roi,

Round (1.25 ·minRadius) ,maxRadius)
specifiedRoi← [(pupilX − δc, pupilX + δc), (pupilY − δc, pupilY + δc)]
[pupilX, pupilY, pupilRadius]← FindBoundary(’pupil’, image,

specifiedRoi, pupilRadius− δr, pupilRadius+ δr)
specifiedRoi← [(irisX − δc, irisX + δc), (irisY − δc, irisY + δc)]
[irisX, irisY, irisRadius]← FindBoundary(’iris’, image, specifiedRoi,

irisRadius− δr, irisRadius+ δr)
return (pupilX, pupilY, pupilRadius, irisX, irisY, irisRadius)

3.1.2.2 Hough Transform

A big drawback of the integro-differential operator method is the speed due
to exhaustive searching for both the centres and the radii of pupillary and limbic
boundaries. That is the reason for introducing Hough transform.

However, Hough transform requires discrete image consisting of finitely many
points. Let the desired dimensions of discrete image be height × width, height,
width ∈ N. Let also ROI, linearly transformed into the discrete image, be
bounded by y = hmin and y = hmax, hmin, hmax ∈ N0, hr := hmax−hmin vertically
and x = wmin and x = wmax, wmin, wmax ∈ N0, wr := wmax − wmin horizontally.
Finally, let rmax := ⌈min {ri + δ2, 10 · rp + δ2}⌉ ∈ N be the maximal iris radius
estimated in the previous phase.

Then the discrete image is a height-by-width matrix Id, where

Id [i, j] := I

(
hmin + i

hmax − hmin

h− 1
, wmin + j

wmax − wmin

w − 1

)

for i = 0, . . . , height− 1 and j = 0, . . . , width− 1.
Circular Hough transform is then computed via Hough 3-D matrix of discrete

parameters (x0, y0, r) , x0, y0, r ∈ N0 describing circles in the image. Let this
(hr + 1) × (hr + 1) × rmax matrix be denoted by H. Then the value H [x0, y0, r]
accumulates the votes registering a boundary in Id with center [x0, y0] and radius
r.

At the beginning of the process all the values of matrixH are set to 0. Then we
scan pixel-wise all the discrete image Id in a following way. If a sign of boundary
is registered (i.e. there is a considerable difference between adjacent pixels), a
point is incremented/subtracted for all the coordinates of H corresponding to
the triples (x0, y0, r) having a boundary at this point (see Figure 3.2). If the
boundary is merging from darker to lighter in the direction from point [x0, y0], 1
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Figure 3.2: Computation of Hough 3-D matrix

is incremented. In the other case 1 is subtracted as both the pupil is darker than
the iris and the iris darker than the sclera.

When the entire Id image is scanned we look for the pixel with the most votes,
i.e.

arg max
(x0,y0,r)

H [x0, y0, r]

is searched. Depending on the value of r, there are 2 possibilities:

• if r ≈ ri, then [x0, y0] and r denote a limbic boundary,

• we found a pupillary boundary otherwise.

We look for the second boundary now. The first option is the triple {x0, y0, r}
with the second greatest score; however, there are some restrictions. The second
boundary should not have the center further than a pre-defined value and the
radius should satisfy the ratio between pupillary and limbic boundaries, namely

rp ∈ (0.1 · ri − δ1, 0.8 · ri − δ2) .

If we found a pupillary boundary first we search for the limbic one vice versa.

For the simplicity of the pseudocode, there are only 6-8 segments of the circum-
circles voting. However, good implementations would in this case require more of
them.

Algorithm: Hough Transform (1 of 4)

Input: Discrete image image of resolution width× height, region
of interest roi with corners tl, tr, bl, br and boundary radius limits
minRadius and maxRadius.

Output: Center of pupil [pupilX, pupilY ] , pupil radius pupilRadius,
center of iris [irisX, irisY ] and iris radius irisRadius.
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Algorithm: Hough Transform (2 of 4)

for each center in roi

do

{
for i← minRadius to maxRadius
do hough[center, i]← 0

for i← 1 to width− 2

do





for j ← tl[1] to bl[1]

do





if Abs(image[i− 1, j]− image[i+ 1, j]) > 100

then





if image[i− 1, j]− image[i+ 1, j] > 100
then type← 1
else type← −1

for k ← tl[0] to tr[0]

do





if ((i− k ≥ minRadius) ∧
∧ (i− k ≤ maxRadius))

then hough[[k, j], i− k]←
← hough[[k, j], i− k]− type

else if ((k − i ≥ minRadius) ∧
∧ (k − i ≤ maxRadius))

then hough[[k, j], k − i]←
← hough[[k, j], k − i]− type

for i← tl[0] to tr[0]

do





for j ← 1 to height− 2

do





if Abs(image[i, j − 1]− image[i, j + 1]) > 100

then





if image[i, j − 1]− image[i, j + 1] > 100
then type← 1
else type← −1

for k ← tl[1] to bl[1]

do





if ((j − k ≥ minRadius) ∧
∧ (j − k ≤ maxRadius))

then hough[[i, k], j − k]←
← hough[[i, k], j − k]− type

else if ((k − j ≥ minRadius) ∧
∧ (k − j ≤ maxRadius))

then hough[[i, k], k − j]←
← hough[[i, k], k − j]− type
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Algorithm: Hough Transform (3 of 4)

for i← 1 to width− 2

do





for j ← 1 to height− 2

do





if Abs(image[i− 1, j − 1]− image[i+ 1, j + 1]) > 100

then





if image[i− 1, j − 1]− image[i+ 1, j + 1] > 100
then type← 1
else type← −1

for k ← tl[1] to bl[1]

do





if k < j
then type← (−1) · type

radius← Round(Sqrt(2(k − j)2))
if ((radius ≥ minRadius) ∧

∧ (radius ≤ maxRadius) ∧
∧ ([i+ (k − j), k] ∈ roi))

then hough[[i+ (k − j), k], radius]←
← hough[[i+ (k − j), k], radius]−
− type

else if ((radius ≥ minRadius) ∧
∧ (radius ≤ maxRadius) ∧
∧ ([i− (k − j), k] ∈ roi))

then hough[[i− (k − j), k], radius]←
← hough[[i− (k − j), k], radius]+
+ type

for i← 1 to width− 2

do





for j ← 1 to height− 2

do





if Abs(image[i+ 1, j − 1]− image[i− 1, j + 1]) > 100

then





if image[i+ 1, j − 1]− image[i− 1, j + 1] > 100
then type← 1
else type← −1

for k ← tl[1] to bl[1]

do





if k < j
then type← (−1) · type

radius← Round(Sqrt(2(k − j)2))
if ((radius ≥ minRadius) ∧

∧ (radius ≤ maxRadius) ∧
∧ ([i− (k − j), k] ∈ roi))

then hough[[i− (k − j), k], radius]←
← hough[[i− (k − j), k], radius]−
− type

else if ((radius ≥ minRadius) ∧
∧ (radius ≤ maxRadius) ∧
∧ ([i+ (k − j)] ∈ roi))

then hough[[i+ (k − j), k], radius]←
← hough[[i+ (k − j), k], radius]+
+ type
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Figure 3.3: Pupillary and limbic borders parametrization

Algorithm: Hough Transform (4 of 4)

max← −∞
for each center in roi

do





for radius← minRadius to Round(minRadius+ 2δ)

do





if hough[center, radius] > max

then





max← hough[center, radius]
[pupilX, pupilY, pupilRadius]←

← [center[0], center[1], radius]
max← −∞
for each center in roi

do





for radius← Round(1.2 ·minRadius) to maxRadius

do





if hough[center, radius] > max

then





max← hough[center, radius]
[irisX, irisY, irisRadius]←

← [center[0], center[1], radius]
return (pupilX, pupilY, pupilRadius, irisX, irisY, irisRadius)

3.2 Iris Normalization

Now both the outer and inner iris boundaries are parametrized and we can
prepare an iris pattern for the feature extraction. The inner – pupillary – bound-
ary is parametrized by

bp (θ) = (xp (θ) , yp (θ)) (3.3)

and the outer one – limbic boundary – is parametrized by

bl (θ) = (xl (θ) , yl (θ)) (3.4)

where θ ∈ [0, 2π) denotes a counterclockwise rotation around the center of gravity
S = (x0, y0) of the pupillary circle (see Figure 3.3).
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Figure 3.4: Normalized iris texture

These boundaries are not generally concentric – the nasal displacement can
be as much as 15%. [7]. Moreover, they are not equidistant over time as the pupil
dilates in dependence to the amount of light entering the eye.

However, the iris has characteristics of a rubber sheet that stretches and con-
tracts with the pupillary reflex and its texture and markings stretch and shrink
accordingly. [6;13;24] We only need to normalize the iris in a way that the result-
ing image maintains all the data space-invariant, regardless of the actual image
acquisition conditions including the brightness of the environment at the time of
the eye capture.

For these purposes a polar transformation is applied. The transformation
T : R2 → [0, 2π)× [0.1, 0.9] is defined by

T

(
θ
r

)
:=

(
xp (θ) + r [xl (θ)− xp (θ)]
yp (θ) + r [yl (θ)− yp (θ)]

)

and it transforms the iris texture from the Cartesian coordinates into the doubly
dimensionless image in the polar coordinates (see Figure 3.4).

We preserve only 80% of the iris texture as the information around the bor-
ders inclines to be more blurred and also inaccurate due to the segmentation
faults. [13;25]

The images vary in their acquisition resolution and the effective number of
pixels per iris radii vary accordingly. However, there is no need for unification of
either the dimensions of the resulting image or its ratio. The prevailing aspect
ratio used by important systems lies between 1 : 5 and 1 : 9. [16;23;24;26;27] However,
we must not forget the size and ratio and take it into consideration during the fea-
ture extraction phase, especially at the time of the wavelet frequency specification.

Algorithm: Normalization (1 of 2)

Input: Discrete image image of resolution width× height, center of
pupil [pupilX, pupilY ] , pupil radius pupilRadius, center of iris
[irisX, irisY ] and iris radius irisRadius.

Output: Discrete image normImage of pre-defined resolution
width× height.
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Algorithm: Normalization (2 of 2)

for i← 0 to width− 1

do





pupilXθ ← pupilX + pupilRadius · sin( i
width

2π)
pupilY θ ← pupilY + pupilRadius · cos( i

width
2π)

irisXθ ← irisX + irisRadius · sin( i
width

2π)
irisY θ ← irisY + irisRadius · cos( i

width
2π)

for j ← 0 to height− 1

do





normImage[i, j]← image[pupilXθ + (0.1 + 0.8 j
height−1

)

(irisXθ − pupilXθ), pupilY θ + (0.1 + 0.8 j
height−1

)

(irisY θ − pupilY θ)]
return (normImage)

3.3 Noise Masks

While iris patterns are stable over time there are other aspects which differ
between distinct eye captures. One of them which influences the effectivity of
the recognition process the most is the noise. Noise is generally of two types:
background errors caused by sensor, iris skew etc., and burst errors caused by
occlusion of various sorts. While the first type is the reason for implementing
sophisticated feature extractors, described in consecutive chapters, the latter one
is minimised by using noise masks.

Occlusion is mainly caused by eyelids, eyelashes and light reflection. Eyelids
are always overlapping the iris from the upmost and the downmost parts. This
is eliminated by using only the sides of the iris. If the eyelids cover most of the
eye the recognition process will fail anyway. However, if one wants to be precise,
these can be described by parabolas [7] or by line Hough transform. [16]

Light reflections are generally small objects with high luminance values. In
implementations they are usually found as regions of higher intensity than the
surrounding area.

Let I be a discrete eye image, c ∈ [0, 255] be a threshold value and M (x, y)r
be a mean of the surrounding area of the point [x, y] within a radius of r. c
usually has values around 60 and the radius used varies around 10 pixels. [16]

Then noise mask is a function m : I → {0, 1}height×width defined as

m (x, y) :=

{
0 if I (x, y) ≥M (x, y)r + c,

1 otherwise.

However, there are also computationally less demanding methods: [26]

LetN (x, y) be a set of intensity values of reliable (i.e. with brightness between
10 and 240) neighboring pixels of the point [x, y]. Then the high-brightness noise
mask is computed accordingly:

mh (x, y) :=

{
0 if {I (x, y) ≥ 240} ∨ {[I (x, y) ≥ 160] ∧ [max (N (x, y)) < 50]},
1 otherwise.
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Figure 3.5: An example of a noise mask

The approach is just the same with eyelashes the only difference being that we
are looking for regions of intensity, which this time is lower than the surrounding
area:

ml (x, y) :=

{
0 if {I (x, y) ≤ 10} ∨ {[I (x, y) ≤ 80] ∧ [min (N (x, y)) > 200]},
1 otherwise.

Another possibility is to find eyelashes by using 1-D Gabor filters, [16] which will
be introduced in the chapter concerned with Feature Extraction.

Aggregate noise mask is then obtained by eliminating all the unreliable pixels:

m (x, y) := ml (x, y) ∧mh (x, y) .

For obtaining better results, small and large areas of zeros can be set to 1 in
order not to lose important parts of information. Essentially, it means connected
zero-components in m which contain less then 10 or more than 1,000 pixels. [16]

Apart from a noise mask generation, all points on the original image pro-
claimed to be noise are overwritten by the local mean intensity to influence a
convolution with filters as little as possible. [26]

The noise mask described is a special kind of image and it can be treated the
same way including determination of reliability of the bits via normalization and
use of localized filters. We will use this fact in the later phases, namely in the
Iris Comparison chapter.

In the pseudocode, we will describe the second method of the noise mask gen-
eration described.

Algorithm: Noise Mask Generation (1 of 2)

Input: Discrete image image of resolution width× height.
Output: Discrete binary image mask of resolution width× height.
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Algorithm: Noise Mask Generation (2 of 2)

procedure Low(centerX, centerY )
low ← 1
for i← −1 to 1

do





for j ← −1 to 1

do





if ((i = 0 ∧ j = 0) ∨ (centerX + i < 0) ∨ (centerX + i ≥
≥ width) ∨ (centerY + j < 0) ∨ (centerY + j ≥ height))
then break

if image[centerX + i, centerY + j] ≥ 50

then

{
low ← 0
exit

return (low)

procedure High(centerX, centerY )
high← 1
for i← −1 to 1

do





for j ← −1 to 1

do





if ((i = 0 ∧ j = 0) ∨ (centerX + i < 0) ∨ (centerX + i ≥
≥ width) ∨ (centerY + j < 0) ∨ (centerY + j ≥ height))
then break

if image[centerX + i, centerY + j] ≤ 200

then

{
high← 0
exit

return (high)

main

for i← 0 to width− 1

do





for j ← 0 to height− 1

do





if ((image[i, j] ≥ 240) ∧ (image[i, j] ≤ 10))
then mask[i, j]← 0
else mask[i, j]← 1

for i← 0 to width− 1

do





for j ← 0 to height− 1

do





if mask[i, j] = 0
then break

if (Low(i, j) = 1 ∧ image[i, j] ≥ 160)
then mask[i, j]← 0

if (High(i, j) = 1 ∧ image[i, j] ≤ 80)
then mask[i, j]← 0

return (mask)

29



Chapter 4

Feature Extraction

Once we have transformed the iris texture into a doubly dimensionless polar
coordinate system, our goal is to extract the unique iris information. We want
to do this in a way that will achieve as high a level of independency to eye-
capture conditions as possible. The transformed image is still highly influenced
by noise, light conditions during the acquisition, motion blur and off-gaze that
the pure XORing would not lead to satisfactory results. Our motivation is to
find a method for feature extraction only sensitive to elements resilient against
different eye-capture conditions.

The method most widely used is the wavelet transform. Wavelets are sensitive
to edges and these are characteristic to specific iris textures in general. Localized
wavelet properties, together with the convolution operation, also reduce the im-
portance of precise alignment of the acquired biometric texture to the database
one.

Let us start with the mathematical background of wavelets and frames first:

4.1 Mathematical Background

Definition 7. A wavelet ψ is a function in Hilbert space L2(Rn), n ∈ N, such
that the system {

ψj,k := 2j/2ψ
(
2jx− k

)
, j, k ∈ Z

}

is an orthonormal basis for L2(Rn).

Note. The wavelet ψ0,0 =: ψ is generally called a mother wavelet, number j
dilation parameter and the number k specifies the translation of the mother
wavelet. [28]

Example. Haar wavelet (see Figure 4.1) is a function defined on the real line R as

H(t) :=





1 if t ∈
[
0, 1

2

)
,

−1 if t ∈
[
1
2
, 1
]
,

0 otherwise.
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Figure 4.1: Haar wavelet

Definition 8. A sequence {ξn} in a Hilbert space L2 (R2) is a frame iff there
exist numbers A,B ∈ R

+ such that for all x ∈ L2 (R2) we have

A ‖x‖2 ≤
∑

n

|〈x, ξn〉|2 ≤ B ‖x‖2 . (4.1)

Note. Considering an above-mentioned definition, we can also establish:

• The numbers A,B are called the frame bounds.

• Let A0 be a supremum over all lower frame bounds A. Then A0 is called
optimal lower frame bound. Analogically for optimal upper frame bound.

• Number B0/A0 is a tightness of the frame. We say that the frame is tight
iff B0/A0 = 1.

• Number (A0 + B0) /2 is a redundancy of the frame.

• The frame is exact iff it ceases to be a frame whenever any single element
is deleted from the sequence.

Definition 9. 2-D Gabor wavelet with center in an origin of a plane is a function

gθ,φ,σ2 (x, y) := e−
x2+y2

σ2 e−2πi(φx+θy), (4.2)

where σ is a standard deviation of the Gaussian kernel, arctan
(

θ
φ

)
planar orien-

tation of the sinusoid and
√
θ2 + φ2 its spatial frequency.

Theorem 1. Let gθ,φ,σ2 (x, y) denote a 2-D Gabor wavelet with fixed values for
σ2, θ and φ.

Then the system
{
gj,kθ,φ,σ2 := 2j/2gθ,φ,σ2

(
2jx− k

)
, j, k ∈ Z

}

forms a frame.

Proof. Proof of this theorem is too complicated for the scope of this thesis.
However, the tenor is a direct corollary of the Density Theorem, which can be,
together with its proof, found in Christopher Heil’s Chapter 7 – The Density
Theorem and the Homogeneous Approximation Property for Gabor frames – of
the book Representations, Wavelets, and Frames. [29]

�
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Theorem 2. Let {ξn} be a frame in L2 (R2). Then

dim ({ξn}) ≥ dim
(
L2

(
R

2
))
.

Proof. Let dim ({ξn}) < dim (L2 (R2)). Then there exist images in L2 (R2) which
cannot be generated by {ξn}. At least one of them – let it be 0 6= I ∈ L2 (R2) –
must be orthogonal to all elements ξn. Then 〈I, ξn〉 = 0 for all n, hence

A ‖I‖2 ≤
∑

n

|〈I, ξn〉|2 = 0.

But this holds from the definition of norm only for I = 0 as A > 0, which is a
contradiction.

�

Definition 10. Let f : Rn → R and for all a, x ∈ R
n and l ∈ N exist

f (l)
a (x) :=

∂l

∂al
f (x)

and
∣∣∣f (l)

a (x)
∣∣∣ <∞.

Then we call f to be Schwartz function in R
n iff

∀a∈Rn ∀m,l∈N sup
x∈Rn

∣∣xmf (l)
a (x)

∣∣ <∞.

Definition 11. Let f and g be Schwarz functions in R
2.

Then we define operation of 2-D convolution as follows:

(f ∗ g)(s, t) :=
∫ ∞

−∞

∫ ∞

−∞

f(σ, τ)g(s− σ, t− τ)dσdτ.

Corollary. Let I ∈ L2(Rn) be an image and gθ,φ,σ2 (x, y) denote a 2-D Gabor
wavelet with frequency θ and orientation φ.

Then

Gθ,φ,σ2 (x, y) =

∫ ∞

−∞

∫ ∞

−∞

I (ξ, ψ) gθ,φ,σ2 (x− ξ, y − ψ) dξdψ

represents the response of gθ,φ,σ2 to an image I at point (x, y) of an image plane.

Proposition 3. 2-D convolution is commutative.

Proof. Let f and g be arbitrary Schwarz functions in R
2. By substitutions

u := s− σ and v := t− τ we get

(f ∗ g)(s, t) =
∫ ∞

−∞

∫ ∞

−∞

f(σ, τ)g(s− σ, t− τ)dσdτ =

=

∫ −∞

∞

∫ −∞

∞

f(s− u, t− v)g(u, v)− du− dv =
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=

∫ ∞

−∞

∫ ∞

−∞

f(s− u, t− v)g(u, v)dudv =

=

∫ ∞

−∞

∫ ∞

−∞

g(u, v)f(s− u, t− v)dudv = (g ∗ f)(s, t)

�

Proposition 4. 2-D convolution is associative.

Proof. Let f, g and h be arbitrary Schwarz functions in R
2. Then

(f ∗ (g ∗ h)) (s, t) =

= f(s, t) ∗
(∫ ∞

−∞

∫ ∞

−∞

g(σ, τ)h(s− σ, t− τ)dσdτ
)

=

=

∫ ∞

−∞

∫ ∞

−∞

f(ξ, ψ)

(∫ ∞

−∞

∫ ∞

−∞

g(σ, τ)h(s− σ − ξ, t− τ − ψ)dσdτ
)
dξdψ =

=

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞

f(ξ, ψ)g(σ, τ)h(s− σ − ξ, t− τ − ψ)dσdτdξdψ = (∗)

By substitutions σ := σ − ξ and τ := τ − ψ we get

(∗) =
∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞

f(ξ, ψ)g(σ − ξ, τ − ψ)h(s− σ, t− τ)dσdτdξdψ =

=

∫ ∞

−∞

∫ ∞

−∞

(∫ ∞

−∞

∫ ∞

−∞

f(ξ, ψ)g(σ − ξ, τ − ψ)
)
h(s− σ, t− τ)dσdτdξdψ =

=

∫ ∞

−∞

∫ ∞

−∞

((f ∗ g) (σ, τ))h(s− σ, t− τ)dσdτ =

= ((f ∗ g) ∗ h) (s, t)

�

Definition 12. Let f : R2 → R and fx, fy : R→ R.
We call f a separable function iff

∀x, y ∈ R f(x, y) = fx(x) · fy(y).

Theorem 5. Let f and g be Schwarz functions in R
2 and let g be separable in a

way that g(x, y) = gx(x) · gy(y).
Then

(f ∗ g) (x, y) = (f(x, y) ∗ gx(x)) ∗ gy(y) = (f(x, y) ∗ gy(y)) ∗ gx(x).

Proof. By a commutativity of convolution we get

(f ∗ g) (x, y) =
∫ ∞

−∞

∫ ∞

−∞

f(ξ, ψ)g(x− ξ, y − ψ)dξdψ =

=

∫ ∞

−∞

∫ ∞

−∞

f(x− ξ, y − ψ)g(ξ, ψ)dψdξ = (∗)
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Separability of g gives us

(∗) =
∫ ∞

−∞

∫ ∞

−∞

f(x− ξ, y − ψ)gx(ξ)gy(ψ)dψdξ = (♥)

and the associativity of convolution finishes the proof:

(♥) =
∫ ∞

−∞

(∫ ∞

−∞

f(x− ξ, y − ψ)gx(ξ)dξ
)
gy(ψ)dψ = (f(x, y) ∗ gx(x)) ∗ gy(y),

(♥) =
∫ ∞

−∞

(∫ ∞

−∞

f(x− ξ, y − ψ)gy(ψ)dψ
)
gx(ξ)dξ = (f(x, y) ∗ gy(y)) ∗ gx(x).

�

Theorem 6. 2-D Gabor wavelet is separable.

Proof. Using the equation 4.2, we get

gθ,φ,σ2 (x, y) = e−
x2+y2

σ2 e−2πi(φx+θy) =

= e−
x2

σ2 e−2πiφx · e−
y2

σ2 e−2πiθy = gxθ,φ,σ2 (x) · gyθ,φ,σ2 (y)

�

Corollary. The response of Gabor wavelet gθ,φ,σ2 to an image I from Corollary 4.1
can be calculated by separate convolutions with gxθ,φ,σ2 and gyθ,φ,σ2 , i.e.

Gθ,φ,σ2 (x, y) = (I ∗ gθ,φ,σ2) (x, y) =

=
((
I ∗ gxθ,φ,σ2

)
∗ gyθ,φ,σ2

)
(x, y) =

((
I ∗ gyθ,φ,σ2

)
∗ gxθ,φ,σ2

)
(x, y) .

Definition 13. Gray code is an ordering of 2n binary numbers such that only
one bit changes from one entry to the next.

4.2 Deployment

As described in the mathematical section, it is worth pointing out once again
that 2-D wavelets have a useful property of being generators of the Hilbert space
L2 (R2). Hence, every image I ∈ L2 (R2) can be uniquely written as

I =
∑

j∈Z

∑

k∈Z

cjkψj,k, (4.3)

where ψj,k are members of the wavelet family ψ and cjk are uniquely chosen
scalars for all j, k ∈ Z. Any such an image I can be therefore reconstructed
just by knowing ψ and cjk, j, k ∈ Z and a Gabor wavelet (see Definition 9) was
considered to be one of these wavelets for a long period of time. [30]
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Figure 4.2: Modulation of 1-D Gabor wavelet: (a) 1-D sinusoid, (b) Gaussian
function, (c) 1-D Gabor wavelet

Figure 4.3: Modulation of 2-D Gabor wavelet: (a) 2-D sinusoid, (b) Gaussian
kernel, (c) 2-D Gabor wavelet

A Gabor wavelet is obtained by modulation of a sinusoid with a Gaussian
function. [31] The case of one dimension is illustrated in Figure 4.2. 1-D Gabor
wavelet is frequently deployed in image processing because of its usefulness for
obtaining a response to the signal in its localized part and edge detection capabi-
lities. In the case of 2-D, a Gabor wavelet is retrieved by modulating 2-D sinusoid
with a Gaussian kernel, which can be seen in Figure 4.3. Figure 4.4 shows 2-D
plots of 2-D Gabor wavelets at various frequencies and orientation.

It is 2-D Gabor wavelet which was chosen as a filter in the feature extraction
phase in iris recognition. The reason sources from neurophysiology. In 1962,
Hubel and Wiesel discovered that the receptive fields in the back region of a cat’s
brain have a characteristic shape. [32] In 1980, Marčelja showed that this shape
can be best modeled by a family of Gabor wavelets. [33] This area of a brain,
where receptive fields occur (reffered to as primary visual cortex), is the principal
projection area for visual information and consists of simple cells that receive
input from neurons in the eye (via an area called lateral geniculate nucleus). [30] It
is hypothesized that it works the same for all the mammals, including human. [34]

Moreover, John Daugman reports satisfactory results gained by implementation
of 2-D Gabor wavelets in iris recognition. [7;13].

Despite the fact that he refers to Gabor wavelets in his patent only at its
general form (4.2) [13], the formula of the Gabor wavelets used in nature is believed
to be [34]

gθ,φ,σ2 (x, y) =
θ√
2πκ

{
ei(θx cosφ+θy sinφ) − e−x2

2

}
e−

θ

8κ2
[4(x cosφ+y sinφ)2+(−x sinφ+y cosφ)2],
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Figure 4.4: 2-D Gabor wavelets at different frequencies and orientation

where 3 ≈ κ ∈ R.
However, Gabor wavelet is in fact not wavelet as this family of functions does

not respect the condition of orthogonality. [35;36] This was originally proven by
Balian-Low Theorem in early 1980s. [37;38] Nevertheless, Gabor wavelets dedicate
a vital property of frames for generating all the Hilbert space L2 (R2) (see The-
orem 2). So having a Gabor wavelet ξ, we can write any image I ∈ L2 (R2)
as

I =
∑

j∈Z

∑

k∈Z

cjkψj,k.

In difference with the equation (4.3), this time the scalars cjk are not unique due
to non-orthogonality of individual frame functions. Nevertheless, an image I can
still be reconstructed just by knowing ξ and cjk, j, k ∈ Z.

The response of a Gabor wavelet to an image is obtained via 2-D convolution
operation: ∫ ∫

I (p, q) gθ,φ,σ2 (x− p, y − q) dpdq. (4.4)

(see Corollary 4.1). The expression (4.4) is a complex-valued number representing
both the phase and the amplitude of a response of the image to the wavelet. A
phase shows the direction and an amplitude shows the intensity of the response.
An amplitude is sensitive to the extraneous factors of the image, such as contrast
or illumination. Hence, only the phase information is taken into consideration,
i.e. coordinates of the quadrant of the complex plane, in which the phase number
lies, are saved as a bit tuple. These coordinates are obtained simply as signs of
the real and imaginary parts of the 2-D integral (4.4).

This approach has a significant advantage in comparison to the binary re-
presentation of the quadrant. The phase code is cyclic now, i.e. there is always
only a single bit change between two adjacent quadrants. Hence it is a 2-bit Gray
code (see Definition 13). [39]
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Figure 4.5: Segments of iris texture proposed by Kang et al. to be only used

This way we obtained 2 bits of information characteristic for frequency, ori-
entation and deviation based on (θ, φ, α, β) at polar position (x, y).

For the same angular distance we can obtain more phase information given
by convolution with another wavelets. Daugman suggests to use 8 self-similar
wavelets for every sample angular distance. [7] Despite their partial overlap, cor-
relation of each pair of them is usually only negligible. [13] Depending on the
position, this wavelet family can differ in deviation and frequency. In Daugman’s
case, α and β parameters span identically from about 14% to 112% of the iris
radii, while the wavelet frequency spans in their inverse proportion to maintain
the self-similarity. [7]

However, standard implementations consider 8 same wavelets with the sample
origins laying on the horizontal lines spanned linearly across the transformed
picture, [13;23] i.e. the lines described by

y =
1 + 2i

16
h,

i = 0, . . . , 7, where h represents the height of the normalized image.
This way we obtained 16 bits of information for each angular distance. How-

ever, not a uniform distribution of angular distances over all the circle is used.
According to lower reliability of areas potentially occluded by eyelids or more
sensitive to noise such as eyelashes and light reflection, the set of sample origins
is restricted to 2 segments. While Daugman suggests these segments of interest
to be symmetric over the horizontal meridian (we have already implemented this
restriction in the pseudocode of integro-differential operator), Kang et al. pro-
pose to use only segments

[
7π
4
, π
6

]
and

[
5π
6
, 5π

4

]
[25] (see Figure 4.5). Each origin

then standardly lies on one of 128 angular distances uniformly distributed over
these segments of the circle.

This way we obtained 2 ·8 ·128 = 2, 048 bits of information. This is the preva-
lent approach to feature extraction. However, other methods have also been
proposed in the past. Predominant resultant data designated for comparison is a
binary code, nevertheless, real-valued approaches are also suggested. While these
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have an advantage of containing more information, they require significantly more
storage space. They are often investigated to be used for a multibiometric recog-
nition together with the face techniques. Some of these methods with references
are collected in the Iris Biometrics book. [16]

In the feature extraction pseudocode, we stick to the prevalent method for
obtaining information. By contrast to Daugman’s method, we use always the
same Gabor filter, responding to the areas uniformly distributed over specified
segments of an iris.

For the simplicity of the code, we use a classic 2-D convolution of image and
filter. However, in the case of implementation of the algorithm, wavelet separa-
tion (suitable for Gabor wavelets – see Theorem 6) would carry significantly faster
computations, especially for large filters.

Algorithm: Feature Extraction (1 of 2)

Input: Discrete image image of resolution width× height and Gabor
wavelet determining factors θ, φ and σ2.

Output: Discrete binary image iris of resolution 256× 8.

procedure Convolution(centerX, centerY )
sum← 0
for x← −size to size

do





for y ← −size to size

do





if (centerY + y ≥ 0 ∧ centerY + y ≤ height− 1)

then

{
sum← sum+ image[Mod(centerX + x, width),

centerY + y] · gabor[−x,−y]
return (sum)
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Algorithm: Feature Extraction (2 of 2)

main

size← Round(8
3
σ) [40]

for x← −size to size

do

{
for y ← −size to size

do gabor[x, y]← e−(x2+y2)/σ2

e−2πı(φx+θy)

for i← 0 to 127

do





if i ≤ 15
then firstX ← 0

else





if i ≤ 79
then firstX ← Round(1

4
width)

else firstX ← Round(1
2
width)

for j ← 0 to 7

do





response← Convolution(firstX +Round( i
256
width),

Round(2i+1
16
height))

iris[2i, j]← Sign(ℜ(response))
iris[2i+ 1, j]← Sign(ℑ(response))

for i← 0 to 255

do





for j ← 0 to 7

do

{
if iris[i, j] = −1
then iris[i, j]← 0

return (iris)
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Chapter 5

Iris Code Comparison

There are several ways of comparing the code created in the previous section
with the database codes. The fact influencing the character the most is whether
the data is real or binary. We will stick to the latter option as it prevails in use.

Another aspect is the length of the code. Most common is to use 2,048 bits of
information saved in a 8×256 matrix which was patented as IrisCodeTM(see Figu-
re 5.1). [13] However, both longer (4,096-bit) and shorter codes were proposed. [16]

There are two possible reasons for the process of comparison:

• Identification (1 : n comparison) is a process of finding a database sample
code which belongs to the same person as an investigated code. If there
are more decission arguments available, then more output sample codes are
better than none. In identification a high pressure is put on the speed of
the process.

• Authentication (1 : 1 comparison) is a process of deciding whether an in-
vestigated iris code belongs to the same person as the identity (together
with the database code) of the claimed person. The output is a decision
whether an investigated person is the owner of the database iris code or he
is an impostor. A truthfulness probability of the decission can be a part of
the output. In authentication a high pressure is put on the reliability of the
answer.

Let us define the process of iris code comparison mathematically now.

Definition 14. Let C ⊆ {0, 1}n , n ∈ N be a set of all potential iris codes. Then
similarity function (or comparator) is a function Γ : C × C → R returning a
level of similarity between two investigated codes.

Note. Standardly Γ : C × C → [0, 1].

Figure 5.1: Iris code consisting of 2,048 bits of information
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Note. In the case of the iris code obtained in previous sections:

|C| = 28×256 ∼= 3.2 · 10616

Definition 15. Let Γ be a similarity function, c ∈ C an investigated code, D ⊆ C
a database of iris codes, |D| = n and d1, . . . , dn ∈ D. Let t be a threshold
parameter.

Then identification is a function F : C ×D → N0 defined in a following way:

F (c, t) :=

{
i if i = argj max {Γ (c, dj)} , j = 1, . . . , n ∧ Γ (c, di) ≥ t,

0 otherwise.

Note. A part of an output can be also Γ (c, di).

Note. If we are interested only in finding the nearest-sample-code’s owner (i.e.
we know that investigated person has an image in the database), we define iden-
tification in a following way:

F (c) := argj max {Γ (c, dj)} , j = 1, . . . , n.

Definition 16. Let Γ be a similarity function, ci ∈ C an investigated code and
cd ∈ C a database sample code. Let t be a threshold parameter.

Then authentication is a function A : C × C → {0, 1} defined in a following
way:

A(ci, cd, t) :=

{
1 if Γ (ci, cd) ≥ t,

0 otherwise.

Note. A part of an output can be also Γ (ci, cd).

The human eye finds it easy to recognize two similar – but not the same –
iris images regardless of a their tiny tilt, different contrast, small difference of
illumination level or partial occlusion. [24] However, it is not so obvious in the case
of computer-driven programs. Each of these factors can lead to a strict rejection
of 2 irides of the same owner.

Hence, our goal is to find a metric on the space of potential iris codes which
mathematically represents our intuition or – better – a metric in which two iri-
des of the same owner are as ’close’ as possible while each different pair have
sufficiently long distance between.

5.1 Hamming Distance

Definition 17. Let C ⊆ {0, 1}n be a set of all potential iris codes. Then Ham-
ming distance between c1, c2 ∈ C is a number of coefficients (i, j) , i, j = 1, . . . , n
in which they differ.

Proposition 7. Hamming distance is a metric.
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Proof. Let HD(c1, c2) denote a Hamming distance of codes c1, c2 ∈ C.
(a) HD(c1, c2) ≥ 0 trivially. HD(c1, c2) = 0 if and only if c1 and c2 agree in all

coordinates and this happens if and only if c1 = c2.
(b) The number of coordinates in which c1 differs from c2 is equal to the

number of coordinates in which c2 differs from c1.
(c) HD(c1, c2) is equal to the minimal number of coordinate changes necessary

to get from c1 to c2 and HD(c2, c3) is the minimal number of coordinate changes
necessary to get from c2 to c3. So HD(c1, c2)+HD(c2, c3) changes turn c1 into c3.
But

HD(c1, c2) + HD(c2, c3) ≥ HD(c1, c3),

because HD(c1, c3) is the minimal number of coordinate changes necessary to get
from c1 to c3.

�

In the case of arbitrary binary codes c1 and c2, Hamming distance is nothing
else than an L1-norm of a vector c1⊕c2, where ⊕ denotes a boolean Exclusive-OR

operator (XOR):

Definition 18. Let V be a vector space over C. A function ‖·‖ : V → R is called
a norm iff it satisfies following 3 properties for any elements x, y ∈ V and t ∈ C:

• (‖x‖ ≥ 0) ∧ (‖x‖ = 0⇔ x = 0),

• ‖t · x‖ = |t| ‖x‖,

• ‖x+ y‖ ≤ ‖x‖+ ‖y‖.

Definition 19. Let c = (x1, . . . , xn) ∈ C
n. Then an L1-norm is a function

‖·‖1 : Cn → R
+
0 defined as

‖c‖1 :=
n∑

i=1

|xi|.

Proposition 8. ‖·‖1 is a norm.

Proof. Let c = (c1, . . . , cn) , d = (d1, . . . , dn) ∈ C
n and t ∈ C. Then

• (‖c‖1 =
∑n

i=1 |ci| ≥
∑n

i=1 0 = 0) ∧ (‖c‖1 = 0⇐⇒ c = 0̄),

• ‖t · c‖1 =
∑n

i=1 |t · ci| =
∑n

i=1 |t| · |ci| = |t|
∑n

i=1 |ci| = |t| · ‖c‖1,

• ‖c+ d‖1 =
∑n

i=1 |ci + di| ≤
∑n

i=1 (|ci|+ |di|) =
∑n

i=1 |ci| +
∑n

i=1 |di| =
‖c‖1 + ‖d‖1.

�

Theorem 9. Let C ⊆ {0, 1}n , n ∈ N be a set of all potential iris codes and
c1, c2 ∈ C. Then

HD (c1, c2) = ‖c1 ⊕ c2‖1 . (5.1)

Proof. Results directly from the discussion above.
�
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Note. ‖·‖ will always denote ‖·‖1 hereafter.

Hamming distance is a very natural metric for measuring the distances bet-
ween iris codes. The distance 0 would represent a perfect match, while the dis-
tance n lies between two inverse codes. In order to achieve a normalized distance
in an interval [0, 1] we can rewrite (5.1) in a following way:

HDn (c1, c2) :=
‖c1 ⊕ c2‖

n
.

A serious disadvantage of a Hamming distance lies in its sensitivity to tiny
head tilts. Only a fine misalignment can lead to a total misleading information
as can be seen in the following example:

Example. Let c1 = (0, 1, 0, 1, . . . , 0, 1) and c2 = (1, 0, 1, 0, . . . , 1, 0). Then

HDn(c1, c2) = 1.

A significant advantage of the Gabor-wavelets-based feature extraction lies
in its relation between the iris texture and the iris code. Since an iris code is
composed of localized features, bit shifts in an iris code correspond to angular
shifts of the underlying iris texture (except for the boundaries of used segments).
Hence, a misalignment of the iris textures can be partially eliminated by com-
puting a distance between a genuine iris code and subsequently circulary shifted
investigated iris code. We will denote an iris code c shifted i positions to the left
by c <<< i.

Since an eye was localized during the preprocessing phase and normalized to
be ’upside up’ there is no need to test all the circular shifts. Only a constant k is
chosen, usually k < 10. There are 2 reasons not to shift the iris code all around.

The first one is the speed of the algorithm. A XOR operation on two binary
iris codes is a single machine operation and a 2,4-GHz CPU can process almost
1,000,000 comparisons per second. [7] However, there is a higher-order digit of
codes involved in identification in projects such as Aadhaar. [16]

The second reason is the discriminalibity of the results. We always store only
the best match of the codes, hence, the mean distance between distinct codes
decreases with every increment of the shift level. We expect no more than a tiny
tilt of an eye. Therefore, there is no need to shift the code all around. John
Daugman reports a distance mean between different codes to decrease from 0.5
to 0.458 on the sample of 9.1 million comparison of 4,258 different eyes when
allowing 7 circular shifts. [7] Meanwhile, the mean distance between two genuine
samples lowers to 0.11.

Hence, we can further upgrade the distance formulated in (5.1):

HDns (c1, c2) := min
i=−k,...,k

‖c1 ⊕ (c2 <<< i)‖
n

.

Another improvement is a use of the noise mask generated during the image
preprocessing phase. Let m1 denote a noise mask code for the iris code c1 and m2

that one for c2. Let c1, c2 ∈ C ⊆ {0, 1}n×m. Then m1,m2 ∈ C. Noise mask codes
consist of 1s at positions determined to be compared and 0s on those considered
to be occluded.

Hence we finalize the formula (5.1) subsequently:
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HDnsm (c1, c2) := min
i=−k,...,k

‖c1 ⊕ (c2 <<< i) ∩m1 ∩ (m2 <<< i)‖
‖m1 ∩ (m2 <<< i)‖ .

Note. If no confusion arises we will use notation HD for HDnsm hereafter.

Proposition 10. The time complexity for Hamming-distance-based comparison
is O (k · n), where n is the length of the code and k is the maximal number of
shifts.

The space complexity is O (k + n).

Proof. In order to obtain a Hamming distance we need to execute a single XOR
operation on each of n positions of the codes. Hence it is operated in O (n). The
time complexity of counting the bits with a value 1 is operated also in O (n). We
need to repeat this process (2k + 1)-times – once for every shift of an investigated
code. Hence,

Ct = (2k + 1) ·O (n) ·O (n) = O (m · n) .
From the storage point of view we need to save both the codes (2 · n), the

dissimilarity vector (n) and the current and the smallest distance between the 2
codes (O (1)). Hence,

Cs = 2 · n+ n+O (1) = O (n) .

�

Hamming-distance-based comparison in the last stated version is partially
circular-misalignment-proof. However, it is still sensitive to segmentation inaccu-
racies and non-linear distortions. It can either shift all the code linearly or leave
it as is. The solution for non-linear distortions provides Levenshtein distance.

5.2 Levenshtein Distance

Levenshtein distance is a metric originally proposed by Vladimir Levenshtein
in 1965, [41] nowadays used predominantly for correction of mistyping. It is an
extension of Hamming distance operating also on the codes of different lengths,
allowing 3 operations – beside a substitution also an insertion and a deletion:

Definition 20. Let C ⊆ {0, 1}∗ be a set of all potential iris codes and c1 ∈
{0, 1}m , c2 ∈ {0, 1}n , c1, c2 ∈ C,m, n ∈ N are 2 binary vectors of iris code, not
essentially of the same length. Let

• ps be a cost function of a substitution,

• pi a cost of an insertion,

• pd a cost of a deletion
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of single bit, ps, pi, pd ∈ R
+.

Then the Levenshtein distance is a function LD : C × C → R
+
0 defined as

LD (c1, c2) := ldc1,c2 (|c1| , |c2|) ,
where ldc1,c2 : N0 × N0 → R

+
0 is a function given by

ldc1,c2 (i, j) :=





i · pi if j = 0,

j · pd if i = 0,

min





ldc1,c2 (i− 1, j) + pi, (i)

ldc1,c2 (i, j − 1) + pd, (d)

ldc1,c2 (i− 1, j − 1) + ps
(
ci1, c

j
2

)
(s)

otherwise.

The definition by itself looks a bit incomprehensible, let me show that it
is nothing difficult though. We can imagine the entire process as a filling in
of a (m+ 1) × (n+ 1) matrix. Each position (i, j) denotes the lowest cost of
transferring first i bits of a vector c1 into the first j bits of a vector c2.

First, we insert 0 to a position (0, 0) – changing any code into the same one
is for free. The cost on all positions (0, j) is j · pd then – we need to pay j-
times the cost of a deletion to transfer j-dimensional vector into an empty one.
Symetrically with the first column and insertion of the bits.

The other elements of the matrix are filled in the following way. Each element
(i, j) will obtain the cheapest price of three posibilities:

• The cost of transferring the first j bits of the vector c2 into first i− 1 bits
of vector c1 plus one cost of insertion (in this case we are appending the bit
ci1) – possibility (i).

• The cost of transferring the first j − 1 bits of the vector c2 into first i bits
of vector c1 plus one cost of deletion (in this case we are deleting the bit cj2)
– possibility (d).

• The cost of transferring the first j − 1 bits of the vector c2 into first i − 1
bits of vector c1 plus the cost of substitution of the bit cj2 to the bit ci1 –
possibility (s). The cost function ps has a zero value if cj2 = ci1 and a strictly
positive value otherwise.

The value on the position (m,n) is then the minimal cost we need to pay to
transfer a vector c2 into a vector c1. In the case of two codes of the same length
(m = n) and in the case of the same cost of both insertion and deletion (pi = pd),
it is also a minimal cost of transferring a vector c1 into a vector c2.

Proposition 11. Levenshtein distance is a metric on the codes of the same
length.

Proof. (a) Every edit’s cost is a positive number; hence, LD(c1, c2) ≥ 0 immedi-
ately. Since every cost is strictly positive the only situation when LD(c1, c2) = 0
occures when there is no edit required. No edit to transfer a code c1 into c2 is
needed if and only if c1 = c2. Hence,

LD(c1, c2) = 0⇔ c1 = c2.
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(b) Let LD(c1, c2) = k and xk be a sequence of edits that yields to a change
of c1 into c2 with a cost of k. Then xk contains the same number of insertions
and deletions since we consider only codes of the same length.

Let x−1
k be a sequence of edits, reverse to xk, i.e. when insertion is used in xk,

deletion is integrated to x−1
k instead. Substitution is self-inverse as an operation.

Hence, x−1
k is a valid path from c2 to c1 with the same cost as xk. Therefore

LD(c2, c1) ≤ LD(c1, c2).
Let us consider LD(c2, c1) = l < k now. Let xl be a path from c2 to c1 with

a cost of l. Then x−1
l is a valid path from c1 to c2 of the same cost. But such a

sequence of edits cannot exist because Levenshtein distance is the smallest cost
of a transformation of c1 into c2 and LD(c1, c2) = k > l. This is a contradiction
and such a path xl does not exist.

Hence,
LD(c1, c2) = LD(c2, c1).

(c) Let LD(c1, c2) = k,LD(c2, c3) = l and xk, xl be sequences of edits that
yield to a change of c1 into c2, c2 into c3 respectively, with costs of k and l. Let
|| denote an operation of concatenation. Then xk||xl is a valid sequence of edits
transforming c1 to c3. Levenshtein distance is defined as shortest such a path.
Hence,

LD(c1, c3) ≤ k + l = LD(c1, c2) + LD(c2, c3).

�

Now we will show that Levenshtein distance is in fact an extension of a Ham-
ming distance:

Theorem 12. Let C ⊆ {0, 1}n , n ∈ N be a set of iris codes of the same length
n. Let pi = pd = n+ 1 and ps = 1. Then

∀c1, c2 ∈ C LD (c1, c2) = HD (c1, c2) .

Proof. All codes in C have the same length. Therefore, Hamming distance is a
valid metric on C. The cost of substitution is the same as in Hamming distance
while the cost of insertion and deletion is higher then the code length. The cost
on the diagonal of the Levenshtein matrix will not be influenced by insertions or
deletions now, because it would be cheaper to replace all the vector by the other
one than to make a single insertion or deletion. Hence, on the position (n, n)
is the number of bits we need to substitute. This is the number of positions in
which the codes c1 and c2 differ. And this is the Hamming distance.

�

The logical value of the costs would be pi = pd = ps (x, y) = 1, x 6= y.
However, these values can be chosen arbitrarily depending on the preferences –
whether to non-linearly shift or to prefer the substitutions.

We have proved that Levenshtein distance is a stronger tool for aligning the iris
codes than the Hamming distance. It means that by using Levenshtein distance,
both the codes fit better onto each other. At the same time, we must not forget
that it also lowers the distance between two codes extracted from different irides.
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Hence, Levenshtein distance can be a useful tool for non-linear distortions such
as an off-gaze; for a linear shift Hamming distance still gives better results.

Proposition 13. The time complexity for Levenshtein-distance-based comparison
is O (n2), where n is the length of the code.

The space complexity is also O (n2).

Proof. In order to compute a Levenshtein distance all we need to do is to create
an (n+ 1)× (n+ 1) matrix. For each of the coordinate pair we need to compute
the cost of insertion, deletion and substitution of a single bit, or one of them in
the case of a first row and column. Even in the worst case, the algorithm operates
in an O (1) complexity. Hence,

Ct = (n+ 1) · (n+ 1) ·O (1) = O
(
n2
)
.

From the space complexity point of view we need to store both the codes (2·n),
the costs of the operations (O (1)) and the Levenshtein matrix ((n+ 1)×(n+ 1)).
Hence,

Cs = 2 · n+O (1) + (n+ 1) · (n+ 1) = O (n) +O (1) +O
(
n2
)
= O

(
n2
)
.

�

The O (n2) would not be sufficient for competitive identification systems.
However, the time complexity can be lowered down to O (m · n) ,m ∈ N with
the maintenance of the same results in most cases.

Similarly as with the Hamming distance, we assume the iris not to be rotated
more than some angle, say ka << π. Consequently, we do not have to compute
the rotations over a higher angle. It means we do not have to consider the values
of the matrix in a distance from the diagonal higher than a constant k,

k :=
kan

2π
.

Let L denote the Levenshtein matrix for the codes c1 and c2. We simply
compute only such coordinates (x, y) of L for which it holds |x− y| ≤ k. We
define all the other values as a number higher than the biggest distance between
any two codes can be – say ∞.

We can define such a matrix LC in a mathematical way:

LC (i, j) :=

{
L (i, j) if |x− y| ≤ k

∞ otherwise.

This matrix still has an O (n2) space-complexity, though it can also be lowered
by not saving the values distant more than k+1 from the diagonal or integrating
this constraint into the matrix definition. However, the biggest advantage lies in
the lowered time complexity.

Proposition 14. Above-mentioned algorithm has a time complexity O (k · n),
where n is the length of the code and k the maximal number of shifts.
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Proof. In comparison with computing a full Levenshtein matrix, this time we
only need the values on the diagonal and adjacent k lines. For each of them the
complexity is O (1). Hence, the overall complexity is

Ct = (n+ 1) + 2n+ 2 (n− 1) + · · ·+ 2 (n− k)

= (n+ 1) + 2

[
n (n+ 1)

2
− (n− k − 1) (n− k − 2)

2

]

= (n+ 1) +
(
n2 − n

)
−

(
n2 − kn− 2n− kn+ k2 + 2k − n+ k + 2

)

= 2kn+ 3n− k2 − 3k − 1 = O (k · n)

�
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Part II

Iris Cryptosystems
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There is one significant difference between iris cryptosystems and standard iris
recognition systems. While an output of the latter one consists of Yes and No
in the case of authentication (or a database sample in the case of identification)
biometric cryptosystems retrieve biometric keys and these can be either correct
or incorrect.

The FRR of a biometric cryptosystem therefore represents the rate of incorrect
keys returned to genuine users. Analogically, the FAR corresponds to the rate of
correct keys untruly generated for the impostors.

Every security approach has its drawbacks. Passwords might be guessed,
tokens reverse-engineered and biometrics might be compromised. However, their
joint use provide the best security presently available.

In comparison with traditional password schemes, biometric cryptosystems
bring remarkable security benefits since it is significantly more difficult to forge,
copy, share and distribute them. [42] Moreover, iris biometrics provide an equal
level of security for every sample since physiological characteristics are not user
selective.

On the other hand, iris patterns are inherent and stable life-long. Once the
iris is compromised a system has to be replaced since it is difficult to change
the biometric characteristics. Users are therefore reluctant to have raw biometric
data stored in databases. Hence, the task is to find a way to store the samples
irreversibly (it should be computationally hard to reconstruct the original bio-
metric sample from the stored reference data) and unlinkably (one reference data
should be hard to guess by knowing another one). [16]

Moreover, users wish to have different keys for different purposes: two separate
keys for two distinct bank accounts makes it possible to revoke one without
affecting the other.

Hence, our goal is to design a system which does not store biometric samples,
but only a reference data from which the biometric characteristics cannot be
derived and from which the key is not revealed unless the iris is physically present.

Iris cryptosystems generally exhibit noticeably inferior performance in a com-
parison with standard iris recognition systems. This is because the enrolled tem-
plate is not seen and, therefore, cannot be properly aligned at the comparison
phase.

However, cryptography requires the keys to be exactly right or the protocol
will fail. This is an argument for the use of error-correcting codes.
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Chapter 6

Error-Correcting Codes

Error correction is a technique that enables restoration of the data delivered
over unreliable communication channels. Any data misrepresented by the chan-
nel can be – within certain limitations – detected and corrected based on the
remaining data. [43;44]

Any error-correcting code is characterised by a triplet (n, k, d), where

• n is a length of codewords,

• k := logq |C|, where |C| is a cardinality of the code and q is a cardinality of
the field over which is the code defined,

• d is a minimal distance between any 2 codewords.

6.1 Hadamard Codes

Definition 21. A square matrix is called to be orthogonal iff inner product of
any two distinct rows or columns is equal to 0.

Definition 22. A Hadamard matrix of order n is a square orthogonal matrix H
of dimensions n× n with elements 1 and −1.
Corollary. For every Hadamard matrix of order n > 1, n is an even number.

Note. For every Hadamard matrix, every two distinct rows or columns agree in
precisely n/2 components.

Proposition 15. Let H be a Hadamard matrix of order n > 2. Then n is divisible
by 4.

Proof. Let us consider two distinct rows Ra,Rb in H, 1 ≤ a, b ≤ n, both of
them containing at least one element −1.

Let A is a set of column indexes in which the row Ra contains a value 1 and
symetrically for a set B and the row Rb. Then

|A| = n

2
= |B| .

Rows Ra and Rb differ in |(A \B) ∪ (B \ A)| = n
2
elements. Simultaneously,

|(A \B) ∪ (B \ A)| = |A|+ |B| − 2 |A ∩ B| = n

2
+
n

2
− 2 |A ∩ B| .
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It means that
n

2
= n− 2 |A ∩ B| =⇒ n = 4 |A ∩ B| .

hence, n is divisible by 4.
�

Theorem 16. Let H be a Hadamard matrix of order n. Then
(
H H
H −H

)

is a Hadamard matrix of order 2n.

Proof. Obvious.
�

Definition 23. Let H0 :=
(
1
)
and

Hk+1 :=

(
Hk Hk

Hk −Hk

)
,

k ∈ N.
Then Hn is a Hadamard matrix of order 2n constructed by a Sylvester method.

Note. Let H = (hij)0≤i,j≤2n−1 , hij ∈ {−1, 1} be a Hadamard matrix of order 2n

constructed by Sylvester method. Let i =
∑n−1

k=0 ck2
k and j =

∑n−1
l=0 cl2

l be binary
representations of i and j.

Then
hij = (−1)

∑n−1

k=0
ckdk .

Definition 24. Let H be a Hadamard matrix of order n = 2k, k ∈ N and

CH :=

(
H
−H

)
.

Then the rows of CH with replaced −1s by 0s are codewords and form a
Hadamard code C.

Theorem 17. Hadamard code of the length n = 2m,m ∈ N has a minimal
distance between the codewords d = n/2 and k = m+ 1.

Proof. (a) We will stick to the version described by Peterson and Weldon. [44]

Let c1, . . . , cn, c−1, . . . , c−n be all the codewords generated by a Hadamard
matrix. Then all the corresponding components of ci and c−i, i ∈ {1, . . . , n}
are different and the distance between ci and c−i is n. Since ±vi and ±vj are
orthogonal for all i, j ∈ {1, . . . , n} , i 6= j they match exactly in half the positions
and differ in the other half. Thus, the corresponding binary vectors are at a
distance d = n/2 = 2m−1.

(b) Hadamard code is binary and its cardinality is 2n = 2m+1. Then it is
straightforward that k = log2 (2

m+1) = m+ 1.
�
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6.2 Reed-Solomon Codes

Reed-Solomon codes were described for the first time in 1960 by Irving Reed
and Gus Solomon. [45]

Definition 25. Let q = pk, k ∈ N and p be a prime number. Let Fq be a finite
field, ζ1, . . . ζq−1 all non-zero elements of Fq in a fixed order and Ξ a set of all
polynomials over Fq of degree ≤ k − 1.

Then Reed-Solomon code is defined as follows:

RSq,k := {(f (ζ1) , . . . , f (ζq−1)) , f ∈ Ξ} .
Definition 26. Error-correcting code C of length n is said to be linear over a
finite field Fq iff C is an arbitrary subspace of Fn

q .

Proposition 18. Reed-Solomon codes are linear.

Proof. Let us denote
[f ] := (f (ζ1) , . . . , f (ζq−1))

for any polynomial f ∈ Ξ and all non-zero elements ζ1, . . . ζq−1 ∈ Fq. Let f, g ∈ Ξ
and ζ ∈ Fq. Then

• [f + g] = [f ] + [g],

• ζ [f ] = [ζf ].

�

Theorem 19 (Singleton bound). Let C be a code characterised by a triplet
(n, k, d). Then

n ≥ k + d− 1.

Proof. In other words, we want to prove that d ≤ n − (k − 1). Let us project
all the codewords on the first (k − 1) coordinates now. Since there are qk dif-
ferent codewords at least two of them should agree on these (k − 1) coordinates.
But these then disagree on at most the remaining n − (k − 1) ones. Hence,
d ≤ n− (k − 1).

�

Definition 27. Codes, which match the Singleton bound, are called to be maxi-
mum distance separable (MDS).

Theorem 20. Reed-Solomon codes are MDS.

Proof. The proof is based on the simple fact that a non-zero polynomial of
degree l can have at most l zeroes. [46] For Reed-Solomon code two codewords
(with corresponding polynomials f and g) agree at i-th coordinate if and only if
(f − g) (ζi) = 0, ζi ∈ Fq. But (f − g), as mentioned, can have at most (k − 1)
zeros which means that d ≥ n− (k − 1) and Reed-Solomon codes match the Sin-
gleton bound.

�

Corollary. Characterization of Reed-Solomon codes can be also written as

(n, k, n− (k − 1)) .
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Chapter 7

Fuzzy Commitment Scheme

A fuzzy commitment scheme (which will be denoted as FCS hereafter) repre-
sents a method for combining iris biometry with both the token-based and the
password-based cryptography. It was described for the first time in the technical
report of Computer Laboratory of University of Cambridge by Hao, Anderson
& Daugman in 2005. [42] It is based upon a 2,048-bit iris code described in the
previous part.

Cryptography requires precise alignment of both the database and the investi-
gated iris codes. However, there are standard differences between the codes of the
same eyes reported to be 10 – 20%. [9] On the other hand, the difference between
the codes of different eyes are between 40% and 60%. Consequently, we want to
integrate error-correcting codes able to fix 1/5 of the code, but simultaneously
unable to correct more than 2/5.

According to a robust statistical test of differences between various captures
of the same iris, [42] there are two types of errors:

• Burst errors concentrated to particular areas caused by undetected eye-
lashes and specular reflections.

• Background errors spread all over the image caused by sensor, noise and
iris skew.

Burst errors are local distortions which significantly affect one part of the
image while the others are left more or less without a change. These can there-
fore be corrected by using Reed-Solomon codes which have already found wide
application in CD or mp3 players etc. [47]

On the other hand, the rate of background errors is more or less constant
across all parts of the image. This time, the good properties of Hadamard codes
can be used.

The FCS proceeds in the following way: At the beginning, we have an iris
code θi and a key K of constant length which we will compute later.

First, we divide K into blocks of fixed lengthm, each of the block representing
one symbol of the alphabet. Then we encode the blocks using Reed-Solomon
code. We receive a code word and this time we look at the blocks as words and
we encode each of them separately using Hadamard code. The output is such a
codeword θK of length 2,048,

θK = H (RS (K)) ,
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which looks like a genuine iris code. This code is XORed with the user’s reference
iris code θi obtained at enrollment, and a cipher code is received:

θ := θK ⊕ θi.

This code has a characteristic of an iris code. θ is subsequently saved to a
token together with a hash value of the key # (K). The key K is then securely
erased.

Hence, the encoding function looks the following way:

E : {K, θi} → {#(K) , θ} .

The decoding process starts with capturing the user’s eye and extracting its
feature code θ̃i. Then this code is XORed with the cipher code θ:

θ̃K := θ ⊕ θ̃i = θK ⊕ θe,

where θe is an error vector which we do not know at the moment. However, the
closer the presented iris code is to the genuine one, the smaller the Hamming
weight of the vector.

Definition 28. Let c be a vector of length n and 0̄ denotes a vector of n zeros.
Then Hamming weight HW of vector c is defined by

HW (c) := HD (c, 0̄) .

Now, if the Hamming weight of θe is greater than a threshold value given by
error-correcting capabilities of Hadamard code, Reed-Solomon code respectively,

then HD
(
θK , θ̃K

)
will be too great and the key will not be extracted. The other

way around, if the presented code is within the distance possible to correct then
the user will obtain the genuine key, i.e. if

#
(
RS−1

(
H−1

(
θ̃K

)))
= #(K) ,

then we obtained the right key and if not our access is denied.
Let us compute the size and the number of blocks before and after each

encoding now:
We want the resultant vector to be 2,048-bit long. We would also like the

Hadamard code to be able to correct around 25% of erroneous bits in each of the
blocks.

By the Hadamard code properties the code consists of 2n codewords of length
n. Considering Sylvester construction, let n = 2m,m ∈ N. Then there are
2m+1 codewords; each of them can have a unique binary representation of length
log2 (2

m+1) = m + 1. On the other hand, Hadamard code is capable of correct-
ing 2m−2 − 1 errors. Hence, m = 6 is a suitable choice (a greater value of m
would result in a smaller total key length, while smaller value would lead to an
unsufficient tolerance of background errors). [42] Then there are 2, 048/2m = 32
blocks, each of them of the length m+ 1 = 7 before and 2m = 64 after encoding.
Hadamard code then corrects up to

2m−2 − 1

2m
=

15

64
≈ 23.4%
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erroneous bits.
Now most of the bits are corrected. However, if burst errors were present

then a few blocks were distorted to such an extent that they were corrected into
a different codeword. For this case, Reed-Solomon codes – by the Berlekamp-
Massey algorithm, can correct up to 6 blocks, each of them consisting ofm+1 = 7
bits. [42] At the beginning of the encoding process there are thus 20 blocks. Hence,
the length of the secret key can be up to

|K| = 7 · 20 = 140

bits. This is a length, which is sufficient for such encoding algorithms, as AES
is. [48] It is also a way longer key than the longest one – 69 bits – achieved by
fingerprint cryptography. [49]

For further improvement of the key security a 3-factor scheme can be imple-
mented which initiates password protection into the process. In this scheme the
password can be either used for a simple cipher code encryption or in an even
safer version, the codewords generated by a Hadamard matrix can be permuted
accordingly to the password.
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Chapter 8

Cancelable Iris Biometrics

The biometric data of each human is given and cannot be changed. Their
invariance over time – a property that makes biometrics so attractive – is also
one of its major liabilities. When a password is compromised the user can simply
choose a different one. When the biometric data is compromised replacement is
impossible. For minimizing the impact of this weakness cancelable biometrics is
introduced.

Cancelable iris biometrics consists of an intentional, repeatable distortion of
a biometric signal based on a chosen transform and comparison of templates in
the transformed domain. [50] The biometric signal is distorted exactly the same
way at each enrollment, both in the registration and the authentication phase.
The distortion transform is always selected to be non-invertible so even if both
the transform function and the resulting data are known the original undistorted
iris biometrics cannot be recovered.

Furthermore, if one transformed data is compromised the transform function
is simply changed to re-enroll the user as a new person. These functions are cho-
sen not only non-invertible to maintain irreversibility, but they must also reveal
as little information about the original biometrics as possible in the name of un-
linkability. Hence, a goal of cancellable iris biometrics is to find transforms which
provide secure biometric templates while the comparison procedures in the trans-
formed domain maintain recognition rates of the original biometric algorithm. [16]

8.1 Block Re-Mapping

The first technique to achieve the goal – block re-mapping – consists of four
parts. In the first one, a normalized iris texture is partitioned into blocks of a
fixed size. Subsequently, the blocks are permuted according to a fixed key. It is
a good idea not to use permutations similar to identity, as their original meaning
is eliminated then. However, until now all the steps were invertible operations.
Anyone in possession of the permutation key can reverse this process without
difficulties.

This is why the third step is introduced. That one takes some of the blocks and
duplicate them over other blocks excluding them from the iris texture. The num-
ber of blocks remaining in the texture seriously influences subsequent matching
process. If they are too few the recognition process will probably fail, however, if
we do not overwrite enough blocks the modified texture will still reveal too much
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information for the potential attacker. Simultaneously, it is a good idea not to
use blocks potentially concealed by noise, such as eyelids or eyelashes and ignore
them as a source for the re-mapping process. This provides the feature extraction
phase a reasonable amount of iris texture instead of duplicating eyelashes all over
the place. [16]

In the last phase, block edges are finely blurred to smooth the sharp edges on
their join.

8.2 Mesh Warping

The second technique is called mesh warping (MW). In this approach we, in
a way, lay a regular grid mesh over the iris texture and connect the vertices with
the corresponding points on the iris texture. By distorting the grid according to
a fixed key we are displacing the underlaying connected points and appropriately
also the points inside the grid cells.

This distortion is also the reason why MW is an irreversible process, as the
original data cannot be exactly recovered even if the warping key is known. How-
ever, the parameters of the key should not be chosen absolutely arbitrarily. First,
if they are too similar to an identity mapping the resulting iris texture will be
too similar to the original one. On the other hand, if large areas of the source
texture are compressed to a few pixels there may not remain enough information
for feature extraction.

Let us consider the following situation: We have a 512× 64 pixel iris texture
and a regular grid of 16× 16 pixels. Then there are 31 · 3 = 93 vertices inside the
texture. If each of them can be moved by 4 pixels to each horizontal direction and
4 pixels vertically, then there are 92 = 81 replacement possibilities for each point.
Thus, there are overall 8193 ≈ 3 · 10177 different transformations to choose as a
key. Though some of them are similar to each other and some of them useless for
the transformation, there is still enough amount of distinct transformation keys
available.
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Chapter 9

Potential Attacks

There are many types of attacks on iris recognition systems and cryptosystems
varying in the phase in which they are exerted and a component they invade. [50]

(see Figure 9.1). We will consider these types which aim particularly at influenc-
ing the final response. [16]

9.1 Attacks on Physical Biometric Data

Attacks of this type are specialized for gaining access to the system or to
retrieve the key by presenting incorrect biometric data.

9.1.1 Spoofing

Spoofing is a general name for methods when an impostor attempts to fool
the system and impersonate himself as someone else by intentional exposing of
fake biometric data. These attacks are of 4 types: [51]

• Artificial eye – an impostor presents a printed iris, model of an eye or a
video capture of the genuine iris

• Printed contact lences in impostor’s eyes

• Genuine eye, removed from the body

• Forced use of genuine user

Figure 9.1: List of attacks with the phases in which they are exerted
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A biometric system by itself is not protected against the last type of attack.
However, no one probably expect it to be and this vulnerability can be easily
eliminated by supervisioning of the image acquisition process. This can also
easily reveal the first and the third type of attack. There are also other means of
liveness detection.

The first one is a retinal light reflection commonly known as ’red-eye effect’.
Once an eye is illuminated the light entering the eye via pupil is reflected back
to the light source by the retina. In the case of an artificial eye the pupil stays
black, while for the genuine one, it appears red due to blood vessels behind the
retina. [51]

Light reflex is another mean of liveness detection. A live eye reacts to a
change of illumination by shrinking or stretching the pupil. If the illumination is
too strong a blinking also appears. The illumination reflects in the pupil of a live
eye. On the other hand, in case of lences, reflection appears also on them. [51]

Last, but not least, an eye is persistently moving. This delicate unrest, called
saccade, is another proof of liveness of the eye. [52] The same situation is also
with the consistent pupillary unrest. This movement, hardly visible without a
magnifying lense, is called hippus. [51;52]

9.1.2 False Acceptance Attack

False acceptance attack (FAA) is a special type of brute force attack for bio-
metrics. It uses the fact that EER can only approach 0 value, but never meet it,
and with this consideration has also been chosen FAR value of the system. FAA
consists of presenting a sufficiently large number of different iris samples to the
biometric sensor until a false accept, which the probability is always greater than
zero, is realized.

To defend the system against this type of attack FAR value needs to be chosen
as low as possible. On the other hand, by decreasing FAR, FRR is increasing.
Creating a system with both minimal values is a general goal of iris biometry.

However, iris cryptosystems and cancelable iris biometrics are more vulnerable
to FAA due to their lower performance rates and consequent higher FAR.

9.2 Attacks on Digital Biometric Data

In comparison with the previous group of attacks, digital-data-based attacks
require infiltrating a biometric system at some point. This breaching is then
exploited for the presentation of such data which lead to either acceptance of
incorrect or rejection of genuine biometric data.

A defence against all types of digital attacks generally lies in making the
system resilient to intrusion by the appropriate methods of computer security.
Encryption techniques and authentication of individual devices in the biometric
system are among the most useful.

9.2.1 Replay Attack

In the replay attack, an invader penetrates into the system and records genuine
data leading to a successful matching. These data are then replayed either in the
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same or in a slightly modified shape.
Replay attacks which do not modify the template can be detected by saving

the history of acquired biometric data. By the probabilistic theory it is nearly
impossible to capture two absolutely identical images within a few recordings.

9.2.2 Masquerade Attack

In the masquerade attack, an invader does not have full information about
the genuine data. However, eavesdropping helps him to construct fake biometric
data – either in the physical or digital form – which produce a sufficiently high
match score.

However, this does not hold for iris cryptosystems and cancelable iris bio-
metrics since their irreversibility prevents the invader from obtaining any useful
information for reconstructing an original biometric input.

9.2.3 Injection Attack

In the injection attack, data acquired by a different biometric sensor are in-
jected into the data transmission between a genuine sensor and feature extractor
predending to be captured by the correct biometric sensor.

9.3 Substitution Attack

Substitution attack is a kind of attack in which a biometric sample, already
registered in the system, is replaced by an invader either in the database or on the
way between matcher and database. In the case of substitution attack, a genuine
template is rejected and the invader is able to access the system by presenting
his own biometric data.

However, it is significantly more difficult to execute such an attack in the
case of iris cryptosystems since the biometric data is only used to be XORed
with a cryptographic key and then securely erased. Substitution attack therefore
requires additional knowledge.

A similar situation occurs with a substitution attack in the cancelable iris
biometrics scheme. In this case, the transform key has to be known for the
attack to be effective.

9.4 Tampering

Tampering is a type of attack where the invader gains access into the system
and either overwrites the algorithm to give different results or simply replaces the
final response.

However, this type of attack is hardly feasible within biometric cryptosystems
since these return keys instead of binary decisions. [16]
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[8] C. C. Junquieira. Základy histologie. Nakladatelstv́ı a vydavatelstv́ı HH,
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