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Introduction

Theory of error�correcting codes investigates codes that enable communication
over noisy channel. During the transmission of data some errors may occur. At
�rst the codes need to detect these errors. Then the received word is decoded
to a codeword. The decoding algorithm decodes the received word to the closest
codeword. This technique gives an upper bound on the number of errors that
can be corrected. The best codes for practical use are those with high number of
correctable errors, small size of alphabet and high dimension.

In 1981 Valery Denisovich Goppa presented his discovery of relation between
coding theory and algebraic geometry. It turns out, that this new class of codes
has almost the highest number of correctable errors. In addition, this codes
use smaller alphabet than Reed-Solomon codes to achieve the same number of
correctable errors.

To make the thesis understandable for those who are not familiar with algebra-
ic geometry we sum up all de�nitions and propositions from algebraic geometry,
which are necessary to understand algebraic geometry codes, in the �rst chap-
ter. The algebraic geometry codes and terminology of error correcting codes are
presented in the second chapter.

To have a code convenient for practical use, there has to be e�cient way to
encode and decode. In the third chapter we introduce one method of encoding
and one method of decoding of algebraic geometry codes. For both of these
methods we need extensions of some algorithms. In 1965 Bruno Buchberger
introduced theory of Gröbner basis for ideals. For purpose of encoding we will
present extension of Gröbner basis for submodules. As decoding algorithm we
present syndrome decoding of one point algebraic geometry codes. It is possible
to decode only from syndromes that we can get from a received word, however
this type of algorithm does not correct up to the half of the lower bound of the
minimum distance (called Feng-Rao distance or order distance). We present a way
to calculate unknown syndromes using majority voting. Then, using extension of
Berlekamp-Massey algorithm to N dimensions, we can correct errors up to the
half of Feng-Rao distance.

In the last chapter we present important class of algebraic geometry codes
� Hermitian codes. Hermitian curves have the maximal number of a�ne points
with respect to genus of curve. Hence the Hermitian codes have maximal possible
length of codeword and that positively e�ects the number of correctable errors.
We also present methods of encoding and decoding on example of Hermitian
codes.
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1. Algebraic Geometry

At �rst, we have to sum up some basic de�nitions from Algebraic Geometry.
Throughout the thesis we assume that we have an arbitrary �eld called K and
every ring is commutative.

1.1 Basics from Algebraic Geometry

All de�nitions and theorems in this chapter are taken from [Stic09].

De�nition 1.1.1 (Local ring). R is a local ring if and only if there is a unique
nonzero maximal ideal.

A ring R is local if and only if R \R∗ is nonzero ideal. Let us assume that R
is principal domain, F is a quotient �eld of R and M = aR is maximal ideal of
R. Then for every b ∈ F ∗ there exists unique i ∈ Z, that b ∈ aiR∗ = aiR \ ai+1R.
According to that we can de�ne mapping

ν : F → Z ∪ {∞}
ν(b) = i⇔ b ∈ aiR \ ai+1R

ν(0) = ∞.

De�nition 1.1.2 (Discrete valuation). Let F be a �eld. Then ν : F → Z∪ {∞}
satisfying

1. ν(xy) = ν(x) + ν(y), ∀x, y ∈ F ;

2. ν(x+ y) ≥ min{ν(x), ν(y)}, ∀x, y ∈ F ;

3. ν(x) =∞⇔ x = 0;

4. ν(a) = 1, ∀a ∈ R that R \R∗ = aR.

is discrete valuation.

Proposition 1.1.3.

ν(x) 6= ν(y)⇒ ν(x+ y) = min{ν(x), ν(y)}

Proof. W.l.o.g ν(x) < ν(y). We assume that ν(x) < ν(x+ y).

ν(x) = ν(x+ y − y) ≥ min{ν(x+ y), ν(−y)}

and that is contradiction with our assumption because ν(−y) = ν(y) > ν(x).

De�nition 1.1.4 (Algebraic function �eld). For a �eld K let us have a �eld
extension K ⊆ F , such that there exists an element x ∈ F that is transcendental
over K and [F : K(x)] < ∞. Then F/K is an algebraic function �eld. An
algebraic closure K̃ of K is called �eld of constants.

De�nition 1.1.5 (Valuation ring of the function �eld). A valuation ring of the
function �eld F/K is a ring O ⊆ F with the following properties:
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1. K $ O $ F , and

2. ∀z ∈ F we have that z ∈ O or z−1 ∈ O.
If we consider P = O \ O∗, it is obviously nonempty subset of O (otherwise

would be O = F ). For x ∈ P and z ∈ O is xz ∈ P . In addition, for every
x, y ∈ P is x

y
or y

x
in O. W.l.o.g we assume that x

y
∈ O. Then

1 ∈ O ⇒ x

y
+ 1 ∈ O ⇒ x+ y = y(

x

y
+ 1) ∈ P.

Hence P is an ideal of O. As proper ideal can not contain 1, P is unique maximal
ideal.

If we have P we can uniquely determine

OP = {z ∈ F ; z−1 /∈ P}.

OP is called the valuation ring of the place P .

De�nition 1.1.6 (Place). A place P is every set that satis�es P = O \O∗ for a
valuation ring O of an algebraic function �eld F/K. A set of all places of F/K
is denoted by PF/K.

Let us have a �eld F and its valuation ring O. If O is integral domain and
there is a discrete valuation ν such that

O = {z ∈ F |ν(z) ≥ 0},

then we say that O is discrete valuation ring.
For a place P = O \ O∗ = {z ∈ F ; ν(z) > 0}, we consider

m = min{ν(x), x ∈ P}
a ∈ P, ν(a) = m.

Hence P ⊇ aO. Let us have b ∈ P \ aO. Then

bO % aO

and
a = bo, o /∈ O∗.

However that means, that ν(o) > 0 and ν(a) > ν(b). That is a contradiction and
it means that P is principal ideal of discrete valuation ring O. In fact, the same
proof we can get for every ideal of O, so O is a principal domain. An element
t ∈ O that tO = P is called prime element.

For every place P ∈ PF/K and t ∈ O, that is prime element of P we de�ne a
discrete valuation νP :

νP (z) = νP (tiu) = i, ∀z ∈ F,

where i ∈ Z, u ∈ O∗. This de�nition does not depend on the choice of t:

P = tO = sO, so t = sw for some w ∈ O∗ and wnu ∈ O∗.

Every νP gives an alternative de�nition a of place and a valuation ring:

OP = {z ∈ F, νP (z) ≥ 0},
O∗P = {z ∈ F, νP (z) = 0},
P = {z ∈ F, νP (z) > 0}.

4



Example 1.1.7. Let us have x transcendental over K. Then K(x)/K is function
�eld (of rational functions). For an irreducible polynomial p(x) ∈ K[x] is

Op(x) =

{
f(x)

g(x)
; f(x), g(x) ∈ K[x], p(x) - g(x)

}
valuation ring. Maximal ideal of Op(x) is

Pp(x) =

{
f(x)

g(x)
∈ Op(x); p(x) | f(x)

}
.

It is clear that p(x) is prime element of Pp(x) and valuation related to Pp(x) is

νPp(x)
(z) = k ⇔ k = max{i ∈ Z ∪ {0}; pi(x) | z}.

In addition to Op(x) there is another valuation ring

O∞ =

{
f(x)

g(x)
; f(x), g(x) ∈ K[x], deg(f(x)) ≤ deg(g(x))

}
with maximal ideal

P∞ =

{
f(x)

g(x)
∈ O∞; deg(f(x)) < deg(g(x))

}
.

and related valuation

ν∞

(
f(x)

g(x)

)
= deg(g(x))− deg(f(x)).

Let us have a place P ∈ PF/K and an element z ∈ F . We say, that P is
a zero of z of order m if vP (z) = m > 0 and it is a pole of z of order m if
vP (z) = −m < 0. If z is constant it does not have any poles or zeros.

Proposition 1.1.8. Let F/K be a function �eld and let P1, . . . , Pr be zeros of the
element x ∈ F . Then

r∑
i=1

νPi
(x) · deg(Pi) ≤ [F : K(x)].

Proof. See [Stic09], Proposition 1.3.3.

From Proposition 1.1.8 follows that every nonzero element x ∈ F has only
�nitely many zeros. As we can apply the same proposition on x−1, there is only
�nitely many poles of x.

De�nition 1.1.9 (Residue class �eld and degree). Let P ∈ PF/K.

• FP := OP/P is the residue class �eld of P . The map x→ x(P ) from F to
FP ∪ {∞} is called the residue class map with respect to P .

• deg(P ) := [FP : K] is called the degree of P .
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Places of degree one of rational function �eld K(x)/K correspondent one-
to-one to elements of K ∪ ∞. Hence in algebraic geometry is K(x)/K usually
interpreted as projective line over K. In coding theory we use terminology that
a place of degree one

Pα = Px−α

is rational point.

De�nition 1.1.10 (Divisor). Free Abelian group with basis PF/K is called a di-
visor group of F/K and it is denoted by Div(F ). The elements of Div(F ) are
formal sum

D =
∑

P∈PF/K

aPP with aP ∈ Z and almost all aP = 0.

Two divisors are added coe�cientwise.
The zero element of group is zero divisor with aP = 0,∀P ∈ PF/K.
A divisor with all aP ≥ 0 is called positive (or e�ective).
A divisor with exactly one nonzero coe�cient aP is called prime divisor.

De�nition of a degree of a place can be used to de�ne a degree of a divisor as

deg(D) =
∑

P∈PF/K

aP · deg(P ).

This gives us a homomorphism

Div(F )→ Z.

As we mentioned before, every nonzero z ∈ F has only �nitely many zeros
and poles. If we set aP = νP (z) it satis�es condition that aP = 0 for almost all
P so

(z) :=
∑

P∈PF/K

νP (z)P

is divisor. Divisors de�ned like that are called principal divisors. The set of
principal divisors is subgroup of Div(F/K) denoted by Princ(F ).

The factor group

Cl(F ) := Div(F )/Princ(F )

is called the divisor class group of F/K.

De�nition 1.1.11 (Equivalence relation and partial ordering). Two divisors
D,Q ∈ Div(F ) are equivalent (D ∼ Q) if

D = Q+ (x)

for some x ∈ F \ {0}.
A partial ordering on Div(F ) is de�ned by

D ≤ Q⇔ aP ≤ bP ,∀P ∈ PF/K ,

where D =
∑
aPP and Q =

∑
bpP .

6



De�nition 1.1.12 (Riemann-Roch space). For a divisor A ∈ Div(F ) we de�ne
the Riemann-Roch space associated to A by

L(A) := {x ∈ F, (x) ≥ −A} ∪ {0}.

Let A ∈ Div(F ). Riemann-Roch space L(A) is a vector space over K and its
dimension is denoted by l(A).

De�nition 1.1.13 (Genus and index of specialty). The genus g of F/K is de�ned
by

g := max{deg(A)− l(A) + 1, A ∈ Div(F )}.

An integer
i(A) = l(A) + g − 1

is called index of specialty.

The genus of F/K is always non-negative integer.

De�nition 1.1.14 (Adele). An adele of F/K is a mapping

f :

{
PF/K → F,
P → f(P ),

such that f(P ) ∈ OP for almost all P ∈ PF/K. The valuation νP (x) is naturally
extended to Adele(F/K) by setting νP (f) = νP (fP ), where fP = f(P ) is the
P -component of the adele f . The extended valuation is denoted by ϑ.

Let A ∈ Div(F ). Then we de�ne

A(A) = {f ∈ Adele(F/K);ϑ(f) + A ≥ 0}.

For every x ∈ F and P ∈ PF/K we have constant mapping cx(P ) = x, which
is adele. It is very common to take cx as element of F . That give us inclusion
F ⊆ Adele(F/K). Adeles are important structure in algebraic geometry with a
lot of interesting properties.

Let A,B ∈ Div(F/K), A ≤ B :

• A(A) is vector space over K and A(A) ∩ F = L(A),

• A(A) ⊆ A(B),

• dim (A(B)/A(A)) = deg(B − A).

De�nition 1.1.15 (Weil di�erential). A Weil di�erential is a linear form

ω : Adele(F/K)→ K,

that vanishes on A(A) + F for some divisor A ∈ Div(F ).

Notation:

• ΩF := {ω | ω is a Weil di�erential of F/K},

• ΩF (A) := {ω ∈ ΩF | ω vanishes on A(A) + F},
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• M(ω) := {A ∈ Div(F ) | ω ∈ ΩF (A)}.

Proposition 1.1.16. ΩF is a one-dimensional vector space over F .

Proposition 1.1.17. For every nonzero Weil di�erential ω exists exactly one
divisor W = (ω) ∈M(ω) that A ≤ W for all A ∈M(ω).

De�nition 1.1.18 (Canonical divisor). A divisor W that is equal to (ω) for some
ω ∈ ΩF , ω 6= 0 is called canonical.

• (ω) is, in class group of F/K, uniquely determined divisor,

• ω vanishes on A((ω)) + F,

• if ω vanishes on A(A) + F for some divisor A ∈ Div(F/K) then A ≤ (ω),

• (ω) =
∑

P∈PF/K
xPP , we set νP (ω) := xP .

Theorem 1.1.19 (Riemann-Roch Theorem). Let F/K be a function �eld of
genus g. Then we have:

(i) For all divisors A ∈ Div(F/K),

l(A) ≥ deg(A) + 1− g.

(ii) There is an integer c, depending only on the function �eld F/K, such that

l(A) = deg(A) + 1− g,

whenever deg(A) ≥ c.

Proof. See [Stic09], Theorem 1.4.17.

Theorem 1.1.20 (Alternative of Riemann-Roch Theorem). Let F/K be a func-
tion �eld of genus g, A ∈ Div(F ) and every x ∈ F \K is transcendental over K.
If l(A) ≥ 2g − 1 then l(A) = deg(A) + g − 1.

Now we just mention the basic knowledge about the extension of algebraic
function �eld. For more information about this topic see [Stic09], Chapter 3. In
the rest of this section we assume that K is algebraically closed and that K is
full constant �eld in F , i.e. ∀x ∈ F \K is transcendental over K.

De�nition 1.1.21. We say that an algebraic function �eld F ′/K ′ is a �eld exten-
sion of an algebraic function �eld F/K if F ⊆ F ′ and K ⊆ K ′. It is an algebraic
extension if F ′ is an algebraic �eld extension of F .

De�nition 1.1.22. Let F ′/K ′ be an algebraic extension of F/K. We say that a
place P ′ ∈ PF ′/K′ is over a place P ∈ PF/K if P = P ′ ∩F . We denote it by P ′|P .
In this case OP = OP ′ ∩ F .

De�nition 1.1.23. Let P ′|P .

• Then there is a unique integer e that satis�es νP ′(x) = eνP (x),∀x ∈ F . An
integer e(P ′|P ) := e is called the rami�cation index.
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Figure 1.1: Elliptic curve y2 = x3 − x over R.

• An integer f(P ′|P ) = [OP ′/P ′ : OP/P ] is called the relative degree of P ′

over P .

Example 1.1.24. Let us have projective line over R, i.e rational function �eld
F/K = R(x)/R. We consider �eld extension

F ′/K = R(x)[y]/R; y2 = x3 − x.

This extension correspondent to projection of elliptic curve y2 = x3 − x on axis
x.

We consider places of degree one�rational points. For every rational point P
on the projective line, there are at most two rational points P ′ on the elliptic curve
such that P ′|P . We consider the rational point P ′ ∈ PF ′/K , P ′ = P ′(0,0) which is
over P0:

νP ′
(0,0)

(x) = νP ′
(0,0)

(
y2

x2 − 1

)
= νP ′

(0,0)
(y2)− νP ′

(0,0)
(x2 − 1) = 2− 0 = 2,

νP0(x) = 1

Hence e(P ′(0,0)|P0) = 2. There are other three points on projective line, that has
rami�cation index 2�P−1, P1 and P∞. The relative degrees are 1. On the other
side, if we take for example the rational point P2 ∈ PF/K, from the Figure 1.1 we
see, that there are two points P ′1, P

′
2 ∈ PF ′/K, which are over P2. The point P2 is

unrami�ed and f(P ′i |P ) = 1.

Theorem 1.1.25. Let F ′/K ′ be an algebraic extension of F/K. Then for each
P ∈ PF/K there exists an integer m ≥ 1, such that there is exactly m places
P ′1, . . . , P

′
m ∈ PF ′/K′ over P . Then

[F ′ : F ] =
m∑
i=1

e(P ′i |P ) · f(P ′i |P ).

Proof. See [Stic09], Proposition 3.1.11 and Proposition 3.1.7(b).

Proposition 1.1.26. Let F ′/K ′ be an algebraic extension of F/K. Then for
every place P ′ ∈ PF ′/K′ there is exactly one place P ∈ PF/K, such that P = P ′∩F .
From the other side, for every P ∈ PF/K there is �nitely many places in PF ′/K′
which are over P .
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According to Proposition 1.1.26 it makes sense if we de�ne mapping

Div(F/K)→ Div(F ′/K ′)

like this:

De�nition 1.1.27 (Conorm). For a place P ∈ PF/K we de�ne mapping:

Con : P →
∑
P ′|P

e(P ′|P )P ′.

The Con can be extended to a homomorphism:

Con : Div(F/K) → Div(F ′/K ′)∑
P∈PF/K

aPP →
∑

P∈PF/K
aP Con(P ).

Lemma 1.1.28. Let F ′/K ′ be an algebraic extension of F/K and let us have
places P ′ ∈ PF ′/K′ and P ∈ PF/K that P ′|P ,. If f(P ′|P ) <∞ then

deg(P ′)[K ′ : K] = f(P ′|P )deg(P ).

Proposition 1.1.29. Let F ′/K ′ be an algebraic extension of F/K. For each
A ∈ Div(F/K) is

deg
(
ConF ′/F (A)

)
=

[F ′ : F ]

[K ′ : K]
deg(A).

Proof. It is su�cient to prove it on the set of generators of Div(F/K), i.e. on
PF/K .
Let P ∈ PF/K and we assume that P ′1, . . . , P

′
m are all places lying over P . Ac-

cording to Lemma 1.1.28

deg(P ′i ) =
f(P ′i |P )

[K ′ : K]
deg(P ),

for every i ∈ {1, . . . ,m}. From Theorem 1.1.25 we get:

deg
(
ConF ′/F (P )

)
=
∑ e(P ′i |P ) · f(P ′i |P )

[K ′ : K]
deg(P ) =

[F ′ : F ]

[K ′ : K]
deg(P ).

As we de�ne the extension of algebraic function �eld, we can also de�ne an
extension of Adele(F/K).

De�nition 1.1.30. Let

AdeleF ′/F := {α ∈ Adele(F ′/K ′) | αP ′ = αQ′ whenever P
′ ∩ F = Q′ ∩ F}.

The trace mapping F ′ → F can be extended to an F -linear mapping

TrF ′/F : AdeleF ′/F → Adele(F/K)

10



by setting
(TrF ′/F (α))P := TrF ′/F ,

where P ′ is any place lying over P . De�nition is correct because αP ′ = αQ′
whenever P ′ and Q′ lie over P .
By [Stic09], Theorem 3.4.6 for every Weil di�erential ω of F there exists a unique
Weil di�erential ω′ of F ′/K ′ such that

TrK′/K(ω′(α)) = ω(TrF ′/F (α)),

for all α ∈ AdeleF ′/F .

De�nition 1.1.31. Using notation above we de�ne Cotrace of ω in F ′/F as

CotrF ′/F (ω) = ω′.

1.2 Derivation and Di�erential

We describe the derivations and the di�erentials of an algebraic function �eld with
analogous properties as derivations and di�erentials in mathematical analysis. We
show how they are related to the Weil di�erentials. That gives us the tools to
work with Weil di�erentials.

In Chapter 2 we will see how we can use Weil di�erentials to work with
algebraic geometry codes.

In this section we assume that we have algebraic function �eld F/K as we
de�ned in previous section. Throughout the section let K be perfect �eld and let
K be full constant �eld in F .

De�nition 1.2.1 (Derivation). Let M be a module over F . A mapping

δ : F →M

is said to be derivation of F/K into M , if δ is K-linear and the product rule

δ(u · v) = u · δ(v) + v · δ(u)

holds for all u, v ∈ F .

Following lemma shows analogy to a derivation de�ned in mathematical anal-
ysis.

Lemma 1.2.2. Let δ : F →M be a derivation of F/K into M . Then we have:

(i) δ(a) = 0 for each a ∈ K.

(ii) δ(zn) = nzn−1 for z ∈ F and n ≥ 0.

(iii) If charK = p > 0, then δ(zp) = 0 for each z ∈ F .

(iv) δ(x/y) = (yδ(x)− xδ(y))/y2 for x, y ∈ F and y 6= 0.

De�nition 1.2.3 (Separating element). An element x ∈ F is separating element
of F/K if F k K(x) is separable algebraic extension, i.e. for every element
a ∈ F , the minimal polynomial of a over K(x) has distinct roots.

11



Lemma 1.2.4. Suppose that x is a separating element of F/K and that δ1, δ2 are
the derivations of F/K into M with δ1(x) = δ2(x). Then δ1 = δ2.

Proof. Let f(x) =
∑
aix

i ∈ K[x]. From Lemma 1.2.2 follows that the derivation
of f(x) is

δj(f(x)) = (
∑

iaix
i−1) · δj(x), for j ∈ {1, 2}.

Therefore the restrictions of δ1 and δ2 to K[x] are equal. If restrictions to K[x]
are equal then using Lemma 1.2.2 (iv) we get equality of restrictions to K(x).
Now we consider an arbitrary element y ∈ F and its minimal polynomial my over
K(x).

my(T ) =
∑

uiT
i ∈ K(x)[T ].

As F k K(x) is separable extension,
∑
iuiy

i−1 6= 0.
For j ∈ {1, 2} :

0 = δj(0) = δj(
∑

uiy
i) =

∑
(ui · δj(yi) + yi · δj(ui))

=
(∑

iuiy
i−1
)
· δj(y) +

∑
yi · δj(ui),

δj(y) =
−1∑
iuiyi−1

·
∑

yi · δj(ui).

Since ui ∈ K(x) and we already proved equality of restrictions of δ1, δ2 to K(x),
we have that δ1(y) = δ2(y).

De�nition 1.2.5 (Module of derivation). (a) Let x be a separating element of
the function �eld F/K. The unique derivation δx : F → F of F/K with
the property δx(x) = 1 is called the derivation with respect to x.

(b) Let DerF := {η : F → F |η is a derivation of F/K}. For η1, η2 ∈ DerF and
z, u ∈ F we de�ne

(η1 + η2)(z) := η1(z) + η2(z) and (u · η1)(z) := u · η1(z).

It is obvious that DerF is an F -module. It is called the module of derivation
of F/K.

The existence of δx follows from [Stic09], Proposition 4.1.4. (b):

If x ∈ F is a separating element of F/K and N ⊇ F is some �eld, then there
exists a unique derivation δ : F → N of F/K with property δ(x) = 1.

Lemma 1.2.6. Let x be a separating element of F/K. Then the following hold:

(a) DerF is a one dimensional F -module.

(b) (Chain rule) If y is another separating element of F/K, then

δy = δy(x) · δx. (1.1)

(c) For t ∈ F we have

δx(t) 6= 0⇔ t is a separating element.

12



Proof. (a) Consider the de�nition of δx. Then

(η(x) · δx)(x) = η(x) · δx(x) = η(x).

As x is a separating element, η(x) · δx = η.

(b) Set η = δy and it follows from (a).

(c) If t is a separating element, then from the de�nition of δt and the chain rule
we have

1 = δt(t) = δt(x) · δx(t).

Hence δx(t) 6= 0.
Now we assume that t is not a separating element.
For K with characteristic 0 we have that t ∈ K (otherwise t is transcen-
dental over K so [F : K(t)] < ∞ and t is separating because every �nite
extension of perfect �eld is separable) and that implies δx(t) = 0 from de�-
nition of derivation.
If char(K) = p, then t ∈ F p (for proof see [Stic09], Proposition 3.10.2(d))
so t = up, u ∈ F . Hence δx(t) = 0 by Lemma 1.2.2.

De�nition 1.2.7 (Di�erential). (a) We de�ne a relation ∼ on the set

Z := {(u, x) ∈ F × F | x is separating}

by
(u, x) ∼ (v, y)⇔ v = u · δy(x). (1.2)

(b) We denote the equivalence class of (u, x) ∈ Z with respect to the above equiv-
alence relation by udx and call it a di�erential of F/K. The equivalence
class of (1, x) is simply denoted by dx. Observe that by 1.2 is

udx = vdy ⇔ v = u · δy(x). (1.3)

(c) Let
∆F := {udx | u ∈ F, and x ∈ F is separating }

be the set of all di�erentials of F/K. We de�ne the sum of two di�erentials
udx, vdy ∈ ∆F as follows: Choose a separating element z. Then

udx = (u · δz(x))dz and vdy = (v · δz(y))dz,

by 1.3, and we set

udx+ vdy := (uδz(x) + vδz(y))dz (1.4)

This de�nition is independent of the choice of z by the chain rule. Likewise,
we de�ne

w · (udx) := (wu)dx ∈ ∆F

for w ∈ F and udx ∈ ∆F . In this manner, ∆F becomes an F -module.
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(d) For a non-separating element t ∈ F we de�ne dt := 0 (the zero element of
∆F ); thus we obtain a mapping

d :

{
F → ∆F ,
t 7−→ dt.

The pair (∆F , d) is called the di�erential module of F/K (for brevity we
shall simply refer to ∆F as the di�erential module of F/K).

Remark. An useful proposition is proved by Stichtenoth in [Stic09], Proposition
6.4.1:

If we consider function �eld F = K(x, y) equal to quotient �eld of ring

Fq/(yq + c · y − f(x)),

where c ∈ K∗, f(x) ∈ K[x] and q = pk > 1 for some prime p then the divisor of
the di�erential dx is

(dx) = (2g − 2)P∞.

As in mathematical analysis also in algebraic geometry we can de�ne a limit
of a sequence and a Cauchy sequence. Let us have a �eld K and discrete valuation
ν de�ned on K (we call pair (K, ν) a valued �eld).

De�nition 1.2.8 (Limit and Cauchy sequence). We de�ne x as a limit of a
sequence (xn)n≥0 in �eld a K if for every c ∈ R there is an index n0 ∈ N such
that

ν(x− xn) ≥ c whenever n ≥ n0.

We say that the sequence (xn)n≥0 is convergent.
As well we can say that (xn)n≥0 is a Cauchy sequence if for every c ∈ R there

is an index n0 ∈ N such that

ν(xn − xm) ≥ c whenever n,m ≥ n0.

From the de�nition of discrete valuation follows that

ν(x) =∞⇔ x = 0,

hence the de�nition of limit is really very close to one in mathematical analysis.
Equivalently, we can de�ne a convergence of series. Let (zn)n≥0 be a sequence

in a valued �eld (K, ν) and let sm be its partial sums, i.e.

sm :=
m∑
i=0

zi.

Then, as in mathematical analysis, we say that series is convergent if the sequence
of its partial sums is convergent. In that case we write:

∞∑
i=0

zi = lim
m→∞

sm.

De�nition 1.2.9 (Completion of valued �eld). Suppose that (K, ν) is a valued
�eld. A completion of K is a valued �eld (K̂, ν̂) with the following properties:
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(a) K ⊆ K̂, and ν is restriction of ν̂ to K.

(b) K̂ is complete, i.e. every Cauchy sequence in K̂ is convergent, with respect
to the valuation ν̂.

(c) K is dense in K̂, i.e. for each z ∈ K̂ there is a sequence (xn)n≥0 in K with
limn→∞ xn = z.

Proposition 1.2.10. For each valued �eld there exists a completion. It is unique
up to a �eld isomorphism.

Proof. See [Stic09], Proposition 4.2.3.

In an algebraic function �eld F/K we usually calculate with the discrete
valuation νP related to a place P (as described in Section 1.1). Therefore it is
convenient to have a completion of F with respect to the valuation νP . This
completion is called the P -adic completion of F . We denote it by (F̂P , νP ).

Theorem 1.2.11. Let P ∈ PF/K be a place of degree one and let t ∈ F be a

prime element of P , i.e. P = tOP . Then every element z ∈ F̂P has a unique
representation of the form

z =
∞∑
i=n

ait
i with n ∈ Z and ai ∈ K. (1.5)

This representation is called the P -adic power series expansion of z with respect
to t.

Proof. We have to prove the existence and the uniqueness. We start with the
existence proof:
For z ∈ F̂P we choose n ∈ Z, that n ≤ νP (z). F is dense in F̂P , so every element
of F̂P is a limit of some sequence in F . Therefore from the de�nition of a limit
we can �nd an element y ∈ F with νP (z − y) > n.

νP (y) 6= νP (z) then νP (z − y) = min{νP (z), νP (y)}
νP (y) = νP (z)

}
⇒ νP (y) ≥ n.

Hence
vP (yt−n) ≥ 0⇒ yt−n ∈ OP .

As P is a place of degree one, we have OP = K+P , therefore there is an element
an ∈ K that yt−n − an ∈ P .

νP (z − antn) = νP ((z − y) + (y − antn)) > n.

In the same manner, we can �nd an+1, an+2, · · · ∈ K such that

νP (z −
m∑
i=n

ait
i) > m for all m ≥ n.

This shows that

z =
∞∑
i=n

ait
i.
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We will prove the uniqueness by contradiction:
Assume that

z =
∞∑
i=n

ait
i =

∞∑
i=m

bit
i.

W.l.o.g. n = m (if n < m then bn = · · · = bm−1 = 0).
We assume that there is j with aj 6= bj, we choose a minimal one. Then for all
k > j

νP

(
k∑
i=n

ait
i −

k∑
i=n

bit
i

)
= νP

(
(aj − bj)tj +

k∑
i=j+1

(ai − bi)ti
)

= min{j, j + 1, . . . , k} = j.

Also

νP

(
k∑
i=n

ait
i −

k∑
i=n

bit
i

)
= νP

(
k∑
i=n

ait
i − z + z −

k∑
i=n

bit
i

)

≥ min{νP (z −
k∑
i=n

ait
i), ν(z −

k∑
i=n

bit
i)} k→∞−−−→∞.

That is a contradiction with j ∈ Z for all k > j.

From the de�nition of a di�erential and the de�nition of a derivation with
respect to a separating element t we have:

δt(y) =
dy

dt
for all y ∈ F.

The quotient is always de�ned because

dz 6= 0⇔ z is separating.

Proposition 1.2.12. Let P be a place of F/K, deg(P ) = 1 and let t ∈ F be
a prime element of P . If z ∈ F has the P -adic expansion z =

∑∞
i=n ait

i with
ai ∈ K, then

dz

dt
=
∞∑
i=n

iait
i−1.

Proof. t is a separating element of F/K, because it has νP (t) = 1 and every
element whose valuation is not multiple of the characteristic of K is separating.
For the proof of this proposition see [Stic09], Proposition 3.10.2(a).
From note above the proposition we have

dz

dt
= δt(z).

We de�ne a mapping δ : F̂P → F̂P by

δ(
∞∑
i=m

cit
i) :=

∞∑
i=m

icit
i−1.
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Obviously δ is K-linear. We have z1, z2 ∈ F̂P and its P -adic expansions
∑∞

i=n ait
i

and
∑∞

j=m bjt
j. W.l.o.g. n = m.(

∞∑
i=n

ait
i

)(
∞∑
j=n

bjt
j

)
=
∞∑
j=n

i∑
i=n

nftyaibjt
i+j,

and δ is K-linear hence

δ(z1 · z2) =
∞∑
j=n

∞∑
i=n

(i+ j)aibjt
i+j−1

=
∞∑
j=n

∞∑
i=n

iaibjt
i−1tj +

∞∑
j=n

∞∑
i=n

jaibjt
j−1ti

=
∞∑
j=n

bjt
j

∞∑
i=n

iait
i−1 +

∞∑
i=n

ait
i

∞∑
j=n

jbjt
j−1

=z2δ(z1) + z1δ(z2).

δ satis�es the product rule ⇒ δ is derivation.
δ(t) = 1 = δt(t) and t is separating element 1.2.4

==⇒ δ(z) = δt(z) = dz
dt
.

De�nition 1.2.13 (Residue). Suppose that P is a place of F/K of degree one and
t ∈ F is a prime element of P . If z ∈ F has the P -adic expansion z =

∑∞
i=n ait

i

with n ∈ Z and ai ∈ K we de�ne its residue with respect to P and t by

resP,t(z) := a−1.

As the de�nition of a limit also the de�nition of a residue is close to one in
mathematical analysis (in this case in complex analysis), where the residue is
de�ned as a coe�cient a−1 of the Laurent series.

We set imin := min{i|ai 6= 0}.
If imin <∞ then νP

(∑k
i=n ait

i
)

= imin for all k > imin. As z =
∑∞

i=n ait
i, we can

�nd k that

νP (z −
k∑
i=n

ait
i) > imin.

Therefore

νP (z) = νP (z −
k∑
i=n

ait
i +

k∑
i=n

ait
i) = min{νP (z −

k∑
i=n

ait
i), νP (

k∑
i=n

ait
i)} = imin.

In case imin =∞, ai = 0 for all i so z = 0 and νP (z) =∞ = imin.
Conclusion of this is:

νP (z) ≥ 0⇒ resP,t(z) = 0.

Proposition 1.2.14. Let s, t ∈ F be a prime element of place P, deg(P ) = 1.
Then

resP,s(z) = resP,t

(
z · ds

dt

)
.
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Proof. See [Stic09], Proposition 4.2.9.

De�nition 1.2.15. Let ω ∈ ΩF be a di�erential and let P ∈ PF/K be a place of
degree one. Choose a prime element t ∈ F of P and write ω = u dt with u ∈ F .
Then we de�ne the residue of ω at P by

resP (ω) := resP,t(u).

According to Proposition 1.2.14, the de�nition is independent of the choice of
a prime element t.

1.3 Residue Theorem

In following section we describe relation between di�erentials and Weil di�eren-
tials. Main goal of the section is Residue Theorem. From complex analysis we
know Residue Theorem as:

Let us have an open set Ω ⊂ C, a �nite set M ⊂ Ω and a cycle graph
ϕ : [a, b] → Ω \M . We assume that every function g, that is holomorphic over
Ω, satis�es

∫
ϕ
g = 0. Then every function f , that is holomorphic over Ω \M ,

satis�es ∫
ϕ

f = 2πı
∑
a∈M

resaf · indϕa

where indϕa = 1
2πı

∫
ϕ

1
z−adz.

De�nition 1.3.1 (Local embedding and local component of Weil di�erential).
Let P ∈ PF/K.

(i) For x ∈ F let ι(x) ∈ Adele(F/K) be the adele whose P -component is x,
and the other components are 0.

(ii) For a Weil di�erential ω ∈ ΩF/K we de�ne its local component

ωP : F → K

by
ωP (x) := ω(ι(x)).

As a Weil di�erential is a K-linear mapping, clearly a local component ωP is
also a K-linear mapping.

Proposition 1.3.2. Let ω ∈ ΩF and α ∈ Adele(F/K). Then ωP (αP ) 6= 0 for at
most �nitely many places P , and

ω(α) =
∑

P∈PF/K

ωP (αP ).

Proof. For ω = 0 it is obviously valid.
We assume that ω 6= 0. We set W = (ω) =

∑
P∈PF/K

xPP and

S1 = {P ∈ PF/K |xP 6= 0}
S2 = {P ∈ PF/K |νP (αP ) < 0}
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From the de�nition of a divisor is S1 �nite, and from the de�nition of an adele is
S2 �nite (νP (αP ) < 0⇔ αP /∈ OP ). Hence S = S1 ∪ S2 is a �nite set.
De�ne adele β by

βP :=

{
αP for P /∈ S,
0 for P ∈ S.

Then β ∈ A(W ), hence ω(β) = 0. From the de�nition of β is

α = β +
∑
P∈S

ιP (αP ).

so from the linearity of a Weil di�erential and De�nition 1.3.1

ω(α) =
∑
P∈S

ωP (αP ).

For P /∈ S is ιP (αP ) ∈ A(W )⇒ ωP (αP ) = 0.

Conclusion 1.3.3. For every Weil di�erential ω is
∑

P∈PF/K
ωP (1) = 0.

Lemma 1.3.4. For the function �eld K(x)/K there exists a unique Weil di�er-
ential η with divisor (η) = −2P∞ and local component ηP∞(x−1) = −1 where P∞
is pole of x in K(x).

Proof. We can choose Weil di�erential ω that (ω) = −2P∞. From de�nition it
vanishes on the space A(−2P∞).

−2P∞ ≥ −P ⇒ ω does not vanish on A(−P∞).

From properties of adeles dim(A(−P∞)/A(−2P∞)) = 1 and x has a pole of order
one at P∞ ⇒ x−1 has a zero of order one at P∞. Hence

ιP∞(x−1) ∈ A(−P∞) \ A(−2P∞).

If
c := ωP∞(x−1) 6= 0

then we can set η := −c−1ω and η clearly has desired attributes.
If η∗ has the same properties then η− η∗ vanishes on A(−P∞)⇒ η− η∗ = 0.

De�nition 1.3.5. Let F/K be an algebraic function �eld. We de�ne a mapping

ψ :

{
F → ΩF ,
x → ψ(x)

as follows: if x ∈ F \K is a separating element of F/K we set

ψ(x) := CotrF/K(x)(η),

where η is the Weil di�erential of K(x)/K characterized in Lemma 1.3.4. For a
non-separating element x ∈ F we de�ne

ψ(x) := 0.

ψ(x) is called the Weil di�erential of F/K associated with x.
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Lemma 1.3.6. Let F/K be an algebraic function �eld with K algebraically closed.
Suppose that x is a separating element of F/K, P0 ∈ PK(x)/K is unrami�ed place
in F/K(x) and P0 is not the pole of x in K(x). Then for u ∈ F :

ψ(x)P (u) = resP (u dx) ∀P ∈ PF/K(x) that P |P0.

Proof. See [Stic09], Lemma 4.3.5.

Proposition 1.3.7. Suppose that F/K is an algebraic function �eld over a perfect
�eld K and x ∈ F is a separating element. For every y ∈ F we have

ψ(y) =
dy

dx
· ψ(x).

Conclusion 1.3.8. Weil di�erential associated with x is derivation.

Theorem 1.3.9. Suppose that F/K is algebraic function �eld over a perfect �eld
K and x ∈ F is separating element. If P is a place of F/K of degree one and
ω = z · ψ(x) ∈ ΩF for some z ∈ F , the local component of ω at P is given by

(z · ψ(x))P (u) = resP (uz dx).

Proof. We divide the proof into two parts. In the �rst part we will assume that
K is algebraically closed and in the second part we will not have any additional
assumption on K.
First part:
At �rst we get the places P1, P2, . . . , Pr ∈ PF/K such that L1 = L(P1+P2+· · ·+Pr)
is strictly larger than L2 = L(P2 + · · · + Pr). Then from the de�nition of a
Riemann-Roch space:

∀t ∈ L1, ∀P ∈ PF/K νP (t) ≥ −1,

hence if an element has a pole in F then it is a pole of order one. Specially

∀t ∈ L1 \ L2, 0 > νP1(t) ≥ −1⇒ νP1(t) = −1

and P1 is a pole of t of order one in F . If we set T := t−1 then T is a prime element
of P1 so it is a separating element of F/K. Then P0 := P1 ∩K(T ) ∈ PK(T )/K is
not a pole of T in K(T ) and

T ∈ P0 and νP1(T ) = 1⇒ P0 is unrami�ed in F/K(T )

Assumptions of Lemma 1.3.6 are satis�ed so:

(z · ψ(x))P1(u)
1.3.7
=
(
z · dx

dT
· ψ(T )

)
P1

(u) = ψ(T )P1

(
uz
dx

dT

)
1.3.6
= resP1

(
uz
dx

dT
dT
)

= resP1(uz dx).

Second Part :
We consider �eld extension F̄ = FK̄, where K̄ is algebraic closure of K. If
[K̄ : K] < ∞, then according to Proposition 1.1.29, a place P ∈ PF/K of degree

20



one has exactly one extension P̄ ∈ PF̄ /K̄ and we can use what we already proved
in the �rst part:

(z · ψ(x))P (u) = ψ(x)P (zu) = ψ̄(x)P̄ (zu) = resP̄ (zu dx).

As P̄ |P and P is unrami�ed, every prime element of P in F is also a prime
element of P̄ . Hence from De�nition 1.2.13

resP̄ (zu dx) = resP (zu dx).

In case [K̄ : K] =∞ we can use [Stic09], Corollary 3.6.5:
Let P ∈ PF/K be a place of F/K of degree r and let F̄ = FK̄ be the constant

�eld extension of F/K with the algebraic closure K̄ of K. Then

ConF̄ /F (P ) = P̄1 + · · ·+ P̄r

with pairwise distinct places P̄i ∈ PF̄ /K.
Hence P is unrami�ed place and the rest of the proof is the same as in case

[K̄ : K] <∞.

Directly from Proposition 1.3.2, Conclusion 1.3.3 and Theorem 1.3.9 follow:

Theorem 1.3.10 (Residue Theorem). Let F/K be an algebraic function �eld,
K is a perfect �eld. Let ω ∈ ∆F be a di�erential of F/K. Then resP (ω) 6= 0 for
at most �nitely many places P ∈ PF/K and∑

P∈PF/K

resP (ω) = 0.
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2. Algebraic Geometry Codes

2.1 Basics from error-correcting codes

Error-correcting codes enable communication over a noisy channel. Many com-
munication channels are subjected to channel noise, and thus the errors may
appear during a transmission from a source to a receiver. The errors can be de-
tected. Moreover, if the amount of errors is limited (we will describe later what
exactly mean limited), the errors can be corrected.

Let us have a �nite �eld Fq with q elements and we consider the n-dimensional
vector space Fnq over Fq. The elements of this vector space are n-tuples (a1, . . . , an).

De�nition 2.1.1 (Hamming distance and weight). For two elements a, b ∈ Fnq
is Hamming distance a function

d(a, b) := |{i | ai 6= bi, i ∈ {1, . . . , n}|.

The weight of an element a is de�ned as

w(a) := d(a, 0) = |{i | ai 6= 0, i ∈ {1, . . . , n}|.

De�nition 2.1.2 (Linear code). A code C over the alphabet Fq is an [n, k]-
linear code if it is a linear subspace of Fnq of dimension k. The elements of C are
called codewords, n is the length of C (i.e. a length of a codeword) and k is the
dimension of code.
The minimum distance d(C) of a code C is

d(C) := min{d(a, b) | a 6= b and a, b ∈ C} = min{w(c) | 0 6= c ∈ C}.

An [n, k] code with minimal distance d is denoted by [n, k, d].

We set

t :=

⌊
d(C)− 1

2

⌋
.

If u ∈ Fnq and d(u, c) ≤ t for some c ∈ C then c is the only codeword with
d(u, c) ≤ t. Therefore using code C we can uniquely correct all errors if number
of errors is less than or equal to t.

De�nition 2.1.3 (Generator matrix). Let C be an [n, k]-code. A generator ma-
trix of C is a k × n matrix whose rows are a basis of C (as Fq-vector space).

De�nition 2.1.4 (Dual code). If C ⊆ Fnq is a code then

C⊥ := {u ∈ Fnq | < u, c >=
n∑
i=1

uici = 0 for all c ∈ C}

is called the dual code of C.

• dim(C) + dim(C⊥) = n.
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• A generator matrix of C⊥ is called a parity check matrix for C. It satis�es

∀c ∈ C; c ·GT
C⊥ = ~0.

Proposition 2.1.5 (Singleton Bound). For an [n, k, d]-code C holds

d ≤ n− k + 1.

Example 2.1.6 (Reed-Solomon codes). Let F#
q = {α, α2, . . . , αq−1} be a multi-

plicative group, where q = pr for a prime p and an integer r and α is a primitive
element of Fq. For an integer k ≤ n = (q − 1) we consider the set

L = {f ∈ Fq[x] | deg(f) < k}.

Then we de�ne Reed-Solomon [n, k]-code as

RSq,k = {(f(α), f(α2), . . . , f(αq−1))|f ∈ L}.

As each polynomial has at most k−1 zeros, from d ≥ n−(k−1) and the Singleton
Bound follows that RSq,k reach the Singleton bound.

MDS codes (maximum distance separable codes) are codes with d = n−k+1.
From the Singleton bound is obvious that if we want a code with high minimum
distance we need a code with high length of the codewords. As a length of the
codewords is limited by a size of the alphabet, the alphabet grows with it. One of
the reason for the interest in algebraic geometry codes is that for the �x alphabet,
they have longer length of the codewords than MDS codes. The penalty of this
improvement is lower minimum distance. However we will see that this penalty
is at most equal to the genus of the algebraic curve, that we used to construct
the code.

2.2 Goppa Codes

Algebraic geometry codes (AG codes) are in general a linear codes constructed
by using an algebraic curve. Such codes were introduced by Valerii Denisovich
Goppa. That is why AG codes are often called Goppa codes. Some authors divide
AG codes into two groups:

• geometric Reed-Solomon codes

• Goppa codes.

In this thesis we will also use this division as presented in [HøhoLintPell11].
Let X be a non-singular projective curve de�ned over a �nite �eld Fq. We

consider the algebraic function �eld de�ned by X as quotient �eld of coordinate
ring

F[X ] = Fq/(X ),

where (X ) denotes ideal generated by de�ning equation of the curve X . We
denote this algebraic function �eld by F(X ).
In the following we use notation:
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• P1, . . . , Pn are distinct rational points on X , i.e. places of degree one,

• divisor D ∈ Div(F(X )) is D = P1 + · · ·+ Pn,

• divisor G ∈ Div(FX ) is G =
∑

P∈PF(X )
gP · P , that gPi

= 0 for 1 ≤ i ≤ n.

Then:

De�nition 2.2.1. The linear code C(D,G) of length n over Fq is de�ned by

C(D,G) = {(x(P1), · · · , x(Pn)) | x ∈ L(G)}.

Codes of this type are called geometric Reed-Solomon codes.

Example 2.2.2. Consider Reed-Solomon code RSq,k and let L be as in Example
2.1.6. We set

L := {f(x/y) | f ∈ L}.
Then for the projective line X = P1(F̄q) is L a set of polynomials that have a
pole only at point in in�nity P∞ and order of a pole is less than k. Hence by
setting D = P1 + · · · + Pn where Pi = (αi, 1) for a prime element α of Fq and
G = (k − 1) · P∞ we constructed geometric RS-code

C(D,G) = {(f(P1), · · · , f(Pn))|f ∈ L} = {(f(P1), · · · , f(Pn))|f ∈ L(G)}

that is equivalent with RSq,k.

Proposition 2.2.3. C(D,G) is an [n, k, d]-code with

(i) k = l(G)− l(G−D),

(ii) d ≥ n− deg(G).

Proof. Consider a mapping

e : L(G) → Fnq
f → (f(P1), · · · , f(Pn)).

(i) e is surjective from L(G) to C(D,G). By linear algebra

l(G) = dim(Im(e)) + dim(Ker(e)) = k + dim(Ker(e))

and

Ker(e) = {f |(f(P1), . . . , f(Pn)) = (0, . . . , 0)}
= {f |νPi

(f) > 0, 1 ≤ i ≤ n}
= L(G−D).

(ii) w(e(f)) = w ≥ d. Then there exist n− w points that

νPij
(f) > 0, 1 ≤ j ≤ n− w.

Hence f ∈ L
(
G− (Pi1 + · · ·+ Pin−w)

)
.

L
(
G− (Pi1 + · · ·+ Pin−w)

)
6= ∅ ⇔ deg(G)− (n− w) ≥ 0.
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Theorem 2.2.4. Let C(D,G) be an [n, k, d]-code de�ned on curve X of genus g
and deg(G) < n. Then:

(i) k = l(G) and d ≥ n− k + 1− g.

(ii) A generator matrix of C(D,G) is given by

M :=

f1(P1) . . . f1(Pn)
...

...
...

fk(P1) . . . fk(Pn),


where f1, . . . , fk is an Fq-basis of L(G).

• Specially if deg(G) ≥ 2g − 1 then k = deg(G) + 1− g.

Proof. (i) If deg(G) < n then deg(G − D) < 0 and l(G − D) = 0. Hence
k = l(G). By Riemann-Roch Theorem 1.1.19

k = l(G) ≥ deg(G) + 1− g

and by Proposition 2.2.3

d ≥ n− deg(G) ≥ n− k + 1− g.

(ii) Let m̄1, . . . , m̄k be rows of M . We assume that
∑k

i=1 ai · m̄i = ~0, ai ∈ Fq.
Then

k∑
i=1

ai · fi(P1) = · · · =
k∑
i=1

ai · fi(Pn) = 0,

that implies
∑k

i=1 ai · fi ∈ L(G−D) and so ai = 0,∀i. The rows of M are
linearly independent over Fq, so M is generator matrix.

(iii) follow directly from (i) and Theorem 1.1.20.

Remark. Putting together Singleton bound and Theorem 2.2.4 we get

n− k + 1− g ≤ d ≤ n− k + 1.

Therefore for curves with genus g = 0 is C(D,G) MDS code. Otherwise we
construct code with almost maximum d, the penalty that we have to pay is g.

De�nition 2.2.5. A linear code C∗(D,G) of length n over Fq is de�ned by

C∗(D,G) = {(resP1(ω), · · · , resPn(ω)) | ω ∈ Ω(G−D)}.

the codes of this type are called geometric Goppa codes.

Proposition 2.2.6. C∗(D,G) is an [n, k∗, d∗]-code de�ned on curve of genus g.
Then

• k∗ = i(G−D)− i(G),
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• d∗ ≥ deg(G)− 2g + 2.

Specially if deg(G) ≥ 2g − 1 then k∗ ≥ n + g − 1 − deg(G) with equality in case
deg(G) < n.

Proof. Consider a mapping

Res : Ω(G−D) → C∗(D,G)
ω → (resP1(ω), . . . , resPn(ω)).

Res is a surjective linear mapping. As ω ∈ Ω(G−D)⇔ νP (ω) ≥ νP (G−D):

νPi
(ω) ≥ −1 ∀i ∈ {1, . . . , n}

νPi
(ω) ≥ 0 ω ∈ Ω(G),∀i ∈ {1, . . . , n}

so
ω ∈ Ω(G)⇔ (resP1(ω), . . . , resPn) = (0, . . . , 0)

and Ker(Res) = Ω(G). Using linear algebra k∗ = i(G−D)− i(G).
Now consider a codeword c∗(ω) of a weight w. Then

ω ∈ Ω(G− (D −
n−w∑
j=1

Pij))

by previous ideas. Then

Ω(G− (D −
n−w∑
j=1

Pij)) 6= 0⇒ deg

(
G− (D −

n−w∑
j=1

Pij)

)
≤ 2g − 2

according to Theorem 1.1.20. Hence

2g − 2 ≥ deg(G)− (n− (n− w)) = deg(G)− w,
d∗ ≥ w ≥ deg(G)− 2g + 2.

In case deg(G) > 2g − 2 is i(G) = 0 by Theorem 1.1.20 and k∗ = i(G −D). In
addition if deg(G) < n then l(G − D) = 0 and k∗ = n + g − 1 − deg(G) from
de�nition of index of specialty.

The lower bounds for minimum distances d and d∗ are called Goppa distance
of AG code.

Theorem 2.2.7. The codes C(D,G) and C∗(D,G) are dual codes.

Proof. According to Proposition 2.2.3 and Proposition 2.2.6

k + k∗ =l(G)− l(G−D) + i(G−D)− i(G)

=l(G)− l(G−D) + l(G−D)− deg(G−D)−
1 + g − l(G) + deg(G) + 1− g

=deg(D) = n.

Let c = e(f) ∈ C(D,G) for some f ∈ L(G) and c∗ = Res(ω) ∈ C∗(D,G) for
some ω ∈ Ω(G−D). Consider the divisor (fω):

(fω) = (f) + (ω) ≥ (−G) + (G−D) = (−D),
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so fω ∈ Ω(−D). This implies that fω can have a pole only in P1, . . . , Pn and
it would be a pole of order one. For ti a prime element of Pi we consider the
Pi−adic expansion of f and ω.

f =
∑∞

k=0 ak · tki
ω = z dti; z =

∑∞
k=−1 bk · tki

}
resPi

(fω) = a0 · b−1 = f(Pi)resPi
(ω).

Using Residue Theorem 1.3.10 we get

< c, c∗ >=
n∑
i=1

f(Pi)resPi
(ω) = 0.

From previous Theorem we see dual codes of geometric Reed-Solomon codes
are Goppa codes. In practical situations is dual code often use to decide whether
the received word is or is not an element of the code. Moreover it could be used
in decoding algorithm. Therefore the following proposition could be very useful:

Proposition 2.2.8. Let η be a Weil di�erential with a simple poles at the Pi and
resPi

(η) = 1 for i = 1, . . . , n. Then

C∗(D,G) = C(D,D −G+ (η)).

Proof. η has a simple pole at the Pi ⇒ νPi
(η) = −1. Then (η) =

∑
P nP ·P with

nP1 = · · · = nPn = −1 ⇒ νPi
(D − G + (η)) = 0. Hence C (D,D −G+ (η)) is

properly de�ned code.
Consider a map

α : L(D −G+ (η)) → ΩF (G−D)
x → xη.

At �rst we have to check if α maps L(D −G+ (η)) into ΩF (G−D):

(xη) = (x) + (η) ≥ −D +G− (η) + (η) = −D +G⇒ xη ∈ Ω(G−D).

Using the same ideas as in proof of Theorem 2.2.7, for x ∈ L(D − G + (η)) we
have

resPi
(xη) = x(Pi)res(η) = x(Pi).

Therefore if α is an isomorphism then C∗(D,G) = C (D,D −G+ (η)).
α is obviously injective. To prove, that it is surjective we have check if for every
ω ∈ ΩF (G −D) there is a x ∈ L(D − G + (η)) that ω = xη. From Proposition
1.1.16 we see that ω = xη for some x ∈ F = Fq(X ) and

G−D ≥ (ω) = (xη) = (x) + (η)⇒ x ∈ L(D −G+ (η)).
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3. Encoding and Decoding

For a code to be convenient for practical use, there should be e�cient way how
to encode and decode. In the following chapter we introduce one method for
encoding and one method for decoding. However before we actually introduce
the method, we need to describe necessary algorithm.

3.1 Gröbner basis

Gröbner basis is useful algebraic tool introduced by Bruno Buchberger. It is used
to solve the ideal and the radical membership problem, the ideal equality problem,
the algebraic equations and they provide a basis for a vector space K[x]/I over
K. In this section we describe how we can construct a systematic encoder for
AG-codes using a Gröbner basis. The most of the de�nitions and theorems are
taken from [Wink96] and [Mora09].

Before we can describe the Gröbner basis we need to de�ne reduction relation.

De�nition 3.1.1 (Reduction relation). Let M be a set and → a binary relation
on M . → is a reduction relation and we say that a reduces to b if (a, b) ∈→. We
will use notation a→ b.

The basic attributes of reduction relation:

• composition: a→→′ b⇔ ∃c ∈M that a→ c→′ b,

• inverse relation: a→−1 b⇔ b→ a,

• i-th power: a→i b⇔ ∃c1, . . . , ci−1 ∈M that a→ c1 → · · · → ci−1 → b,

• symmetric closure: a↔ b⇔ a→ b and b→ a,

• transitive closure: →+:=
⋃∞
i=1 →i,

• re�exive-transitive closure: →∗:=
⋃∞
i=0 →i,

• re�exive-transitive-symmetric closure: ↔∗.

The relation of reduction is analogous with division of polynomials. Hence it
is natural to say, that a is reducible if there exists b ∈ M such that a reduces to
b. We say, that b is normal form of a, if b is irreducible and a is reduced to b.
This relation is denoted by

b = a.

As for polynomials we have a common multiply and a common divisor, in termi-
nology of reduction relation we de�ne common successor

a ↓ b⇔ ∃c ∈M that a→ c← b

and common predecessor

a ↑ b⇔ ∃c ∈M that a← c→ b.
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We declare a commutative polynomial ring K[x1, . . . , xn] by K[X] and a
monoid of power products xi11 . . . x

in
n by [X]. The unit element in this monoid

is 1 = x0
1 . . . x

0
n. On [X] we de�ne term ordering that is compatible with the

monoid structure:

• 1 < t,∀t ∈ [X] \ 1;

• s < t⇒ su < tu, ∀s, t, u ∈ [X].

Analogously we can de�ne term ordering on [X] by a total ordering on Nn.
In general we consider that (0, . . . , 0) ∈ Nn.

• (0, . . . , 0) < (a1, . . . , an), ∀(a1, . . . , an) ∈ Nn,

• (a1, . . . , an) < (b1, . . . , bn) ⇒ (a1, . . . , an) + (c1, . . . , cn) < (b1, . . . , bn) +
(c1, . . . , cn),∀(a1, . . . , ab), (b1, . . . , bn), (c1, . . . , cn) ∈ Nn.

Let f ∈ K[X], f =
∑k

i=1 aix
i1
1 . . . x

in
n . Then the leading exponent of f is

le(f) := max
<
{(i1, . . . , in) | ai 6= 0},

the leading term of f is

lt(f) := xi11 . . . x
in
n , that (i1, . . . , in) = le(f),

and leading coe�cient lc(f) is coe�cient of lt(f) in f . Finally a support of f is

supp(f) = {(i1, . . . , in) | ai 6= 0}.

A total ordering on a commutative polynomial ring K[X] induced by a term
ordering on [X] is de�ned as
∀f, g ∈ K[X] \ 0

1. 0 < f ;

2. in case le(f) 6= le(g): f < g ⇔ le(f) < le(g)

3. in case le(f) =le(g): f ′ := f − lc(f) · lt(f), g′ := g − lc(g) · lt(g) and
f < g ⇔ f ′ < g′

Example 3.1.2. Lexicographical ordering is

(a1, . . . , an) < (b1, . . . , bn)⇔ ∃i, ai < bi and aj = bj∀j > i.

Hence
1 < x1 < x2

1 < · · · < x2 < x2x1 < x2x
2
1 < · · · < x2

2 < . . . .

Graded reverse lexicographical ordering (grevlex) is

(a1, . . . , an) < (b1, . . . , bn)⇔a1 + · · ·+ an < b1 + · · ·+ bn

a1 + · · ·+ an = b1 + · · ·+ bn and

∃i, ai < bi, aj = bj∀j > i.

Hence
1 < x1 < x2 < · · · < xn < x2

1 < x1x2 < · · · < x2
n < . . . .
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De�nition 3.1.3 (Reduction with respect to subset). Let us have polynomials
f, g, h ∈ K[X], F ⊆ K[X]. We say that g reduces to h w.r.t. f :
g →f h⇔ ∃s, t ∈ [X] that s has nonzero coe�cient c in g, s = lt(f) · t and

h = g − c

lc(f)
· t · f.

We say that g reduces to h w.r.t. F ⇔ ∃f ∈ F such that g →f h.

De�nition 3.1.4 (Church-Rosser property). The reduction relation → has the
Church�Rosser property if it satis�es

a↔∗ b ⇒ a ↓∗ b.

De�nition 3.1.5 (Gröbner basis). A subset F of K[X] is a Gröbner basis for
< F > if →F has the Church-Rosser property.

This de�nition is more convenient if we want to prove attributes of the Gröbner
bases using attributes of reduction relation. The other point of view is to de�ne
a Grobner basis as following:

De�nition 3.1.6 (Equivalent de�nition). A subset F = {f1, . . . , fk} of K[X] is
a Gröbner basis of ideal I ⊂ K[X] if

< lt(f1), . . . , lt(fk) >=< {lt(f)|f ∈ I} > .

In the following we show the most important attribute of Gröbner basis, which
provide the way how to check if the set is a Gröbner basis of an ideal that
generates.

De�nition 3.1.7 (Critical pairs and S-polynomial). Let us have nonzero poly-
nomials f, g ∈ K[X] and t = lcm(lt(f),lt(g)). Then

cp(f, g) =

(
t− 1

lc(f)
· t

lt(f)
· f, t− 1

lc(g)
· t

lt(g)
· g
)

is the critical pair of f and g. The di�erence of the elements of cp(f, g) is the
S-polynomial S(f, g) of f and g.

Theorem 3.1.8 (Buchberger's criterion). Let F be a subset of K[X].

(i) F is a Gröbner basis if and only if g1 ↓∗F g2 for all critical pairs (g1, g2) of
elements of F .

(ii) F is a Gröbner basis if and only if S(f, g)→∗F 0 for all f, g ∈ F .

Proof. See [Wink96], Theorem 8.3.1.

Buchberger's criterion also suggest an algorithm for constructing the Gröbner
basis. As K[X] is noetherian ring, every ideal I in K[X] has �nite basis. Let B
be a basis of I.

1. For all S-polynomials check if its normal form (w.r.t. B) is zero.

2. All nonzero normal forms add to basis B and check all new S-polynomial.
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If we do this until all S-polynomials reduces to zero, we get the Gröbner basis.
In case we have a Gröbner basis G for an ideal I ⊆ K[X], then for each f ∈ K[X]

f ∈ I ⇔ f →∗G 0.

Now we consider a polynomial module K[X]m,m ∈ N and its canonical basis
{e1, . . . , em}.

According to the Hilbert's Basis Theorem, K[X]m is noetherian module.
Hence every submodule M ⊆ K[X]m has �nite basis. The question is if this
basis can be transform to the Gröbner basis as in case B ⊆ K[X]. We need to
extend few de�nitions.

If we combine total ordering on K[X] with an ordering on canonical basis
{e1, . . . , em} then we get total ordering on K[X]m, i.e. for f, g ∈ K[X]m:

f =
m∑
i=1

fiei, g =
m∑
i=1

giei, where fi, qi ∈ K[X]

and

ef = max{ei|fi 6= 0},
eg = max{ei|gi 6= 0} with respect to ordering on canonical basis.

Then

f ≤T g ⇔ef < eg, or
ef = eg and fef ≤T geg .

This type of ordering is called position over term ordering.
We say that m is monomial in K[X]m if m = tei for some t ∈ [X] and

ei ∈ {e1, . . . , em}. Hence

[X]m = {tei, t ∈ [X], 1 ≤ i ≤ m}.

Then every element f ∈ K[X]m can be written as

f =
m∑
i=1

∑
j

ci,jti,jei =
m∑
i=1

∑
j

ci,jmi,j, ti,j ∈ [X], ci,j ∈ K.

and we de�ne:

• lt(f) := max<{mi,j|ci,j 6= 0},

• lc(f) := ci,j that mi,j =lt(f).

De�nition 3.1.9 (Gröbner basis for submodule). Let M be a submodule of
K[X]m. Then a �nite set of polynomials G = {g1, . . . , gk} ⊂ M is a Gröbner
basis for M if the submodule generated by the leading terms of polynomials in M
is equal to the submodule generated by the leading terms of polynomials in G, i.e.:

< {lt(m)|m ∈M} >=< lt(g1), . . . , lt(gk) > .
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Let B = {f1, . . . , fk} be a basis of a submodule M . If it is not the Gröbner
basis, then there exists a polynomial fk+1 ∈M such that

lt(fk+1) /∈< {lt(m)|m ∈M} > .

We put B1 = B ∪ {fk+1}. Like this, we can create an ascending chain

B = B0 $ B1 $ B2 $ . . .

and a corresponding chain of the submodules generate by the leading terms

< LT(B0) > $ < LT(B1) > $ . . . .

However this chain has to stop at some point, as K[X]m is noetherian module.
Hence for every submodule M exists a Gröbner basis.

Let G = {g1, . . . , qk} be the Gröbner basis of a submodule M . Then

f ∈M ⇔ f →G 0.

De�nition 3.1.10. Let g ∈ K[X]m. Then

lt(f) = mf = tf,ief , lt(g) = mg = tg,ieg

for some tf,i, tg,i ∈ [X]. If ef = eg = e then S-polynomial of f and g is de�ned as

S(f, g) :=
lcm(tf,i, tg,i)

tg,i · lc(g)
g − lcm(tf,i, tg,i)

tf,i · lc(f)
f,

otherwise is S(f, g) = 0.

As in previous case, also now is valid Buchberger's criterion, i.e.:

G is a Gröbner basis⇔ S(f, g)→G 0, ∀f, g ∈ G,

and that give us an intuitive version of Buchberger's algorithm for generating a
Gröbner basis from some regular basis.

3.2 Systematic encoder

In this section we denote by P the polynomial ring in one variable and Pm is free
module with standard basis {e1, . . . , em}.

At �rst we �nd some automorphism of a code, which maps the set of codewords
to itself. We only consider the permutation automorphisms.

Let us have a linear code C that has a nontrivial Abelian group H of auto-
morphisms. We can assume that the group is cyclic and σ is its generator.

Now we consider an action of H on the set of codewords. It divides positions
of codewords to orbits O1, . . . , Om. As H is cyclic, every orbit can be written as

Oi = {ci,j, j = 0, . . . , |Oi|}, where ci,j+1 = σ(ci,j)

and index j is computed modulo |Oi|.
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Let N = Pm/〈(t|Oi| − 1)ei; i = 1, . . . ,m〉. The mapping

Φ : C → N

(ci,j) →
m∑
i=1

|Oi|−1∑
j=0

ci,jt
j

 ei mod 〈(t|Oi| − 1)ei; i = 1, . . . ,m〉

shows us how we can represent the code C as a subset of the quotient module N .
As Φ is linear mapping, Φ(C) is a vector subspace of N . In addition for ci,j ∈ C

tΦ(ci,j) =
m∑
i=1

|Oi|−1∑
j=0

ci,jt
j+1

 ei

j mod |Oi|≡
m∑
i=1

|Oi|−1∑
j=0

ci,j−1t
j

 ei

≡ Φ(σ−1(ci,j)) ∈ Φ(C).

Hence Φ(C) is a P-submodule of N .
Now we consider a submodule M(C) ⊆ Pm that is preimage of Φ(C) under

the mapping

Π : Pm → N

M(C) → Φ(C).

Term module [X]m is divided into two groups with respect to an arbitrary
term ordering < :

• module R(M(C)) generated by the set of leading terms of M(C)

• I(M(C)) = [X]m \R(M(C)).

The elements of I(M(C)) are irreducible with respect to the Gröbner basis of
M(C) and we called them standard terms. The elements of R(M(C)) are called
nonstandard terms. Nonstandard terms correspond to codewords and standard
terms are used to check parity.

The systematic encoder for code C:

1. Input: Gröbner basis G for the module M(C), nonstandard terms mi, in-
formation symbols ci

2.
f :=

∑
cimi,

f := normal form of f with respect to G,
c := f − f.

3. Output: A codeword c.

c = f − f = f − f = 0 ⇒ c ∈ M(C). Therefore c is the codeword of C. f
contains only standard terms and R(M(C))

⋂
I(M(C)) = ∅, hence coe�cients of

nonstandard terms (information symbols) remain unchanged, what means that
the encoder is systematic.

From [Litt09], Theorem 1 follow how to get an automorphism of code C(D,G):
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Theorem 3.2.1. Let X be a non-singular projective curve de�ned over a �nite
�eld Fq. Let σ be an automorphism of the curve X that �xes divisors D and G.
Then σ induces an automorphism of the code C(D,G).

Proof. σ is a regular mapping X → X and it has a regular inverse. Naturally σ
induces an Fq-automorphism Σ of the function �eld F(X ) that maps f ∈ F(X )
into f ◦ σ−1 ∈ F(X ). As G is �xed by σ then Σ maps L(G) to itself. Considering
that (σ−1(P1), . . . , σ−1(Pn) for P1 + · · · + Pn = D is permutation of (P1, . . . , Pn)
(as σ �x D) we get that

(f(P1), . . . , f(Pn))→
(
f(σ−1(P1)), . . . , f(σ−1(Pn))

)
de�ne a permutation of the code C(D,G).

3.3 Berlekamp-Massey-Sakata algorithm

At the beginning of the section we �x some notation:

• ≤T denote a total ordering on Nn,

• ≤P denote a partial ordering on Nn, p ≤P q ⇔ pi ≤ qi∀i{1, . . . , n},

• Σp = {x ∈ Nn;x ≥P p},

• Σq
p = {x ∈ Nn; p ≤P x <T q},

• Γp = {x ∈ Nn;x ≤P p},

• 0 = (0, . . . , 0) ∈ Nn, ei is i-th element of canonical basis of Nn.

De�nition 3.3.1 (n-dimensional array). An in�nite n-dimensional array over a
�eld K is a mapping u from Nn into K. up for p ∈ Nn denotes a partial array of
u and up = (uq), q <T p.

Example 3.3.2. As a term ordering we use graded reverse lexicographical order-
ing. The partial array up of an 2 − d array over Z2 for p = (3, 1) is given by
table:

i\j 0 1 2 3
0 0 1 1 1
1 1 1 0
2 0 0
3 0
4 1

so u(3,1) = (0, 1, 1, 0, 1, 1, 0, 0, 0, 1, 1).

If we have the partial array up of the array u, then we usually want to �nd
characteristic polynomial f =

∑
a∈supp(f) cf,aX

a of up. It is a polynomial that
generate up, i.e.:

ub = − 1

c(f,d)

∑
a∈supp(f)\{d}

c(f,a)ua+b−d
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for each b ∈ Σp
le(f), so

f [u]b =
∑

a∈supp(f)

c(f,a)ua−b+d = 0.

We consider f as valid characteristic polynomial also for p <T le(f). The set
of all characteristic polynomials (considering all partial arrays up, p ∈ Nn) is an
ideal I(u) of the polynomial ring K[X], the ideal is called characteristic ideal of u.
The goal of Berlekamp-Massey-Sakata (BMS) algorithm is to �nd the set F (p) of
polynomials with minimal leading exponential (with respect to partial ordering)
included in I(up).

Let us assume that we have a �xed array u and its partial array up and a
polynomial f , which is valid till q <T p, i.e. f [u]a = 0, a ∈ Σq

le(f) and f [u]q 6= 0.
At start we want to �nd a way how to generate a polynomial f+ valid in Σq⊕1

lef+ ,
where q ⊕ 1 is the next point of q with respect to the term ordering.

Proposition 3.3.3. Let us have q >T s, a polynomial f ∈ K[X] valid till q and
a polynomial g ∈ K[X] valid till s. If

f [u]q = df , le(f) = d

g[u]s = dg, le(g) = t

r = max(d, q − s+ t), i.e. ri = max(di, qi − si + ti)

Then

f+ = Xr−df − df
dq
Xr−q+s−tg

has le(f+) = r and is valid in Σq⊕1
r .

Proof. As r − d+ d = r >T r − q + s− t+ t = r − q + s we get le(f+) = r.

Xr−df = Xr−d
∑

a∈supp(f)

c(f, a)Xa =
∑

a∈supp(f)

c(f, a)Xa+r−d

Xr−q+s−tg = Xr−q+s−t
∑

a∈supp(g)

c(g, a)Xa =
∑

a∈supp(g)

c(f, a)Xa+r−q+s−t

Thus

f+[u]b =
∑

a∈supp(f)

c(f, a)ua+r−d+b−r −
df
dg

∑
a∈supp(g)

c(g, a)ua+r−q+s−t+b−r

=
∑

a∈supp(f)

c(f, a)ua+b−d −
df
dg

∑
a∈supp(g)

c(g, a)ua+b−q+s−t

= ∗

d ≤P r ⇒ Σq
r ⊆ Σq

d and ∀b ∈ Σq
r we have

q − s+ t ≤P r ≤P b < q ⇒ t ≤P b− q + s < s⇒ b− q + s ∈ Σs
t
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and

∗ =0 for b ∈ Σq
r

=df −
df
dg
dg = 0 for b = q.

Remark. Value df is called a discrepancy of the polynomial f .

Proposition 3.3.3 shows that next to the set of characteristic polynomials it is
su�cient to keep a set of "ex-polynomials", i.e. polynomials that were valid till
s <T q. As we always want to �nd polynomial with minimal leading exponent
we will keep set

G(q) = { ex-polynomials g valid till s <T q, that s− le(g) is maximal } ∪ {0}

and related set
C(q) = {s− le(g)|0 6= g ∈ G(q)} ∪ C∞.

C∞ correspondents to g = 0 and it contains n in�nite elements

(−1,∞, . . . ,∞), . . . , (∞, . . . ,∞,−1).

If s− le(g) is in�nite then ri = qi + 1 and rj = dj, i 6= j.
In the following proposition we describe condition given on the leading expo-

nent of polynomials from F (q ⊕ 1)

Proposition 3.3.4. Let le(f) = d. If f ∈ F (q) and f [u]q 6= 0. Then there does
not exist any f+ ∈ F (q ⊕ 1) with le(f+) ≤P q − d. We say, that q <T p is �rst
point, where f fails to be valid.

Proof. For q = d would be le(f+) ≤P 0 so f+ is constant polynomial and it is
contradiction with minimality of f .

Let d <P q. As f ∈ F (q)

− 1

c(f,d)

∑
a∈supp(f)\{d}

c(f,a)ua+b−d = ub,∀b ∈ Σq
d

− 1

c(f,d)

∑
a∈supp(f)\{d}

c(f,a)ua+q−d 6= uq

and f+ ∈ F (q ⊕ 1), le(f+) = d+

− 1

c(f+,d+)

∑
a∈supp(f+)\{d+}

c(f+,a)ua+b−d+ = ub,∀b ∈ Σq⊕1
d+ .

We assume that d+ ≤P q − d hence

a+ q − d ≥P a+ d+ ≥P d+

a+ q − d ≤P q <T q ⊕ 1

}
⇒ a+ q − d ∈ Σq⊕1

d+ .
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Therefore

− 1

c(f,d)

∑
a∈supp(f)\{d}

c(f,a)ua+q−d

= − 1

c(f,d)

∑
a∈supp(f)\{d}

c(f,a)

− 1

c(f+,d+)

∑
b∈supp(f+)\{d+}

c(f+,b)ub+(a+q−d)−d+


= − 1

c(f+,d+)

∑
b∈supp(f+)\{d+}

c(f+,b)

− 1

c(f,d)

∑
a∈supp(f)\{d}

c(f,a)ua+(b+q−d+)−d


= ∗,

considering

b+ q − d+ ≥P b+ d ≥P d
b+ q − d+ ≤P q

}
⇒ b+ q − d+ ∈ Σq

d.

we get

∗ = − 1

cf+,d+

∑
b∈supp(f+)\{d+}

c(f+,b)ub+q−d+

= uq

and it is a contradiction.

Let us have a set

∆(q) =
⋃

c∈C(q), c is �nite

Γc.

Related to F (q) we have the set D(q) = {le(f), f ∈ F (q)}. According to Propo-
sition 3.3.4 is

∆(q) ∩
(⋃

Σd∈D(q)

)
= ∅.

In fact, ∆(q) and
(⋃

Σd∈D(q)

)
are not only disjoint sets. Union of this sets is the

whole Nn (for proof see [Saka90]). Hence Proposition 3.3.3 gives a way how to
upgrade the polynomials that fail to be valid at some point of the iteration. We
sum up at least naive form of the algorithm.

1. At the start we have to initialize our variables:

• a := 0 (index of elements of up)

• F (0) := {1}, D(0) = {0}
• G(0) := {0}, C(0) = C∞;

2. while ua = 0 and a <T p a := a⊕ 1;

3. using an in�nite element of C(0) in Proposition 3.3.3 we generate n poly-
nomials of form X0+(ai+1)ei ,
F (a⊕ 1) := {X0+(ai+1)ei , 1 ≤ i ≤ n},
D(a⊕ 1) := {(a1 + 1, 0, . . . , 0), (0, a2 + 1, 0, . . . , 0), . . . , (0, . . . , 0, an + 1)},
G(a⊕ 1) := G(0) ∪ {1},
C(a⊕ 1) := C(0) ∪ {a}.
a := a⊕ 1;
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4. while a <T p and F (a)fail = {f ∈ F (a), f [u]a 6= 0} is empty do a := a⊕ 1,;

5. For every f ∈ F (a)fail, le(f) = d is valid one of the options:

(a) a− d ∈ ∆(a). Then f will not bring any new element to ∆(a⊕ 1) so
r = d. To generate a polynomial f+ we use g ∈ G(a) such that related
s− t is greater (with respect to partial ordering) than a− d,
F (a⊕ 1) := F (a) \ {f} ∪ f+, other sets stay unchanged;

(b) a− d /∈ ∆(a) however from Proposition 3.3.4 a− d ∈ ∆(a⊕ 1). Thus
r = max(d, a− c) 6= d, for c ∈ C(a).
By checking every c we generate set R, that contains all possible de-
grees r. Then for every r ∈ R, that there is no r′ ∈ R, such that
r′ <P r and there is no d′ ∈ D(a) \Dfail(a), that d′ ≤P r, we generate
polynomial f+ and upgrade all sets:
F (a⊕ 1) := F (a) \ f ∪ {f+},
D(a⊕ 1) := D(a) \ d ∪ {r},
C(a⊕ 1) := C(a) \ {c ∈ C(a), c ≤ a− d} ∪ {a− d},
G(a⊕ 1) := { polynomials related to elements of C(a⊕ 1)}

a := a⊕ 1, if a <T p go to step 4.

Example 3.3.5. We will generate F ((3, 1)) for array from Example 3.3.2.

(1,0) First nonzero element.
F ((0, 1)) = {y, x2}, D((0, 1)) = {(0, 1), (2, 0)},
G((0, 1)) = {1, 0}, C((0, 1)) = {(1, 0), (−1,∞), (∞,−1)};

1 2

1

2

(0,1) (y)[u](0,1) = u(0,1) 6= 0 and (0, 1)− (0, 1) ∈ ∆((0, 1))
f+ = y + x
F ((2, 0)) = {y + x, x2}, other sets stay unchanged;

(2,0) (x2)[u](2,0) = u(2,0) = 0 3;

(1,1) (y + x)[u](1,1) = u(1,1) + u(2,0) 6= 0 and (1, 1)− (0, 1) ∈ ∆((1, 1))
f+ = y + x+ 1
F ((0, 2)) = {y + x+ 1, x2}, other sets stay unchanged;

(0,2) (y + x+ 1)[u](0,2) = u(0,2) + u(1,1) + u(0,1) 6= 0 and (0, 2)− (0, 1) /∈ ∆((0, 2))
R = {(0, 2), (1, 1), (0, 3)},
r1 = (0, 2) and f+

1 = y(y + x+ 1) + y = y2 + xy,
r2 = (1, 1) and f+

2 = x(y + x+ 1) = xy + x2 + x,
F ((3, 0)) = {x2, xy + x2 + x, y2 + xy}, D((3, 0)) = {(2, 0), (1, 1), (0, 2)},
G((3, 0)) = {1, y + x+ 1, 0}, C((3, 0)) = {(1, 0), (0, 1), (−1,∞), (∞,−1)};
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1 2

1

2

(3,0) (x2)[u](3,0) = u(3,0) = 0 3;

(2,1) (x2)[u](2,1) = u(2,1) = 0 3,
(xy + x2 + x)[u](2,1) = u(2,1) + u(3,0) + u(2,0) = 0 3;

(1,2) (y2 + yx)[u](1,2) = u(1,2) + u(2,1) = 0 3,
(xy+x2 +x)[u](1,2) = u(1,2) +u(2,1) +u(1,1) 6= 0 and (1, 2)−(1, 1) ∈ ∆((1, 2)),
f+ = xy + x2 + x,
F ((0, 3)) = {x2, xy + x2 + x+ 1, y2 + xy},other sets stay unchanged;

(0,3) (y2 + yx)[u](0,3) = u(0,3) + u(1,1) = 0 3;

(4,0) (x2)[u](4,0) = u(4,0) 6= 1 and (4, 0)− (2, 0) /∈ ∆((4, 0)),
R = {(3, 0), (4, 0), (5, 0), (2, 1)},
r = (3, 0) and f+ = x · x2 + (y + x+ 1) = x3 + y + x+ 1,
F ((3, 1)) = {xy + x2 + x, y2 + xy, x3 + y + x+ 1},
D((3, 1)) = {(1, 1), (0, 2), (3, 0)},
G((3, 1)) = {1, x2, 0}, C((3, 1)) = {(0, 1), (2, 0), (−1,∞), (∞,−1)};

1 2

1

2

From the construction we see that the minimal polynomial set F (p) could be
a Gröbner basis of ideal I(u), for an in�nite array u. However it do not have to be
true, because if we generate in�nite array from partial array up using polynomials
f1, f2 ∈ F (p) it can happen that element generated by f1 is not equal to element
generated by f2. One of the su�cient conditions was given by Sakata in [Saka91].

Theorem 3.3.6. Let us have a partial array vq. If it holds that for any p ≥T q
and for every pair of distinct leading exponentials d1, d2 ∈ D(q), d1, d2 ≤P p exists
chain of leading exponentials di1 , . . . , dik ≤P p from D(q) that

d1 = di1 , di1 + di2 ≤P p, . . . dik−1
+ dik , dik = d2 ≤P p,

then F (q) is the Gröbner basis of I(u) for some in�nite array u, such that

up = vp, ∀p <T q.
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Proof. We need to prove that for any p ≥ q we generate the same vp by every
f ∈ F (q), le(f) ≤P p. For f1 with le(f1) = d1 is

vp = − 1

c(f1, d1)

∑
a∈supp(f1)\{d1}

c(f1, a)ua+p−d1

and f1 is valid at p. If couple of leading exponentials d1, d2 ∈ D(p) satis�es
d1 + d2 ≤ p then, according to Proposition 3.3.4, both of related polynomials are
valid at p or they both fail at p. So we get f1[v]p = 0 ⇔ fi2 [v]p = 0 ⇔ · · · ⇒
f [v]p = 0∀f ∈ D(q) that le(f) ≤P p. Hence v is properly generated in�nite array
and F (q) ⊆ I(v).

Example 3.3.7. According to Theorem 3.3.6 the minimal set generated in Ex-
ample 3.3.5 is the Gröbner basis for some in�nite array if it works for u(3,1) and
u(2,2).

u(3,1) =

{
u(4,0) + u(3,0) + u(2,0) = 1
u(0,2) + u(1,1) + u(0,1) = 1 3

u(2,2) =

{
u(3,1) = 1

u(3,1) + u(2,1) + u(1,1) = 0 5

However if we set u(2,2) = 0 and we update polynomial y2 + xy we get

F ((1, 3)) = {xy + x2 + x, y2 + xy + x2, x3 + y + x+ 1}.

Then there is an in�nite array v, that v(1,3) = (0, 1, 1, 0, 1, 1, 0, 0, 0, 1, 1, 1, 0) and
F ((1, 3)) is the Gröbner basis of ideal I(v).

3.4 Syndrome decoding

In this section we show how to decode the one-point AG codes up to Feng-Rao
bound. This type of decoding was described by Sakata, Jensen and Hoeholdt
in [SakaJensHøho95]. We will consider plane curves, however the same decoding
algorithm works also for other curves.

Let us have some curve X de�ned over Fq. The curve X is set of points l ∈ F2
q

such that f(l) = 0 for de�ning polynomial f ∈ Fq[x, y]. We consider an algebraic
function �eld F(X ) de�ned as quotient �eld of coordinate ring

Fq[x, y]/(f).

The curve X has k distinct a�ne points and at least one point at in�nity.
One-point code is AG codes C(D,G), where P1, . . . , Pk are places of degree

one corresponding to a�ne points on curve and P∞ is point at in�nity.

D = P1 + · · ·+ Pn, and G = mP∞ for some m ∈ N ∪ {0}.

As P∞ is place corresponding to the point at in�nity, we can consider generators
of L(mP∞) as monomials

Xa ∈ [X ′] that ν∞(Xa) ≥ −m,
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where [X ′] is set of all monomials Xa that Xa ∈ Fq[X]/(f).
Related to valuation we can de�ne order function

O : [X ′]→ Z
Xa → −ν∞(Xa).

Throughout the rest of the section we denote monomials Xa by fa.

De�nition 3.4.1. For an element y ∈ Fnq and monomial fa ∈ [X ′] we de�ne
syndrome of y as

Sa(y) =
n∑
i=1

fa(Pi)yi =
n∑
i=1

P a
i yi

Then from the de�nition of dual code we get

c ∈ C⊥ ⇔ Sa(c) =
n∑
i=1

fa(Pi)ci = 0, fa ∈ L(G).

Assuming that during the transmission there occurred at most bd(C⊥)−1
2
c er-

rors, then for every received word r ∈ Fnq there is a codeword c ∈ C⊥(D,G)
that r = c + e, where e is called error vector. We de�ne an in�nite array u by
ua =

∑n
i=1 eifa(Pi) with the term ordering

fa <T fb ⇔O(fa) < O(fb)

O(fa) = O(fb) and ∃i ∈ {1, . . . , n} that ai < bi; aj = bj∀j < i.

We consider a variety of a characteristic ideal of u and a set of error locators
ε = {Pi|ei 6= 0}. For each f ∈ I(u) with le(f) = d and p ≥P d is

0 =
∑

a∈supp(f)

c(f, a)ua+p−d =
∑

a∈supp(f)

c(f, a)
n∑
i=1

eifa+p−d(Pi)

=
∑

a∈supp(f)

c(f, a)
∑
Pi∈ε

eifa+p−d(Pi)

=
∑
Pi∈ε

eifp−d(Pi)
∑

a∈supp(f)

c(f, a)fa(Pi).

Each Pi ∈ ε correspondents to distinct a�ne point on curve, let say αi = (αi1 , αi2).
Then if we consider |ε| arrays de�ned as v(i)

a = αai , a ∈ Nn, we have |ε| arrays that
are linearly independent. Then

∑
a∈supp(f) c(f, a)fa(Pi) = 0. On the other side,

if we have a polynomial f that
∑

a∈supp(f) c(f, a)fa(Pi) = 0 for Pi ∈ ε and we go
backward through the equations, then we get f ∈ I(u). Hence ε = V (I(u)).

The situation is that we received the word r and we need to �nd a codeword
c ∈ C⊥(D,G) that was sent, so r = c+e, wh(e) = t. The basic idea of decoding is
to get a Gröbner basis of I(u) by BMS algorithm and calculate the error locators.
Then an error vector e is unique solution of

rHT = xHT ,

where H is parity check matrix of C⊥(D,G) and xi = 0,∀i that Pi /∈ ε. To
calculate the Gröbner basis of I(u) we need partial array up for some su�ciently
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large p ∈ Nn. We could use all monomials fa ∈ L(mP∞) to calculate ua as
Sa(r) = Sa(c+ e) = Sa(e) = ua. Such a syndrome is called known syndrome and
ub for b,O(fb) ≤ m are unknown syndromes.

The question is how we could calculate unknown syndromes, i.e.

ua for fa ∈ [X ′] and O(fa) > m.

First, however, we will introduce some notation. Let us have an integer o
and α1, . . . , αk be all monomials in [X ′] with order o. In that case α1, . . . , αk are
dependent, i.e.

αi = cjαj +
∑
O(fa)<o

cafa mod f, (3.1)

where all ca and cj belongs to Fq. The same relations have to be valid for syn-
dromes corresponding to monomials, i.e.

ui ≡ cjuj +
∑
O(fa)<o

caua. (3.2)

We de�ne set Σ′ as

Σ′ = {a ∈ N2 | ∀b ∈ N2,O(fb) = O(fa), a ≤T b}.

Let us have calculated all known syndromes and related minimal polynomial
set F (a) of ua. We want to reduce F (a) in a way that each degree belongs to
Σ′. It is possible according to the relation 3.1. As a consequence in a similar
manner we reduce

⋃
f∈FR(a)(Σle(f)) and ∆(a). Reduced sets will be denoted by

ΣR(a) and ∆R(a). This is a way how to distinguish between syndromes, which
are dependent and those that are independent.

We assume that α1, . . . , αk are all possible leading exponentials of monomials
with order m+ 1. We put α = min<T

{αi, 1 ≤ i ≤ k} and de�ne

K(α) = {p ∈ Σ′|∃i, 1 ≤ i ≤ k that p ≤P αi and αi − p ∈ Σ′)}.

If f ∈ FR(α) is not valid at α then it has to be updated. According to Proposition
3.3.4 this updating could mean that |∆R(α ⊕ 1) \ ∆R(α)| > 0. In fact we will
show that f is valid at α if it would cause the largest change of the ∆-set.

Now, we only consider those f ∈ FR(α) that increase the ∆-set. Hence for each
f with le(f) = d, we check if there is an i such that αi ≥P d and αi− d ∈ ΣR(α).
If it is a case then

Kd = {p ∈ K(α) | p ≤P αi − d} \∆R(α)

is a set of new points in the ∆R(α⊕ 1).
Such f gives a candidate for a value Sα(e). We can compute the candidate

from f [uα] = 0 or from relation 3.2, it depends on αi that we used.
Let s1, . . . , sl be all candidates given by FR(α). We say that si has x votes if

x =
∑
|Kd|, where sumation goes throught such f that give si as candidate.

For f ∈ FR(α) that α − le(f) ∈ ∆(α) we say that f gives candidate with zero
votes.
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Theorem 3.4.2. Suppose that the number of errors t that occurred during the
transmission satis�es

t ≤ bdFR − 1

2
c,

where
dFR = min

a∈Σ′, O(fa)>m
|K(a)|.

Then the syndrome uα is equal to the candidate with the biggest number of votes.

dFR is Feng-Rao distance. It is lower bound for minimum distance of code,
which could be better than Goppa distance. It satisfy

d ≥ dFR ≥ dG and dFR = dG if m ≥ 4g − 2,

where g is genus of curve X . To show, that de�nition of dFR does not depend
on speci�c received word, we use proof from [SakaJensHøho95]. Before that we
de�ne nongap:

A number s is a nongap for P∞ ⇔ L(sP∞) 6= L((s− 1)P∞).

Then
dFR = min

r>m
|{s is a nongap |∃ nongap t : s+ t = r}|.

Consequence of previous discussion is, that we have to modify BMS algorithm
in a way, that all points of the same order are treated simultaneously.

If we can prove Theorem 3.4.2 we can compute the elements of the in�nite
array u corresponding to the order m + 1 and then, analogously, generate the
elements corresponding to the orders m + 2,m + 3, . . . . If we have all unknown
syndromes ua, fa ∈ [X ′], then related set of minimal polynomials is the Gröbner
basis of I(u) and we can compute error positions.

Before we can prove Theorem 3.4.2, we need to show that the size of ∆-set is
always less or equal than t and that

v ≥ |K(α)| − 2|∆R(α)|,

where v is amount of all votes, i.e. v = | ∪Kd|.

1. Consider polynomial ring Fq[X] and ideal I(u). Then

dimFq(Fq[X]/I(u)) = t

as |V (I(u))| = t and equivalence class [f ], for a polynomial with leading
exponential in the ∆-set, is nonzero. Inequality follow from the fact, that
the elements of ∆-set are independent.

2. Consider
p ∈ K(α) \ ((∪Kd) ∪∆R(α)) .

Then ∃!i that p ≤P αi and αi − p ∈ ∆R(α). We get the injective mapping
from K(α) \ ((∪Kd) ∪∆R(α)) into ∆R(α). Thus from linear algebra is

0 ≥ |K(α)| − (| ∪Kd|+ |∆R(α)|)− |∆R(α)|.
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Finally we have all tools to prove Theorem 3.4.2:

Proof. If uα is di�erent from each candidate, than every polynomial f ∈ FR(α)
with the leading exponential d such that αj − d ∈ ΣR(α) fails to be valid at α
and then

|∆R(α⊕ 1)| ≥ |∆R(α)|+ | ∪Kd| ≥ |K(α)| − |∆R(α)| ≥ dFR − t > t.

So one of the candidates is right value for the syndrome uα.
Let T be amount of votes for a right candidate and W amount of votes for the
wrong candidates. We get

t ≥ ∆R(α⊕ 1) ≥ ∆R(α) +W ⇒ W <
1

2
|W + T |

and so W < T . Hence the right candidate is really the candidate with the largest
amount of votes.

Finally the decoding algorithm is:

1. Calculate the syndromes ua, O(fa) ≤ m;

2. by BMS algorithm �nd set of minimal polynomials of partial array ua;

3. if it is necessary, reduce set of minimal polynomials (so the orders of leading
terms belong to Σ′);

4. �nd syndromes up to the pole order m + 2g + 2 by Theorem 3.4.2 and
relation 3.2 and upgrade the set of minimal polynomials;

5. calculate common zeros of minimal polynomials;

6. calculate error values.

44



4. Hermitian Codes

In the last chapter we present speci�c class of AG codes and we show how to
encode and decode those codes by the methods described in previous chapter.
The codes that we are going to discuss are codes de�ne by Hermitian curve

X : yq + y − xq+1 = 0

over �nite �eld Fq2 . Let us sum up some knowledge from [Stic09] about algebraic
function �eld F(X ).

The genus of F(X ) is

g =
q(q − 1)

2
.

As equation
yq + y − αq+1

has for every α ∈ Fq2 exactly q distinct solutions, there is q3 a�ne rational points
on curve X . Hence there is q3 + 1 places of degree one in F(X ) (the a�ne points
Pα,β and the point at in�nity P∞).

Hermitian codes are one-point codes and we de�ne them as:

HCmq = C(D,G),

where

D =
∑

βq+β−αq+1=0

Pα,β and

G = m · P∞, for some m ∈ Z.

In fact we have some additional conditions on integer m. If m < 0 then HCmq = ∅
and in case m > q3 + q2 − q − 2 is HCmq = Fq

3

q2 . Hence we take only

0 ≤ m ≤ q3 + q2 − q − 2.

To introduce dual codes of Hermitians codes we consider Weil di�erencial

ω =
d(xq

2 − x)

xq2 − x
=
−dx
xq2 − x

.

As xq
2−x =

∑
α∈Fq2

(x−α) we get that it is a prime element for every Pα,β. Now
we go back to curve X and its de�ning equation

yq + y − xq+1 = 0.

If we want to transform equation to projective plane, we put y = Y
Z
, x = X

Z
. Then

we get
ZY q + ZqY −Xq+1 = 0

and we see that Hermitian curve has only one point at in�nity P∞ = (0 : 1 : 0).
As

∂(Z + Zq −Xq+1)

Z
= 1 + qZq−1 = 1 and

∂(Z + Zq −Xq+1)

X
= −(q + 1)Xq = −Xq,
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Figure 4.1: A�ne points on H2 over F2

then ν∞(X) = 1, ν∞(Z) = q + 1 and so ν∞(x) = −q. Finally we can express
principal divisor of xq

2
+ x as

(xq
2 − x) =

∑
Pα,β + ν∞x

q2 − xP∞ = D − q3P∞.

Therefore (according to remark below de�nition 1.2.7) canonical divisor (ω) is

(ω) = (q2 − q − 2)P∞ −D + q3P∞

and by Proposition 2.2.8 is

(HCmq )⊥ = HCq3+q2−q−2−m
q .

4.1 Example of encoding

With q = 2 we get �nite �eld F4 with primitive element α and α2 + α + 1 ≡ 0.
Hermitian curve H2 de�ned by

y2 + y − x3 = 0

has 8 a�ne points (ai, bi) on H2 over F4, see Figure 4.1.
The projective equation of H2 is

ZY 2 + Z2Y −X3 = 0

that has 9 rational points-(ai : bi : 1), 1 ≤ i ≤ 8 and one point at in�nity (0 : 1 : 0).
Then we construct an HC4

2 code where

D =
8∑
i=1

Pai,bi and

G = 4P∞.

According to Theorem 2.2.4 is the length of code equal to 8, the dimension is 4
and the minimum distance d(C) ≥ 4.

46



We consider cyclic group of automorphisms with generator

σ : (X, Y, Z)→ (αX, Y, Z).

We see, from Figure 4.1, that it is a permutation on rational points and that it
�xes divisors D and G. By Theorem 3.2.1 σ induces an automorphism of the
code HC4

2.
σ permutes points (ai : bi : 1), 1 ≤ i ≤ 9 into four orbits:

O1 ={(0 : 0 : 1)},
O2 ={(0 : 1 : 1)},
O3 ={(1 : α : 1), (α : α : 1), (α + 1 : α : 1)},
O4 ={(1 : α + 1 : 1), (α : α + 1 : 1), (α + 1 : α + 1 : 1)}.

To create the generator matrix M we use functions with di�erent orders (so
they are independent)

1, X/Z, Y/Z, (X/Z)2 ∈ L(4P∞).

Then the generator matrix of code is (with respect to order of points given by
orbits)

M =


1 1 1 1 1 1 1 1
0 0 1 α α + 1 1 α α + 1
0 1 α α α α + 1 α + 1 α + 1
0 0 1 α + 1 α 1 α + 1 α


Let

f1 = (1, 1, 1 + t+ t2, 1 + t+ t2),

f2 = (0, 0, 1 + α · t+ (α + 1) · t2, 1 + α · t+ (α + 1) · t2),

f3 = (0, 1, α + α · t+ α · t2, (α + 1) · (1 + t+ t2)),

f4 = (0, 0, 1 + (α + 1) · t+ α · t2, 1 + (α + 1) · t+ α · t2),

f5 = (1 + t, 0, 0, 0),

f6 = (0, 1 + t, 0, 0),

f7 = (0, 0, 1 + t3, 0),

f8 = (0, 0, 0, 1 + t3).

The mapping Φ from Section 3.2 create submodule

< f1, f2, f3, f4 >,

that represent code as a subset of the quotient module

F2[t]4/ < f5, f6, f7, f8 > .

For the systematic encoder we need Gröbner basis of preimage Φ(C) under the
mapping Π from Section 3.2, hence Gröbner basis of

< {f1, f2, f3, f4, f5, f6, f7, f8} > .
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Using position over term ordering we get Gröbner basis

g1 = (1, 1, 1 + t+ t2, 1 + t+ t2),

g2 = (0, 1, α + α · t+ α · t2, (α + 1)(1 + t+ t2)),

g3 = (0, 0, 1 + t, 1 + t),

g4 = (0, 0, 0, 1 + t3).

As leading terms determinate the information positions, we see that the in-
formation positions are e1, e2, te3 and t2e3. For example if we want to encode
(α, α + 1, 1, α) we set

w = (α, α + 1, t+ αt2, 0),

we reduce w by g1, g2 and g3 and get normal form

(0, 0, α + 1, α + (α + 1)t2).

The corresponding codeword is

c = (α, α + 1, α + 1, 1, α, α, 0, α + 1).

4.2 Example of decoding

Now, let us have q = 4 and we consider an a�ne equation of Hermitian curve H4

y4 + y − x5 = 0

We can take code HC49
4 , which has the length of codeword 64 (See Table

4.1, where a is a primitive element of F16), the dimension 44 and the bound for
minimum distance 15. We can consider received words with 7 errors. At �rst we
have to calculate all known syndromes. The dual code of HC49

4 is HC25
4 hence we

consider monomials with order less or equal than 25.
Before we can consider any codeword we need to know relation between the

positions of codeword and a�ne points, i.e. order in which we evaluate a�ne
points. We use ordering denoted by Table 4.1.

Let us have received word

r = (0, 0, 0, 0, 1, 1, a, 1, a3 + a+ 1, a3 + a+ 1, a3 + a+ 1, a3 + a+ 1, a3 + 1,

a3 + 1, a3 + 1, a3 + 1, a3 + a, a3 + a2, a3 + a2, a3 + a2, a3 + a2 + 1,

a3 + a2 + 1, a3 + a2 + 1, a3 + a2 + 1, a2 + a, a2 + a, a3 + a, a2 + a,

a3 + a2 + a+ 1, a3 + a2 + a+ 1, a3 + a2 + a+ 1, a3 + a2 + a+ 1, a+ 1,

a+ 1, a+ 1, a+ 1, a2 + 1, a3 + a2 + a, a3 + a2 + a, a3 + a2 + a, a3, a3, a3,

a3, a2 + a+ 1, a2 + a+ 1, a, a2 + a+ 1, a2, a2, a2, a2, a3 + a, a3 + a,

a3 + a, a3 + a, a3, a, a, a, a2 + 1, a2 + 1, a2 + 1, a),

which has seven errors.
Table 4.2 consists of all known syndromes.
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(0, 0) (0, 1) (1, a)
(a3, a) (a3 + a, a) (a3 + a2, a)
(a3 + a2 + a+ 1, a) (1, a+ 1) (a3, a+ 1)
(a3 + a, a+ 1) (a3 + a2, a+ 1) (a3 + a2 + a+ 1, a+ 1)
(1, a2) (a3, a2) (a3 + a, a2)
(a3 + a2, a2) (a3 + a2 + a+ 1, a2) (1, a2 + 1)
(a3, a2 + 1) (a3 + a, a2 + 1) (a3 + a2, a2 + 1)
(a3 + a2 + a+ 1, a2 + 1) (0, a2 + a) (0, a2 + a+ 1)
(a2, a3) (a2 + 1, a3) (a2 + a, a3)
(a3 + 1, a3) (a3 + a2 + a, a3) (a2, a3 + 1)
(a2 + 1, a3 + 1) (a2 + a, a3 + 1) (a3 + 1, a3 + 1)
(a3 + a2 + a, a3 + 1) (a, a3 + a) (a+ 1, a3 + a)
(a2 + a+ 1, a3 + a) (a3 + a+ 1, a3 + a) (a3 + a2 + 1, a3 + a)
(a, a3 + a2) (a+ 1, a3 + a2) (a2 + a+ 1, a3 + a2)
(a3 + a+ 1, a3 + a2) (a3 + a2 + 1, a3 + a2) (a, a3 + a+ 1)
(a+ 1, a3 + a+ 1) (a2 + a+ 1, a3 + a+ 1) (a3 + a+ 1, a3 + a+ 1)
(a3 + a2 + 1, a3 + a+ 1) (a2, a3 + a2 + a) (a2 + 1, a3 + a2 + a)
(a2 + a, a3 + a2 + a) (a3 + 1, a3 + a2 + a) (a3 + a2 + a, a3 + a2 + a)
(a, a3 + a2 + 1) (a+ 1, a3 + a2 + 1) (a2 + a+ 1, a3 + a2 + 1)
(a3 + a+ 1, a3 + a2 + 1) (a3 + a2 + 1, a3 + a2 + 1) (a2, a3 + a2 + a+ 1)
(a2 + 1, a3 + a2 + a+ 1) (a2 + a, a3 + a2 + a+ 1) (a3 + 1, a3 + a2 + a+ 1)
(a3 + a2 + a, a3 + a2 + a+ 1)

Table 4.1: The a�ne points of H4

i\j 0 1 2 3 4 5
0 a3 + a a3 + 1 a3 + a2 + a+ 1 a3 a3 a+ 1
1 0 a2 + 1 a2 + a a3 1
2 a2 a2 + a+ 1 a2 + a 0
3 a a3 + a2 + 1 a3 + a2 + a
4 a2 + 1 a2 + 1
5 1 a3 + a2

6 a2

Table 4.2: Known syndromes

In the following table are all iteration of BMS algorithm on partial array u(4,2).
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a F (a⊕ 1)

(0,0)
x
y

(1,0)
x
y

(0,1)
x
y + a2 + a

(2,0)
x2 + a2 + 1
y + a2 + a

(1,1)
x2 + a2 + 1
y + (a3 + a2)x+ a+ a2

(0,2)
x2 + a2 + 1
xy + (a3 + a2)x2 + (a2 + a)x+ xy
y2 + (a3 + a2)xy + (a2 + a) y + a3 + 1

(3,0)
x2 + (a3 + 1)x+ a2 + 1
xy + (a3 + a2)x2 + (a2 + a)x+ xy
y2 + (a3 + a2)xy + (a2 + a) y + a3 + 1

(2,1)
x2 + a2y + (a3 + a2)x+ a3 + a2 + a
xy + (a3 + a2)x2 + (a+ 1)x
y2 + (a3 + a2)xy + (a2 + a) y + a3 + 1

(1,2)
x2 + a2y + (a3 + a2)x+ a3 + a2 + a
xy + (a3 + a2)x2 + (a3 + 1) y + (a2 + 1)x+ a+ 1
y2 + (a3 + a2)xy + (a2 + a) y + (a3 + a2 + a+ 1)x+ a3 + 1

(0,3)
x2 + a2y + (a3 + a2)x+ a3 + a2 + a
xy + (a3 + a2)x2 + (a3 + 1) y + (a2 + 1)x+ a+ 1
y2 + (a3 + a2)xy + (a3 + a) y + a2 + a+ 1

(4,0)
x3 + a2xy + (a3 + a2)x2 + (a3 + a2 + 1)x
xy + (a3 + a2)x2 + (a3 + 1) y + (a2 + 1)x+ a+ 1
y2 + (a3 + a2)xy + (a3 + a) y + a2 + a+ 1

(3,1)

x3 + (a3 + a2)x2 + a2xy + (a2 + a+ 1) y
+ (a3 + a2 + a+ 1)x+ 1

xy + (a+ 1)x2 + (a3 + a2 + 1)x+ a2 + a
y2 + (a3 + a2)xy + (a3 + a) y + a2 + a+ 1

(2,2)

x3 + (a3 + a2)x2 + a2xy + (a2 + a+ 1) y
+ (a3 + a2 + a+ 1)x+ 1

x2y + (a+ 1)x3 + (a3 + a2 + 1)x2 + ay + (a3 + a2 + 1)x
+a3 + a2

y2 + (a3 + a2)xy + (a2 + 1)x2 + (a3 + a2 + 1) y
+ (a3 + 1)x+ a2

(1,3)

x3 + (a3 + a2)x2 + a2xy + (a2 + a+ 1) y
+ (a3 + a2 + a+ 1)x+ 1

x2y + (a+ 1)x3 + (a3 + a2 + 1)x2 + ay + (a3 + a2 + 1)x
+a3 + a2

y2 + a2xy + (a3 + a2 + a)x2 + (a3 + a2 + 1) y
+ (a3 + a+ 1)x+ 1
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(0,4)

x3 + (a3 + a2)x2 + a2xy + (a2 + a+ 1) y
+ (a3 + a2 + a+ 1)x+ 1

x2y + (a+ 1)x3 + (a3 + a2 + 1)x2 + ay + (a3 + a2 + 1)x
+a3 + a2

xy2 + a2x2y + (a3 + a2 + a)x3 + (a3 + a2 + 1)xy
+ (a3 + a+ 1)x2 + x

y3 + a2xy2 + (a3 + a2 + a)x2y + (a3 + a2 + 1) y2

+ (a3 + a+ 1)xy + (a3 + 1) y + (a3 + a)x+ a2 + 1

(5,0)

x3 + a2xy + (a2 + 1)x2 + (a2 + 1) y + (a3 + 1)x+ a2 + a
x2y + (a+ 1)x3 + (a3 + a2 + 1)x2 + ay + (a3 + a2 + 1)x

+a3 + a2

xy2 + a2x2y + (a3 + a2 + a)x3 + (a3 + a2 + 1)xy
+ (a3 + a+ 1)x2 + x

y3 + a2xy2 + (a3 + a2 + a)x2y + (a3 + a2 + 1) y2

+ (a3 + a+ 1)xy + (a3 + 1) y + (a3 + a)x+ a2 + 1

(4,1)

x3 + (a3 + a2 + a)xy + a3x2 + (a2 + 1) y + a2 + ax
+a3 + a+ 1

x2y + (a+ 1)x3 + ax2 + (a3 + a+ 1) y + (a2 + 1)x+ a3 + 1
xy2 + a2x2y + (a3 + a2 + a)x3 + (a3 + a2 + 1)xy

+ (a3 + a+ 1)x2 + x
y3 + a2xy2 + (a3 + a2 + a)x2y + (a3 + a2 + 1) y2

+ (a3 + a+ 1)xy + (a3 + 1) y + (a3 + a)x+ a2 + 1

(3,2)

x3 + (a3 + a2 + 1) y2 + (a3 + a2 + a+ 1)xy
+ax2 + (a3 + a+ 1) y + a2x+ a

x2y + (a+ 1)x3 + (a2 + 1)xy + (a3 + a2 + 1)x2

+ (a3 + a+ 1) y + (a3 + 1)x+ a2

xy2 + a2x2y + (a3 + a2 + a)x3 + (a3 + a2 + 1)xy
+(a+ 1)x2 + (a2 + a) y + (a3 + a+ 1)x+ a3 + 1

y3 + a2xy2 + (a3 + a2 + a)x2y + (a3 + a2 + 1) y2

+ (a3 + a+ 1)xy + (a3 + 1) y + (a3 + a)x+ a2 + 1

(2,3)

x3 + (a3 + a2 + 1) y2 + (a3 + a2 + a+ 1)xy
+ax2 + (a3 + a+ 1) y + a2x+ a

x2y + (a+ 1)x3 + (a3 + a2 + 1) y2 + a2xy + a3 + (a2 + a+ 1)x2

+ (a2 + 1) y + (a3 + a2 + a+ 1)x+ 1
xy2 + a2x2y + (a3 + a2 + a)x3 + (a3 + a2)xy

+ (a2 + a) y + (a2 + a)x+ a3 + a2 + a+ 1
y3 + a2xy2 + (a3 + a2 + a)x2y + (a3 + a2 + 1) y2

+ (a3 + a+ 1)xy + a3x2 + (a3 + a2 + a+ 1) y + a3 + a2

(1,4)

x3 + (a3 + a2 + 1) y2 + (a3 + a2 + a+ 1)xy
+ax2 + (a3 + a+ 1) y + a2x+ a

x2y + (a+ 1)x3 + (a3 + a2 + 1) y2 + a2xy + a3 + (a2 + a+ 1)x2

+ (a2 + 1) y + (a3 + a2 + a+ 1)x+ 1
xy2 + a2x2y + (a3 + a2 + a)x3 + (a3 + a+ 1) y2

+ (a2 + a)xy + a3x2 + (a3 + a2 + a+ 1)x+ a2

y3 + a2xy2 + (a3 + a2 + a)x2y + (a3 + a2 + 1) y2 + xy
+ (a2 + 1)x2 + (a3 + a2 + a+ 1) y + (a3 + a+ 1)x+ a2 + 1

51



(6,0)

x4 + (a3 + a2 + a+ 1)x2y + (a3 + a2 + 1)xy2 + ax3

+ (a3 + a+ 1)xy + a3x2 + (a2 + 1) y + (a3 + a2 + 1)x+ a2

x2y + (a+ 1)x3 + (a3 + a2 + 1) y2 + a2xy + a3 + (a2 + a+ 1)x2

+ (a2 + 1) y + (a3 + a2 + a+ 1)x+ 1
xy2 + a2x2y + (a3 + a2 + a)x3 + (a3 + a+ 1) y2

+ (a2 + a)xy + a3x2 + (a3 + a2 + a+ 1)x+ a2

y3 + a2xy2 + (a3 + a2 + a)x2y + (a3 + a2 + 1) y2 + xy
+ (a2 + 1)x2 + (a3 + a2 + a+ 1) y + (a3 + a+ 1)x+ a2 + 1

(5,0)

x4 + (a3 + a2 + a+ 1)x2y + (a3 + a2 + 1)xy2 + ax3

+ (a3 + a+ 1)xy + a3x2 + (a2 + 1) y + (a3 + a2 + 1)x+ a2

x2y + (a+ 1)x3 + (a3 + a2 + 1) y2 + a2xy + a3 + (a2 + a+ 1)x2

+ (a2 + 1) y + (a3 + a2 + a+ 1)x+ 1
xy2 + a2x2y + (a3 + a2 + a)x3 + (a3 + a+ 1) y2

+ (a2 + a)xy + a3x2 + (a3 + a2 + a+ 1)x+ a2

y3 + a2xy2 + (a3 + a2 + a)x2y + (a2 + a) y2 + (a3 + a+ 1)xy
+ (a3 + a2 + 1)x2 + (a3 + 1) y + ax+ a3 + a2 + a

(5,1)

x4 + (a3 + a2 + 1)xy2 + (a3 + a2 + a+ 1)x2y
+ax3 + (a2 + a+ 1)xy + (a3 + a2 + a+ 1)x2 + (a2 + 1) y
+ (a3 + a2 + a)x+ a3 + a

x2y + (a3 + a+ 1)x3 + (a3 + a2 + a+ 1) y2 + (a2 + 1)xy
+a2x2 + ay + (a3 + 1)x+ a3 + a

xy2 + a2x2y + (a3 + a2 + a)x3 + (a3 + a+ 1) y2

+ (a2 + a)xy + a3x2 + (a3 + a2 + a+ 1)x+ a2

y3 + a2xy2 + (a3 + a2 + a)x2y + (a2 + a) y2 + (a3 + a+ 1)xy
+ (a3 + a2 + 1)x2 + (a3 + 1) y + ax+ a3 + a2 + a

We run algorithm from (0, 0) to (5, 1) and we get the set of minimal poly-
nomials for array of known syndromes. We denote the elements of F ((4, 2)) by
f40, f21, f12 and f03, with respect to the leading exponentials. To be complete we
mention ex-polynomials related to generators of the ∆-set, i.e. (3, 0), (1, 1), (0, 2)
and their discrepancies:

g30(x, y) =x3 +
(
a3 + a2 + 1

)
y2 +

(
a3 + a2 + a+ 1

)
xy + ax2 +

(
a3 + a+ 1

)
y

+ a2x+ a

dg30 =a3 + a2 + a+ 1;

g11(x, y) =xy + (a+ 1)x2 +
(
a3 + a2 + 1

)
x+ a2 + a

dg11 =a3 + a;

g02(x, y) =y2 + a2xy +
(
a3 + a2 + a

)
x2 +

(
a3 + a2 + 1

)
y +

(
a3 + a+ 1

)
x+ 1

dg02 =a3 + a2 + a.

Now we can calculate unknown syndromes:

• order 26:

u4,2 =


a3 + a+ 1 by f40,
a3 + 1 by f21,
a3 + a+ 1 by f12.
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As the change of f40 and f12 would not cause change of ∆-set, their can-
didates have zero votes, however the change of f21 would increase size of
∆-set. Hence a3 + a has one vote and it is the right candidate. We set

u(4,2) := a3 + 1

and we update f40 and f12:

f+
40 :=f40 +

df40
dg02
· g02 = x4 +

(
a3 + a2 + 1

)
xy2 +

(
a3 + a2 + a+ 1

)
x2y

+ ax3 +
(
a2 + a

)
y2 +

(
a3 + a2

)
xy +

(
a3 + a2 + 1

)
x2

+
(
a3 + a2 + 1

)
y + x+ a3 + a2,

f+
12 :=f12 +

df12
dg30
· g30 = xy2 + a2x2y +

(
a3 + a2 + 1

)
x3

+
(
a3 + a2 + a+ 1

)
y2 + a2xy +

(
a3 + a2 + a

)
x2

+
(
a3 + a2 + a

)
y + (a+ 1)x+ a.

• order 27:

u(3,3) =


a2 + a+ 1 by f21,
a2 + a+ 1 by f+

12,
a by f03.

a has zero votes and a2 + a+ 1 has two votes, hence we set

u(3,3) := a2 + a+ 1

and we update polynomial f03:

f+
03 :=y3 + a2xy2 +

(
a3 + a2 + a

)
x2y +

(
a3 + a2 + a

)
x3 +

(
a3 + a2

)
y2

+
(
a3 + a2 + a

)
xy + ax2 + y +

(
a3 + a2 + a+ 1

)
x+ 1.

• order 28:

u(2,4) =


a3 + a+ 1 by f21

a3 + a+ 1 by f+
12

a3 + a+ 1 by f+
03

u(7,0) = a3 + 1 by f+
40.

The candidate for u(2,4) has three votes, on the other side the candidate for
u(7,0) has zero votes. Hence we set

u(2,3) := a3 + a+ 1

and we calculate u(7,0) as depend syndrome:

x7 ≡ x2y4 + x2y ⇒ u(7,0) := u(2,4) + u(2,1) = a2 + a3.

Update of f+
40 :

f++
40 :=x4 +

(
a3 + a2 + 1

)
xy2 +

(
a3 + a2 + a+ 1

)
x2y +

(
a3 + a2

)
x3

+
(
a3 + a2

)
y2 +

(
a3 + 1

)
xy + ax2 +

(
a2 + 1

)
y +

(
a3 + a2

)
x+ a+ 1.
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If we consider syndromes corresponding to the pole order 29 or higher, we see
that the change of any polynomial would cause increase of the ∆-set. We know
that r has correctable number of errors (seven) and the size of ∆-set is already
seven. Then the polynomials would not change anymore and {f++

40 , f21, f
+
12, f

+
03}

is Gröbner basis of I(u). The common zeros of f++
40 , f21, f

+
12, f

+
03 are

{(1, a+ 1), (a3, a), (a2 + 1, a3), (a2 + a, a3 + a2 + a+ 1), (a2 + a+ 1, a3 + a),

(a3 + 1, a3 + 1), (a3 + a2 + 1, a3 + a2)}.

Considering order of a�ne points the set of common zeros gives error positions

e7, e17, e27, e37, e47, e57 and e64.

By solving equation

r ·HT = x ·HT , xj = 0 for j /∈ {7, 17, 27, 37, 47, 57, 64},

where H is parity check matrix of HC49
4 we get error vector

e = (0, 0, 0, 0, 0, 0, a+ 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, a2 + a, 0, 0, 0, 0, 0, 0, 0, 0, 0,

a3 + a2, 0, 0, 0, 0, 0, 0, 0, 0, 0, a3 + a+ 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, a2 + 1, 0, 0,

0, 0, 0, 0, 0, 0, 0, a3 + a, 0, 0, 0, 0, 0, 0, a2 + a+ 1)

and codeword

c = r − e = (0, 0, 0, 0, 1, 1, 1, 1, a3 + a+ 1, a3 + a+ 1, a3 + a+ 1,

a3 + a+ 1, a3 + 1, a3 + 1, a3 + 1, a3 + 1, a3 + a2, a3 + a2,

a3 + a2, a3 + a2, a3 + a2 + 1, a3 + a2 + 1, a3 + a2 + 1,

a3 + a2 + 1, a2 + a, a2 + a, a2 + a, a2 + a, a3 + a2 + a+ 1,

a3 + a2 + a+ 1, a3 + a2 + a+ 1, a3 + a2 + a+ 1, a+ 1, a+ 1,

a+ 1, a+ 1, a3 + a2 + a, a3 + a2 + a, a3 + a2 + a, a3 + a2 + a,

a3, a3, a3, a3, a2 + a+ 1, a2 + a+ 1, a2 + a+ 1, a2 + a+ 1,

a2, a2, a2, a2, a3 + a, a3 + a, a3 + a, a3 + a, a, a, a, a,

a2 + 1, a2 + 1, a2 + 1, a2 + 1).

As c is evaluation of polynomial x7 ∈ L(49 · P∞), it is really an element of HC49
4 .
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Conclusion

In this thesis we presented encoding and decoding of algebraic geometry codes.
For this purpose we described extension of Groebner basis and Berlekamp-Massey
algorithm.

We used the way of description that clearly shows right functionality of al-
gorithm. The both algorithms have various modi�cation that are more e�cient
for practical problems. If we use some of these modi�cations it can considerably
improve complexity of encoding and decoding.

The other way to improve complexity of syndrome decoding, is use of dif-
ferent calculation of error values. This method is described for example in
[SakaJensHøho95].

The basic idea of use of majority voting for calculation of unknown syndromes
came from G. L. Feng and T. R. N. Rao. However their algorithm is based on
Gaussian elimination. For Hermitian code of length n this means, that algorithm
by Feng and Rao has complexity O(n3), on the other side algorithm by Sakata
has complexity O(n

7
3 ).
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