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Introduction
A first task of cryptology was to encrypt important messages and hide their con-
tents from enemies or rivals. In the past encrypted messages were sent in a paper-
form. In the last century with an arrival of radio-waves and internet we started
to send messages in electronic-form. But there was a problem in unexpected
errors because cryptographic protocols and techniques are often designed under
the assumption that the communication channels are error-free. This makes an
encryption very difficult sometimes even useless because even a single mistake in
a cipher text causes that the decoded message can be completely different from
the original message. So we found the theory of error-correcting codes which gives
us instruments for correcting the unexpected errors in communication channels
with the cost of enlarging the messages. Naturally we want to keep messages as
short as possible but on the other hand more redundant bits added to message
will allow us to correct more errors. Finding a compromise between these aspects
of sending messages is the main goal of theory of error-correcting codes.

The classical theory of error-correcting codes studies codes over finite fields.
The oldest class of these codes are linear codes which have a structure of vector
space over a field that gives them many useful properties which we will discuss in
Chapter 1. Apart from linear binary codes there exist non-linear binary codes, for
example Kerdock and Preparata codes. Later it has been proven that there exists
no linear code which has more codewords with fixed code length than Kerdock
or Preparata codes. However it has been shown that these codes can be seen
as linear codes over Z4. Even later, application of coding theory to quantum
computer requires to use of other codes over Z4 and Z8.

It became clear that the coding theory should consider studying codes over
rings as well as over fields. In second section of Chapter 1 we will show some
findings in the theory of linear codes over rings, mainly we will describe advan-
tages of Frobenius rings in coding theory. In Chapter 2 we will define graphic
structures called quivers and show how we can construct path algebras over these
quivers. The reason of studying these algebras is discussed as well. Since linear
codes over rings are modules we study modules over path algebras in Chapter 3
and then we focus on the aspects of the codes, like what alphabet we will use, the
bilinear form and the weight function we employ and so on. All these tools are
described in Chapter 4. Then we focus on parameters of these codes, especially
on the number of codewords, in Chapter 5 and then we will prove variations of
important theorems from theory of linear codes over fields in Chapters 6 and 7,
applied to codes defined in this thesis. In the end we will mention when a path
algebra has structure of Frobenius ring and what this fact gives us in Chapter 8.
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1. Error-correcting codes
A trivial way to ensure that a receiver will get a correct message is to send the
message more than once. For example we can send a message by bits, so we keep
sending one bit several times until we are sure that the receiver will choose the
right one. By phrase choose the right one we mean taking a logical majority of
received bits. Simply we take the bit which is obtained the most times. Then
if we sent a bit kth times then receiver will obtain a correct bit when there were
less than bk/2c mistakes in the transmission. This method is called a repetition
code but it is very naive solution to the problem because extension of messages
is enormous.

The theory of error-correcting codes tries to find a compromise between en-
larging message and ensuring the reception of a correct message. The repetition
code is one of so called trivial codes, another trivial code is sending a message
with no change so that the length of message stays the same but a receiver cannot
detect or correct any errors.

The first non-trivial error-correcting code was invented in 1950 by Richard
Hamming. Now we call this code H3 according to a definition of Hamming
codes. This code is a linear code over binary field and we will discuss about his
parameters and meaning of the number 3 later. This is only example.

In the application of the H3 code we divide a message into blocks of length
4 and each block we map to a set of codewords of length 7. After obtaining a
codeword the receiver can correctly decode it to the correct massage if there was
less than two errors in the transmission. The enlargement rate of message is 7

4

instead of 3 if we had used the repetition code to correct one error.

There are many parameters of codes which determine their properties. We
mentioned the length of a code. There are codes with the variable length but
since we will focus on the linear codes we simply define the length as a length of
a codeword which is the same for all codewords. The length of code is denoted
by n.

A related parameter of the length is the code rate which determines how
many sent bits are useful, it is a reciprocal of parameter which we called the
enlargement rate of message. The parameter code rate depends also on a number
of codewords, for example let C be a code over alphabet A of length n and let us
denote k = log|A| |C| then rate of code is k

n
.

Another important parameter we mentioned is how many errors the code
can correct. This value is hidden in a parameter called the minimum Hamming
distance of a code which determines a minimum of number of differences between
two codewords over all pairs of codewords. The minimum Hamming distance of
code is denoted by d. The code with the minimum distance d can correct up to⌊
d−1
2

⌋
errors. This is because of we use the decoding to the nearest codeword.

Remark 1.1. If n = d then the code is repetition code and if d = 1 the code is
trivial.
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1.1 Linear codes over fields

We want to study linear codes over finite rings but we would like to ensure that
such codes will have some useful properties and that the important theorems
from the theory of linear codes over fields will hold. Since we will now focus
on linear codes over fields, note the definition and importance of the dual code,
MacWilliams identity and extension theorem.

For now Fq will denote finite field GF (q), where q = pe of some prime p and
e ∈ N.

Linear codes over field Fq have a structure of vector space over Fq. It means
that the sum of two codewords is a codeword as well. Generally every Fq−linear
combination of codewords over field is a codeword as well. Hence we can find a
basis of the code and construct a generating matrix with elements of basis in rows.
We can now use a term dimension of the code instead of the number of codewords
of a code. The dimension of a code is defined intuitively as the dimension of the
vector space which is equal to the number of elements of a basis and a rank of
the generating matrix.

For linear codes we use the notation of parameters of code [n,k,d]q, where
k is the dimension of a code, n is the length of a code and d is the minimum
distance of code.

Remark 1.2. Let C be an [n,k,d]q-code and A be a generating n× k matrix of
code C then

C =
{
Ax | x ∈ Fk

q

}
.

Since a linear code C is a vector subspace of Fnq we can take an orthogonal
complement of C and we denote it C⊥.

Definition 1.3 (Dual Code). For a linear code C over Fq we define the code C⊥
by

C⊥ =
{
x ∈ Fn

q |〈c, x〉 = 0 ∀ c ∈ C
}
,

where 〈., .〉 is the inner product over Fn
q . The code C⊥ is called dual code to the

code C.

Since the orthogonal complement C⊥ is also a Fq−vector space as well, it can
be seen as a code over Fq. The dimension of a code, dual to the code C with
parameters [n,k,d], is n− k and its length is n as well. A generating matrix of
a dual code C⊥ is called a parity-check matrix of code C. Important property of
duality of the codes over finite fields is C =

(
C⊥
)⊥

for any code C.

Definition 1.4 (Closed Code). We call a code C closed if C = C⊥⊥ =
(
C⊥
)⊥

.

Now we can return to the first error-correcting code - the Hamming code H3.
The parameters of Hamming code Hr for r ≥ 3 are [2r − 1, 2r − r − 1, r], hence
the code H3 has parameters [7, 4, 3]. The generating matrix of H3 is
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M =


1 0 0 0 1 1 0
0 1 0 0 1 0 1
0 0 1 0 0 1 1
0 0 0 1 1 1 1


and parity-check matrix is

P =

 1 0 0 0 1 1 1
0 1 0 1 1 0 1
0 0 1 1 0 1 1


These matrices are determined uniquely up to the permutation and linear com-
binations of rows. The permutation of columns of matrix M gives us only a code
which is equivalent to H3 which will be seen as a consequence of the MacWilliams
Equivalence.

For a better look on a structure of a code, especially some relations between
the codewords, we define a weight function for codes. An elementary example
of weight function, named again after Richard Hamming, is called the Hamming
weight.

Definition 1.5. A function wH : Fq → Z defined by the following prescription

wH(r) =

{
0, for r = 0

1, else.

is called the Hamming weight.

Then the Hamming weight of a codeword is the sum of weights of its coordi-
nates

ωH(c) =
n∑
i=1

wh(ci).

Hence the Hamming weight of the codeword is number of nonzero symbols in the
codeword. In the theory of codes over fields the Hamming weight is the most
used weight function.

The linearity of a code give us easier way to compute a minimal distance of the
code because subtraction of two codewords is codeword as well and from definition
of Hamming weight of codeword it holds d(x, y) = d(x−y, 0) = ωH(x−y), where
function d is the Hamming distance which gives us the number of coordinates
at which the arguments are different. Hence d is equal to the Hamming weight
of the nonzero codeword with the smallest weight. There is also classical result
about minimal distance of the code C.

Theorem 1.6. Let C be a linear code over Fq and M be its parity-check matrix.
Let m ∈ N be a maximal number such that every m columns of M are linearly
independent over Fq. Then minimal distance of the code C is m+ 1.
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Based on Hamming weight we can define Hamming weight enumerator poly-
nomial of a code C

hweC(x) =
∑
c∈C

xn−ωH(c) =
n∑
i=0

Aix
n−i,

where n is the length of a code C and Ai is the number of codewords with
Hamming weight equal to i.

More general polynomial for codes is called complete weight enumerator of a
code C. It is a polynomial in q indeterminates, where q is a number of elements
of a field Fq and it is defined by

cweC(x) =
∑
c∈C

∏
a∈Fq

xwta(c)v ,

where wta(c) = |{i ∈ {1, . . . ,n} | ci = a}|.
The Hamming weight enumerator can be easily obtained from complete weight

enumerator.

Remark 1.7.
hweC(x) = cweC(x, 1, . . . , 1)

if the first indeterminate of cwe corresponds to 0 ∈ Fq.

If we return to our example of the linear code H3 then

hweH3(x) = x7 + 7x4 + 7x3 + 1.

and
cweH3(x, y) = x7 + 7x4y3 + 7x3y4 + y7.

Interesting result on weight enumerators of code C and his dual code C⊥ is
known as MacWilliams identity taken from [7], which gets name after Jessie
MacWilliams.

Theorem 1.8. Let Fq be the finite field of q elements, and let C ≤ Fn
q be a linear

code with Hamming weight enumerator hweC(x, y). Then the Hamming weight
enumerator of C⊥ is given by

hweC⊥(x) =
1

|C|
[1 + (q − 1)x]n hweC

(
1− x

1 + (q − 1)x

)
.

Since any linear code over Fq is closed, it should hold

hweC(x) = hweC⊥⊥(x) =
1

|C|
[1 + (q − 1)x]n hweC⊥

(
1− x

1 + (q − 1)x

)
.

This is reason why we would like to have closed codes over rings as well.

Another important theorem about linear codes over fields is named also after
J. MacWilliams. This theorem gives us a condition under which two codes are
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equivalent. First we need to define when two codes are equivalent. A monomial
transformation of Fnq is a Fq−linear homomorphism f : Fn

q → Fn
q of the form

f(x1, . . . , xn) =
(
u1xσ(1), . . . , unxσ(n)

)
,

where σ is permutation of {1, . . . ,n} and u1, . . . , un are nonzero elements of Fq.
Or equivalently

f (x) = xPD,

for x from Fn
q , where P is a coordinate permutation matrix and D is an invertible

diagonal matrix in Mn (Fq).

Definition 1.9. Two linear codes C, C ′ in Fn
q are equivalent, when there exists a

monomial transformation ϕ : Fn
q → Fn

q taking C to C ′, ϕ(C) = C ′.

Since an inverse and even a composition of monomial transformations are also
monomial transformations, this equivalence is equivalence relation on linear codes
over Fn

q .
The first version of MacWilliams theorem gives us exact condition for the

equivalence of two codes. It is taken from [14].

Theorem 1.10 (MacWilliams equivalence theorem). Two linear codes C, C ′ in
Fn
q are equivalent if and only if there is a Fq−linear isomorphism f : C → C ′

preserving the Hamming weight, ωH (f(c)) = ω(c) for all c ∈ C.

It is easy to see that any monomial transformation preserves the Hamming
weight so the ”only if” part of theorem is clear. The second portion of the
theorem can be proven by second version MacWilliams equivalence theorem. The
number of versions of MacWilliams theorems are only illustrational, it depends
on a publication which of the version is called MacWilliams equivalence theorem.
We need to mention another important mapping to state the theorem.

Definition 1.11. An Fq−linear map preserving the Hamming weight is called
the Hamming isometry.

Now we can formulate the theorem, which is taken from [7, p.226].

Theorem 1.12 (MacWilliams equivalence theorem). If Fq is a finite field and
C ≤ Fn

q a linear code, then every Hamming isometry C → Fn
q can be extended to

a monomial transformation of Fn
q .

1.2 Linear codes over rings

As a linear code over a finite field has the structure of a vector space, a linear
code over a finite ring R is right ( or left ) submodule of V n, where V is some
suitable right ( left ) module of R. We will assume right modules in this section
and in the rest of thesis. We want to define linear codes over ring but we still want
them to have some properties as linear codes over fields. The good properties are
definitely the ones which are the subjects of MacWilliams theorems, conditions
of equivalence of codes and MacWilliams identity. The importance of the first
one is obvious, the second one will help us better see the dual codes.
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We start with a general ring R and we will denote right modules over R as
VR. To define a dual code we need to generalize the inner product which is
used in coding theory over fields. The main reason is that an arbitrary ring is
not necessarily commutative and integer domain. We will start with a general
bilinear form as defined in [9, p.84] and later we restrict to a useful algebraic
structure.

Definition 1.13 (A-valued Bilinear Form). Let R, S be rings, V is a right
R−module , W is a right S−module and A is a right R ⊗ S−module. Then
an A−valued bilinear form on V ⊗W is an R⊗ S−homomorphism

β : VR ⊗Z WS −→ AR⊗S.

In the following, we omit the ⊗ and write simply (x, y).

Definition 1.14. An A−valued bilinear form β : V ×W → A is left non-singular
if the induced homomorphism V → HomS(W,A) is an isomorphism. Similarly,
β is right non-singular if the induced homomorphism W → HomR(V,A) is an
isomorphism. If β is left and right non-singular it is said to be non-singular,
otherwise it is called singular.

In the words of the previous definitions we can define a term of dual group
with respect to β. For C subgroup of V we define dual subgroup by

C⊥ = {x ∈ W | β(c, x) = 0 ∀ c ∈ C}

and similarly for subgroup D of W

D⊥ = {y ∈ V | β(y, d) = 0 ∀ d ∈ D} .

There is a simple lemma about relations of subgroup of V,W and their duals.

Lemma 1.15. Let C be a subgroup of V and let D be subgroup of W . If C ⊂ D⊥

then D ⊂ C⊥.

Proof. Let d be an element of D, then for every x ∈ D⊥ is β(x, d) = 0. Since
C ⊂ D⊥, for every c ∈ C is β(c, d) = 0. According to definition, this gives us,
that d belongs to C⊥. So D ⊂ C⊥.

For subgroup C of V we define the code generated by C to be CR, the
smallest submodule of V containing C. Similarly for D, we define DS the smallest
submodule of W containing D.

Lemma 1.16. Let C be a subgroup of VR, CR the code generated by C and β
the A−valued bilinear form defined in 1.13, then C⊥ = (CR)⊥.

Proof. Directly from the previous lemma we get that (CR)⊥ ⊂ C⊥, since C ⊂
CR. Now let d be an element of C⊥ then for every c ∈ C is β(c, d) = 0. Since A
is R⊗ module, we know that for every r ∈ R 0 = 0(r, 0) = β(c, d)(r, 0) = β(c, d).
We get that for every r ∈ R and for every c ∈ C β(cr, d) = 0, hence c ∈ (CR)⊥.
This gives that C⊥ ⊂ (CR)⊥. Putting it together with the previous result we get
equality of C⊥ and (CR)⊥.
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For any subgroup C ⊂ V , it is easy to see that the dual subgroup C⊥ is a
submodule of W which means that it is also a code. The previous lemma gives
that the code C⊥ can be called dual to CR. So if C is a code then C⊥ is its dual
code.

Now we get the dual codes but we want to be sure that these codes are closed
which means C =

(
C⊥
)⊥

as we mention in the previous section. To get closed
codes over rings we need to restrict on certain classes of rings and suitable bilinear
forms. For any ring R there is a certain injective R−module called minimal
injective cogenerator.

Definition 1.17. Let R be a ring.

• A module MR is cogenerated by a module N if there exists a monomorphism
N →MA, for some set A.

• A module IR is injective if for all R−modules MR, NR, for any injective
homomorphism f : M → N and any homomorphism g : M → I there
exists a homomorphism h : N → I such that g = hf .

• The injective cogenerator Q is minimal if for each injective cogenerator Q′

there exists a monomorphism Q→ Q′.

In general, a ring need not to have a minimal injective cogenerator, for more
about injective cogenerators see [1]. For example U(Z) ∼= Q/Z and for a field K
U(K) ∼= K. From [9, p.88] we obtain that for a ring R and a non-singular bilinear
form β : VR ⊗WR which takes values in U(R), all codes over ring R are closed.

Important class of rings are quasi-Frobenius and Frobenius ring. Before defin-
ing the terms we will mention two important terms of the ring theory. The first
one - the Jacobson radical of a ring R, denoted radR, is defined as intersection of
all maximal ideals of R. As a dual term to the radical is the socle which is defined
for a module MR as the sum of all minimal submodules of M . The duality of the
terms comes from the following fact for an Artinian ring R from [5]

soc(MR) = {m ∈M | m radR = 0} .

Definition 1.18 (Frobenius Ring). A ring R is quasi-Frobenius if R is Artinian
and self-injective, which means that R as an R−module is injective over R.

A ring R is Frobenius if R is quasi-Frobenius and soc(RR) ∼= R/ radR as
right R−modules.

There are many other equivalent definitions but for us it is important their
main property, the self-injectiveness. With using results from [9, p.89], for R a
commutative Quasi-Frobenius ring and β which takes values from R all codes
over R is closed with respect to β. Quasi-Frobenius rings are the largest class of
rings having this property.

From [7, p.228] we get the following lemmas, which confirm that codes over
Frobenius rings are the most appropriate rings for coding theory. First lemma is
analogy of MacWilliams theorem for rings, followed by similar lemma for complete
weight enumerator.
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Lemma 1.19. Let R be a finite Frobenius ring and let C ≤ Rn be a linear code
with Hamming weight enumerator hweC(x). Then the complete weight enumerator
of C⊥ is given as

hweC⊥(x) =
1

|C|
[1 + (|R| − 1)x]n hweC

(
1− x

1 + (|R| − 1)x

)
.

Lemma 1.20. Let R be a finite Frobenius ring and let C ≤ Rn be a linear code
with complete weight enumerator cweC(x). Then the complete weight enumerator
of C⊥ is given as

cweC⊥(x) =
1

|C|
cweC(Mx)

where M is the matrix with entry Mi,j = χ(ij) and χ is a generating character
of R.

For proofs of both lemmas see [15]. We denote R̂ the set of characters of R,
R̂ = Hom (R, (C, ∗)), where (C, ∗) denotes a group of the complex characters.
The element χ is called a right generating character if χ · R = R̂. The character
which is left and right generating is called a generating character. From [5, p.255]
we get the following lemma.

Lemma 1.21. For a finite ring R every left ( or right ) generating character is
generating. Moreover R is Frobenius if and only if R has generating character χ.

More important is the theorem about equivalence of codes which is a gener-
alization of the MacWilliams equivalence theorem. We say that two linear codes
C, C ′ ⊂ Rn are equivalent if there exists a monomial transformation f : Rn → Rn

with f(C) = C ′, where the monomial transformation of Rn is an R−linear homo-
morphism f : Rn → Rn of the form

f(x1, . . . , xn) =
(
u1xσ(1), . . . , unxσ(n)

)
,

where σ is a permutation of {1, . . . ,n} and ui are units of R.

Definition 1.22. A ring R has extension property for Hamming weight if for any
linear code C ≤ Rn and any R−linear homomorphism f : C → Rn preserving the
Hamming weight, f can be extended to a monomial transformation f : Rn → Rn.

Theorem 1.23. Every finite Frobenius ring has the extension property for Ham-
ming weight.

This comes from work of Jay A. Wood who studied Frobenius ring and their
applications. In [13] he made a proof of this and the converse of the previous
theorem.

Theorem 1.24. Every finite ring, that has extension property for Hamming
weight, is Frobenius.

However Hamming weight is not the only weight used in coding theory. Gen-
erally the question whether also other weight functions on finite Frobenius rings
lead to results like MacWilliams equivalence theorem, has not been answered.
But in [7, p.227] we can find at least one result for a homogeneous weight. We
will define and use homogeneous weight in Chapter 4.
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Theorem 1.25. If R is a finite Frobenius ring and C ≤ Rn a linear code, then
every homogeneous isometry ( homomorphism preserving homogeneous weight )
C → Rn can be extended to a monomial transformation of Rn.

Based on the results of this chapter we would like to define codes over Frobe-
nius rings to have an opportunity to compare their properties with the properties
of linear codes over fields.
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2. Quivers and Path Algebras
In this chapter we introduce a class of rings which we will use to construct codes
over them. They are called path algebras. From second chapter of [8] we get that
every finite dimensional algebra over an algebraically closed field corresponds to
a graphic structure, called a quiver. Conversely to every quiver we can con-
struct a finite dimensional K−algebra with identity. This view of K−algebras
through quivers gives us an option to visualize a finitely generated modules over
K−algebra as a set of vector spaces connected with K−linear maps.

2.1 Quivers

We start with definition of the graphic structures - quivers.

Definition 2.1. A quiver Q = (Q0, Q1, s, t) consists of two sets Q0, Q1 and two
maps, s and t.

• Elements of set Q0 are called points.

• Elements of set Q1 are called arrows.

• Maps s, t : Q1 → Q0 associate an arrow α with its source s(α) and its target
t(α).

Instead of writing an arrow α ∈ Q1 with a source a = s(α) and a target
b = t(α) we will use a notation α : a → b. It allows us to write the quiver
(Q0, Q1, s, t) just as (Q0, Q1) or even simplier Q.

In fact a quiver is an oriented graph without any restriction on number of
arrows between two points or number of loops of any point. By the underlying
graph Q of quiver we mean a graph obtained from quiver by ignoring the orien-
tation of the arrows. The opposite quiver Qop is obtained from Q by changing
the orientation of all arrows.

A quiver Q is connected if Q is a connected graph. In this thesis we assume
that every quiver is connected. If Q0 and Q1 are finite sets we call quiver Q finite.

Definition 2.2. Let Q = (Q0, Q1, s, t) be a quiver and a, b ∈ Q0. A path of
length l ≥ 1 with source a and target b is a sequence

(a|α1 . . . αl|b),

where αi ∈ Q1 for all 1 ≤ i ≤ l and a = s(α1), (αi) = s(αi+1) for all 1 ≤ i < l
and (αl) = b.

We denote Ql as a set of all paths of length l in Q. We also associate each
point a ∈ Q0 with a path of length 0 and denote it by

εa = (a||a).

The paths εa are called stationary paths.

A path of length l ≥ 1 is called a cycle if its source and target are the same
and a cycle of length 1 is called a loop. A quiver is acyclic if it does not contain
any cycle.
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Remark 2.3. Let Q be a finite acyclic quiver. Then there is only a finite number
of paths in Q.

Special cases of quiver are quivers whose underlying graph is so called Dynkin
diagrams. For us only the Dynkin diagrams of types A,D,E are interesting.
These types is often denoted as ADE Dynkin diagrams.

Definition 2.4. The Dynkin diagram An, where n is number of points

An

Dynkin diagram Dn:

Dn

and finally E6, E7, E8:

E6

E7

E8

The Dynkin diagram An with oriented edges from left to right is one of the
simplest quiver and so we will use them in examples, but very often we will give
a lead to generalization of situation. Since we will use notation quiver An we will
mean the quiver whose underlying graph is the Dynkin diagram An with arrow
oriented from left to right.

At the end we mention an interesting theorem which says that Dynkin dia-
grams are not only a special case of quivers, they have an important property,
which is mentioned in definition below.

Definition 2.5. A quiver is of finite type if it has only finitely many isomorphism
classes of indecomposable representations.

Theorem 2.6 (Gabriel’s Theorem). A quiver is of finite type if and only if its
underlying graph is one of the ADE Dynkin Diagrams.

The proof of this theorem can be found in [3, p.288-294].
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2.2 Path Algebra

Now we use notation of quivers to define path algebras.

Definition 2.7. Let Q a be quiver. The path algebra KQ is the K−algebra whose
underlying vector space has as its set of basic vectors all paths of length l ≥ 0 in Q
and multiplication defined on two basic vectors (a|α1 . . . αl|b) and (c|β1 . . . βk|d),
as

(a|α1 . . . αl|b)(c|β1 . . . βk|d) = δbc(a|α1 . . . αlβ1 . . . βk|d),

where δbc is the Kronecker delta which is function

δbc(x) =

{
x, for b = c

0, for b 6= c.

Since path algebras have a structure of vector spaces with multiplication we
can view them as non-commutative rings.

Definition 2.8. Let A be a K−algebra. The opposite algebra Aop of A is a algebra
whose underlying set and a vector space structure are identical with A, but the
multiplication is defined by

a · b = ba.

Lemma 2.9. Let Q be quiver. Then KQop ∼= (KQ)op.

Proof. There is a natural bijective map between arrows of Q and Qop which
assigns to each arrow from Q the same arrow in Qop with an opposite orientation.
We can extend this map to the map between paths in Q and Qop so we have the
bijective map between elements of bases of KQop and (KQ)op. Extending this
map by linear combination of basis elements we get the isomorphism between
underlying vector spaces of KQop and (KQ)op.

To prove that this natural isomorphism is compatible with the multiplication
defined for path algebras it will be sufficient to prove this for two paths or even
just for two arrows from basis (KQ)op. Let α, β be arrows inQ. Then α·(KQ)opβ =
β ·KQ α by definition of opposite algebra. In Qop there are images of α and β
by natural bijective map, let us denote them αop and βop then αop ·KQop βop =
(β ·KQ α)op.

Hence the isomorphism constructed by natural map between arrows Q and
Qop is a isomorphism between KQop and (KQ)op.

A K−algebra is finitely generated if the dimension of underlying vector space
over K is finite. From the Lemma 2.3 and Definition 2.7 we easily get the following
statement.

Remark 2.10. Let Q be a quiver. KQ is finite dimensional if and only if Q is
finite and acyclic.

An important role in studying path algebras is played by elements called
idempotents. Idempotents will help us study decompositions of path algebras
and their modules.
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Definition 2.11. Let KQ be a path algebra.

• An element e ∈ KQ is an idempotent if e2 = e.

• Idempotents e, f ∈ KQ are orthogonal if ef = fe = 0.

• An idempotent e is primitive if e cannot be written as a sum e = e1 + e2,
where e1, e2 are nonzero orthogonal idempotents of KQ.

Every algebra contains trivial idempotents 0 and 1. Generally, for algebra A
there holds that if e is a nontrivial idempotent then 1− e is also an idempotent,
even the idempotents e, 1 − e are orthogonal, which gives us a decomposition of
algebra A = Ae⊕ A(1− e).

Let Q be a finite quiver. We can see that identity element of KQ is a sum of
basis vectors corresponding to stationary paths in the quiver Q. An important
set of idempotents of path algebras is described in the following remark taken
from [2, p.46].

Remark 2.12. Let Q be a finite quiver. K−algebra KQ has identity element∑
a∈Q0

εa and set {εa | a ∈ Q0} is a complete set of primitive orthogonal idempo-
tents of KQ.

The complete set of primitive orthogonal idempotents of KQ {ε1, . . . , εn} gen-
erates an indecomposible decomposition of KQKQ as ε1KQ+ . . .+ εnKQ.

Because path algebras have structure of rings it is a natural way to continue
our study with ideals of path algebras.At first we need to recall some terms.

Definition 2.13. Let I be an ideal of ring R. We say that I is nilpotent if there
exists n ≥ 1 that In = 0.

A maximal ideal I of ring R is such that each ideal J , which lies between I
and R, which means I ⊆ J ⊆ R, has to be equal to I or R. The intersection of
all maximal ideals of ring is called the (Jacobsons) radical radR of ring R.

Let Q be a finite quiver. The two-sided ideal of path algebra KQ generated by
arrows of Q is called an arrow ideal of KQ and it is denoted by RQ. Immediately
from definition we get that an arrow ideal RQ contains all linear combination of
basis elements corresponding to paths of length ≥ 1.

Lemma 2.14. Let radR be the radical of R. If I is a two-sided nilpotent ideal
of R, then I ⊂ radR. If the algebra R/I is isomorphic to a product K× . . .×K
of copies K, then I = radR.

The proof of this lemma can be seen in [2, p.5].

Lemma 2.15. Let Q be a finite quiver and let RQ be the arrow ideal of KQ.
Then KQ/RQ is isomorphic to a product of |Q0| copies of K as K−algebra.

The proof of this lemma can be seen in [2, p.49].

Theorem 2.16. For a finite dimensional algebra KQ is radKQ nilpotent and
the arrow ideal RQ = radKQ.
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Proof. The fact, that radKQ is nilpotent, comes from [2, p.8]. Since we assume
that the algebra KQ is finite dimensional, we have from Remark 2.10 that the
quiver Q is acyclic. Hence there exists the largest l ≥ 1 such that Q contains
path of length l. However this implies that any product of l+1 elements of RQ is
zero, so Rl+1

Q = 0. Consequently, the ideal RQ is nilpotent and hence, by Lemma
2.14, R ⊂ radKQ. By Lemma 2.15 KQ/RQ is isomorphic to a product of copies
of K, it follows from Lemma 2.14 that RQ = radKQ.

Now we put our results together in the following theorem:

Theorem 2.17. Let Q be an acyclic finite quiver. The path algebra KQ is finite
dimensional K−algebra with an identity, that has the arrow ideal as radical and
the set {εa | a ∈ Q0} as a complete set of primitive orthogonal idempotents.

By definition of multiplication in path algebra KQ is clear that for a, b ∈ Q0 is
εaKQεb a vector space with basis of all paths whose source is a and whose target
is b. Using this observation we get a decomposition of path algebra KQ

KQ = ⊕a,b∈Q0εaKQεb.

From [2, p.51] we get even more:

Theorem 2.18. Let Q be an acyclic finite quiver with Q0 = {1, . . . , n} such that,
whenever there exists a path from i to j in Q then j ≤ i. The path algebra KQ
is isomorphic to lower triangular matrix algebra

A =


ε1(KQ)ε1, 0 . . . 0
ε2(KQ)ε1, ε2(KQ)ε2 . . . 0

...
...

. . .
...

εn(KQ)ε1, εn(KQ)ε2 . . . εn(KQ)εn


Simple consequence of the previous theorem is that if we restrict ourselves

to finite acyclic quivers with no multiple arrows then KQ is isomorphic to a
subalgebra of the full lower triangular matrix algebra. In case of Dynkin quiver
An the KQ is isomorphic to the complete full lower triangular matrix algebra.

For a cyclic finite quiver Q the path algebra KQ is not generally finitely
generated. For example the quiver Q where |Q0| = 1 and Q1 contains one loop
then the path algebraKQ is isomorphic toK[x] polynomial algebra of one variable
which is not finite dimensional because the basis is {1, x, x2, . . .}. But we show
that for a suitable ideal I of a non-finite dimensional path algebraKQ the quotient
algebra KQ/I is finite dimensional. We focus on these ideals now.

For m ≥ 1 we define

Rm
Q = ⊕l≥mKQl

it is ideal of KQ generated by all paths of length m in Q.
We call an ideal I admissible if there exists m ≥ 2 such that Rm

Q ⊆ I ⊆ R2
Q.

Hence I is admissible if and only if it contains all paths whose length is long
enough. In other words, for each cycle β in Q there exists m ≥ 1 such that
βm ∈ I. In particular, if Q is acyclic then every ideal of KQ contained in R2

Q is
admissible.
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Definition 2.19. For I an admissible ideal of KQ a pair (Q, I) is called a bound
quiver. The quotient algebra KQ/I is said to be algebra of the bound quiver (Q, I)
or simplier a bound quiver algebra.

It will be useful to define an admissible ideal in terms of its generators. We
will call these generators relations.

Definition 2.20. Let Q be a finite quiver. A relation in Q is K−linear combi-
nation of paths of length at least two having the same source and target.

It means a relation ρ is an element of KQ which can written as

ρ =
n∑
i=1

λiwi

where λi ∈ K and wi are paths in Q with the same target and source and their
length is at least two.

At the end of the chapter we state two important theorems about bound
quiver algebras taken from [2].

Theorem 2.21. For a finite quiver Q and an admissible ideal I of KQ the set
{εa + I | a ∈ QO} is a complete set of primitive orthogonal idempotents of the
bound quiver algebra KQ/I and the bound quiver algebra KQ/I is finite dimen-
sional.

Theorem 2.22. Let Q be a finite quiver, let RQ the arrow ideal of KQ and let
I be an admissible ideal of KQ. Then rad(KQ/I) = RQ/I.

Both proofs can be found in [2, p.56-57]
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3. Modules of path algebras
Since codes over rings are submodules of module Rn over ring R we now focus
on modules over path algebras.

3.1 Modules over algebras

In the elementary definition of modules over algebra and describing their proper-
ties we will use notation of right modules. Left modules of algebra A can be seen
as right Aop−modules and conversely, where Aop denote opposite algebra defined
in the previous chapter.

In studying the codes over algebras we need to remember that algebras have
a structure of a vector space over K. Hence modules over algebras also have a
structure of vector space. The multiplication is natural as the following definition
shows.

Definition 3.1 (Modules overK−Algebra). Let A be K−algebra. A right A−module
is (M, ·), where M is a vector space over K and a multiplication · satisfies the
following conditions:

• (m+ n) · a = m · a+ n · a

• m · (a+ b) = m · a+m · b

• m · (ab) = (m · a) · b

• (m · k) · a = m · (ak) = (m · a) · k

∀m,n ∈M , ∀a, b ∈ A, ∀k ∈ K.

Instead of (M, ·) we will write MA for a right module M over K−algebra A.
If we look of the algebra A as a right module we will write AA.

We say that a module M is finite dimensional if the dimension M over K is
finite. Elements m1, . . . ,mn of M generate the A−module MA if any element
m of M can be written as m = m1a1 + . . . ,mnan for some a1, an ∈ A. We will
describe this situation by notation M = m1A + . . . +mnA. The module MA is
finitely generated if it is generated by finite subset of elements of M .

Remark 3.2. A module over a finite dimensional K−algebra is finitely generated
if and only if it is finite dimensional.

The direct sum M of the right A−modules M1, . . . ,Mn is defined to be a mod-
ule with structure of the K−vector space M1⊕ . . .⊕Mn and with an A−module
structure defined by (m1, . . . ,mn)a = (m1a, . . . ,mna) for m1 ∈M1, . . . ,mn ∈Mn

and a ∈ A. The modules M1, . . . ,Mn are called direct summands of M , we will
call them simple summands. Let M be a A−module then we call M indecompos-
able ifM is nonzero module andM has no direct sum decomposition M ∼= N1⊕N2

where N1, N2 are nonzero A−modules.
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Since a right A−module M has the structure of the vector space over K we
can find the dual vector space M∗ consisted of K−linear forms Hom(M,K). We
can endow M∗ with the left A−module structure given by the formula (aφ)(m) =
φ(ma) for a ∈ A, φ ∈ Hom(M,K) and m ∈ M . This assignment of M∗ to M is
called the standardK−duality and denoted byD. As we mention at the beginning
of the chapter a left A−module can be seen as a right Aop module. We get that
D is a functor between category of right A−modules and right Aopmodules. The
quasi-inverse of the duality D is also denoted by D and is defined as above only
with using left A−modules.

Now we recall some important modules in category of modules overK−algebra.
First of them are simple modules.

Definition 3.3. Right A−module M is simple if M is nonzero and any submodule
of M is either zero or M .

For an A−module M we define radM as the intersection of all maximal
submodules of M . Radical of right A−module AA is the radical radA of algebra
A. The radical of algebra is identical to term of the radical of the ring because
submodules of R are ideals. The following lemma will lead us to important
property of radical of modules mentioned in [2, p.14].

Lemma 3.4. Let L and M be submodules of N. If L ⊆ radN and L +M = N
then M = N .

Proof. For contradiction we assume that M 6= N . So M is submodule of some
maximal submodule of N . Denote one of them P . It is clear that L ⊂ radN ⊂ P .
We get N = L+M ⊂ P +M = P , contrary to our assumption.

Definition 3.5. An N submodule of M is called superfluous if for every sub-
module L of M an equation L+N =M implies L =M .

Using the previous lemma we get that for any module M is radM superfluous.
This statement we will use in Chapter 5.

As a dual notion to the radical of a modules we define a socle of modules
M soc(M) by sum of the minimal nonzero submodules. By definition of simple
modules we get that

soc(M) =
∑
{S | S is a simple submodule of M}.

If M is an Artinian module, which means that satisfies the descending chain
condition on its poset of submodules, soc(M) is an essential submodule of M ,
which means that every nonzero submodule of M has non trivial intersection with
soc(M).

The following class of modules will be the most important for us, the class of
projective and injective modules.

Definition 3.6. An A−module P is called projective if for every epimorphism
h : M → N and every homomorphism f : P → N there exists a homomorphism
g : P →M such that

∀m ∈ P h(g(m)) = f(m).
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An A−module I is called injective if for every monomorphism h : M → N
and every homomorphism f : M → I there exists a homomorphism g : N → I
such that

∀m ∈ I g(h(m)) = f(m).

It follows a useful remark from the theory of category of modules which helps
us define injective modules over KQ−algebras.

Remark 3.7. Let A be a K−algebra and let M be a right projective A−module.
Then D(M) is a left injective A−module.

Because we can view left A−modules as right Aop modules, we will consider
D(m) as right injective Aop-module. Naturally using quasi-inversion D we get
the remark for left projective A−modules.

Now we turn attention to modules over path algebras. As finite algebra we can
visualize their modules as a set of vector spaces over K connected by K−linear
maps. This visualization is called representation M of quiver Q.

Definition 3.8. Let Q be a finite quiver. A representation M of Q is defined by:

• To each point a ∈ Q0 is associated a K−linear vector space Ma.

• To each arrow α ∈ Q1, α : a → b, is associated K−linear map ϕα : Ma →
Mb.*)

This representation is denoted M = (Ma, ϕα). It is called finite dimensional
if each vector space Ma is finite dimensional.

For a nontrivial path w = α1, . . . , αl from a to b in a quiver Q we define the
evaluation of representation M of Q on the path w to be K−linear map from Ma

to Mb defined by
ϕw = ϕαl

· · ·ϕα1 .

We can extend the definition of evaluation to K−linear combination of paths with
the same source and the same target, this combinations we called relations. For
a relation

ρ =
n∑
i=1

λiwi

where λi ∈ K and wi are paths in Q we get

ϕρ =
n∑
i=1

λiϕwi
.

This will allow us to define a representation of a bound quiver. Let Q be a
finite quiver and I be an admissible ideal KQ. A representation M of Q is bound
by I if for every relation ρ in I is ϕρ = 0.

The category of K−linear representations over quiver Q is denoted as Rep(Q).
We denote by rep(Q) the full subcategory of Rep(Q) consisting of the finite
dimensional representations. We denote by Rep(Q, I) ( resp. rep(Q, I) ) the full
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subcategory of Rep(Q) ( resp. of rep(Q) ) consisting of the representation of Q
bound by I.

As we mentioned in the previous chapter for a finite dimensional K−algebra
A there exists a quiver QA and admissible ideal I such that A ∼= KQA/I. The
following theorem, taken from [2, p.72-73], shows that there is a equivalence
between rep(Q, I) and the category modA, which denotes the subcategory of the
category of all right A−modules whose objects are finite generated. The category
of all right A−modules is denoted by ModA.

Theorem 3.9. Let A = KQ/I, where Q is finite quiver and I is an admissible
ideal of KQ. There exists a K−linear equivalence of categories

F : ModA
∼=→ Rep(Q, I)

that restrict to an equivalence of categories F modA
∼=→ rep(Q, I).

The proof of this theorem shows how we can construct the representation of
A−modules and how we obtain from a representation an A−module. The proof
can be find in [2, p.72-73]. Since we will use representation to graphically visualize
modules we will show how we can obtain a module from a representation.

Let M = (Ma, ϕα) be a representation from the category Rep(Q, I). We set
G(M) =

⊕
a∈Q0

Ma, by definition of representations G(M) is K−vector space.
Let thus (xa)a∈Q0 belong to G(M). To define KQ module structure on G(M), it
suffices to define the products of the form xβ where β is a path in Q. If β = εa
is the stationary path in a, we put

xεa = xa.

If β = α1 . . . αl is a nontrivial path from a to b, we consider the K−linear map
ϕβ = ϕα1 . . . ϕαl

:Ma →Mb. We put

(xβ)c = δb,cϕβ(xa).

In other words, xβ is the element of G(M) =
⊕

a∈Q0
Ma whose only nonzero

coordinate is (xβ)b = ϕβ(xa) ∈ Mb. Thus shows that G(M) is a KQ−module.
Moreover, it follows from the definition of G(M) that, for each ρ ∈ I and x ∈
G(M), we have xρ = 0. Thus G(M) becomes a KQ/I− module under assignment
x(u+ I) = xu for x ∈ G(M) and u ∈ KQ.

3.2 Injective modules

Since a general path algebra is not Frobenius ring, we focus on injective modules
of path algebras as they are described in [2, p.76-81]. Let Q be a finite quiver.
For a ∈ Q0 we denote S(a) a representation (S(a)b, ϕα) of Q defined by

S(a)b =

{
K, if b = a

0, if b 6= a

ϕα = 0 for all α ∈ Q1.
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S(a) seen as KQ−module is the simple KQ−module corresponding to the
point a ∈ Q0. Next we show the construction of indecomposable projective and
injective module. We have the complete set of primitive orthogonal idempotents
of KQ {εa|a ∈ Q0} then decomposition

AA = ⊕a∈Q0εaA

is a direct sum of pairwise non-isomorphic indecomposable projectiveKQ−modules.
The following theorem describe these projective modules P(a) = εaA.

Theorem 3.10. Let Q be a finite acyclic quiver. Then for a ∈ Q0 the represen-
tation P(a) = (P (a)b, ϕβ) holds:

• For a point b, P (a)b is K−vector space with basis the set of all paths from
a to b

• For an arrow β : b→ c, the K−linear map ϕβ : P (a)b → P (a)c is given by
the right multiplication by β.

If we assume a general quiver Q and a bound quiver (Q, I) for an admissible
ideal I, the representation (P (a)b, ϕβ) holds:

• For a point b, P (a)b is K−vector space with basis the K−linear independent
subset of the set of all the ŵ = w + I where w is a path from a to b.

• For an arrow β : b→ c, the K−linear map ϕβ : P (a)b → P (a)c is given by
the right multiplication by β̃ = β + I.

Now we describe the indecomposable injective KQ−modules. A complete
list of pairwise non-isomorphic indecomposable injective KQ−module is given by
modules I(a) = D(Aεa) where D is the standard duality defined in the previous
section. We mentioned that a duality image of a left projective KQ−module is a
right injective KQ−module so the I(a) is indeed injective.

Theorem 3.11. Let Q be a finite acyclic quiver. Then socle of I(a) is isomorphic
to the simple module S(a) for each a ∈ Q0. If we denote representation I(a) as
(I(a)b, ϕβ) then

• for a point, b I(a)b is the dual of the K−vector space with basis the K−linear
independent subset of the set of all path from b to a

• for an arrow β : b → c, the K−linear map ϕβ : I(a)b → I(a)c is given by
the dual of the left multiplication by β.

For a bound quiver (Q, I), where Q is a general quiver and I is an admissible
ideal, the representation I(a) holds:

• For a point, b I(a)b is the dual of the K−vector space with basis the set of
all the ŵ = w + I where w is a paths from b to a

• For an arrow β : b → c, the K−linear map ϕβ : I(a)b → I(a)c is given by
the dual of the left multiplication by β̃ = β + I.
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In the case when Q is acyclic finite quiver P (a)b is nothing but the K−vector
space having as base the set of all paths from a to b and I(a)b is the dual of the
K−vector space with basis the set of all paths from b to a. In general the dual of
vector space is mention as space of linear forms. The basis of the dual is obtain
from the basis of original vector space applying the rule

fi(bj) =

{
1, for i = j

0, for i 6= j.

where {b1, . . . , bn} is original base, then {f1, . . . , fn} is basis of the dual space.
In case of path algebras the basis vectors, all paths from b to a, form the vector
space εbKQεa. Let α1, . . . , αn are all path from b to a then α∗1, . . . , α

∗
n is the basis

of the dual space I(a)b when α∗i (αj) = δi,j(1).
A multiplication by element r from KQ is given by the dual of the left multi-

plication by β. This means that for the element α∗ of I(a) and the element r of
KQ there is α · r(s) = α(rs) which implies that α∗ · r = β∗ if α = rβ otherwise
α∗ · r = 0. The structure of the injective module I(a) is important for us so we
will show the structure and multiplication in an example.

Example. As we mention in the previous chapter, for examples we will use
Dynkin quivers An. We numbered the points of An from right to left and the
the arrows are denoted αi if its source is the point i then its target is i− 1.

01n n-1 n-2

α α α1n n-1

For i ∈ {1, . . . , n} we denote βi the composition αi . . . α1 and β0 the trivial path ε0.
Then by the previous theorem for all i ∈ {0, . . . , n} the I(0)i is dual of the vector
space εiKQε0 which is in our case one dimensional K−vector space with basis
βi. We denote the basis vector of the dual space β∗i . Then any element of I(0)
can be written as

∑n
i=0 kiβ

∗
i where ki are elements of field K. The multiplication

by element of KQ is nonzero only for β∗i ∈ I(a) and r ∈ KQ such that r and βi
has the same source as we discuss above. Then the multiplication can be easily
understood by using the following picture:

i j 0

iβ

r
jβ

iβ* jβ*r =

Hence β∗i · εj = δij (β
∗
i ) and β∗i · αj = δij

(
β∗i−1

)
and the rest of cases can be

obtained by associative and distributive laws.
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The example gives us an idea, what the general I(a) looks like, mainly how
multiplication by elements of KQ acts on I(a). Generally let γ1, . . . , γn be all
paths in quiver Q with the same source b and the same target a and let δ be
any path with source c 6= b and target a, then by definition of injective module
I(a) γ∗1 , . . . , γ∗n, δ∗ are elements of I(a). There are two important results for
multiplication by elements of KQ.

• γ∗i εb = γi for all i.

• δ∗εb = 0.

• γ∗i γj = δij (ε
∗
a)

• δ∗γj = 0 for all j.
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4. Codes over path algebras
From the previous chapters we get the instruments to construct linear codes over
path algebras KQ for finite acyclic quivers Q. Generally an algebra KQ seen as
ring does not have to be self-injective which means KQ is not Frobenius ring. So
we need take some injectiveKQ-modules I and study codes which are submodules
of In. From the previous chapter we have indecomposable injective KQ−modules
I(a) for a from Q.

Since for acyclic finite quivers an injective ideal I(a) has representation (I(a)b, ϕα)
where I(a)b is the vector space with basis the set of all paths from b to a in Q
we can assume that quiver Q has structure of an oriented tree where arrows go
towards a root. We can denote the root a and we will assume only the injec-
tive module I(a). Then the module I(a) is the biggest injective indecomposable
KQ−module and the quiver Q is the smallest quiver such that module I(a) is an
indecomposable injective KQ−module. In other words, if we get an indecompos-
able injective KQ−module I we can find a uniquely determined quiver Q̂ with
the oriented tree structure with a root a such that KQ̂ ⊂ KQ and KQ̂−module
I(a) is KQ̂−isomorphic to I. An example is the Dynkin quiver An with the
indecomposable injective module I(0).

Now we have the alphabet for our codes but we need some bilinear form which
would generalize an inner product. Since a path algebra KQ is not an integral
domain and is not necessarily commutative we would like to have a form which
preserves these properties instead of the inner product which does not. Since
we want that dual codes would be a submodule of I(a)n as well, we will define
bilinear form β as a map

β : I(a)KQ ⊗Z I(a)KQ → AKQ⊗KQ
where A is a right KQ ⊗ KQ−module. This general definition is taken

from [9, p.84] where the authors discuss the proper choice of A. Based on
their results we take the tensor product of two copies of I(a). Then A has
structure of (dimK (I(a)))2 dimensional K−vector space with structure of right
KQ⊗KQ−module. We will use simplier notation (a, b) instead of (a⊗ b). Then
β is an isomorphism

β : I(a)nKQ ⊗K I(a)nKQ → (In(a)⊗ In(a))KQ⊗KQ

with intuitive definition, β(x, y) = (x ⊗ y) = (x, y) with our new notation, for
x, y ∈ I(a).

For better understanding of structure of A we focus on the structure of path
algebra KQ⊗K KQ. Let Q be quiver with the following properties:

• Q0 = Q0 ⊗Q0.

• Let α : a → b be an arrow in Q1 and let x be a point from Q0, then there
are arrows β, γ ∈ Q1 such that β : (a, x)→ (b, x) and γ : (x, a)→ (x, b).

Let I be an ideal of KQ generated by relations, which describe the following
situation: for a→ b and c→ d from Q1 the compositions (a, c)→ (b, c)→ (b, d)
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and (a, c)→ (a, d)→ (b, d) are the same. Now we define a map f : KQ⊗KKQ →
KQ/I by the prescription

f(x⊗ y) = (x, y).

By properties of the tensor product we get (a⊗b)(c⊗d) = (ac⊗bd) which implies
that

f(ac⊗ bd) = f ((a⊗ b)(c⊗ d)) = f(a⊗ b)f(c⊗ d) = (a, b)(c, d) = (ac, bd)

and hence f is a homomorphism of rings (algebras) since similarly there holds
that (a⊗ b) + (a⊗ d) + (c⊗ b) + (c⊗ d) = (a+ c⊗ b+ d).

We can easily see that f is an epimorphism since for each (a, b) ∈ KQ/I there
exists (a⊗ b) ∈ KQ⊗K KQ such that f(a⊗ b) = (a, b).

As the last step to prove that f is even an isomorphism of algebras, we compare
dimensions of the K−vector spaces KQ/I and KQ⊗K KQ. By the definition of
the tensor product we get that dimKKQ⊗KKQ = (dimKKQ)2. By the definition
of path algebras the basis of KQ contains all paths in Q. By the definition of Q
above, a path β : (a0, b0)→ (an, bn) can be written as

β = (a0, b0)→ (a1, b1)→ . . .→ (an, bn),

where either ai = ai+1 and there exists an arrow bi → bi+1 ∈ Q1 or bi = bi+1

and there exists an arrow ai → ai+1 ∈ Q1 for each i ∈ {0, . . . , n − 1}. By the
definition of the admissible ideal I, the elements of KQ/I which corresponds to
the basis vectors of KQ are form

β + I = (a0, b0)(a0, b1) . . . (a0, bn)(a1, bn) . . . (an, bn) = (a0, b0)(a0, bn)(an, bn).

Hence the number ofK−linear independent elements ofKQ/I is equal to (dimK(KQ))2.
We get that dimKKQ/I = dimKKQ⊗KKQ, which implies that f is isomorphism
of the algebras.

Since KQ⊗KQ is isomorphic to KQ/I. And as a consequence the KQ⊗KQ-
module A is isomorphic to the injective indecomposible KQ/I− module which
correspond to the point (a, a) ∈ Q0.

Example. For a quiver Q

1 0
α

and binary field K we define 3−dimensional path algebra KQ with basis {e0, α, e1}.
An injective indecomposable KQ−module I(0) can be graphically represented as

1
KK

The elements of I(0) are of form k1α
∗+k0e

∗
0 for k1, k0 ∈ K. Here the module

A can be graphically represented as
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ε0* ε0*,( )

α*α*,( )

ε0*α*, )(

ε0* α*, )(

K

K

K

K
Hence A has structure isomorphic to M2(K) with actions of multiplication of

element of KQ⊗KQ which act by the following laws:(
a b
c d

)
(ε1, 0) =

(
0 b
0 d

)
,

(
a b
c d

)
(0, ε1) =

(
0 0
c d

)
(
a b
c d

)
(α, 0) =

(
b 0
d 0

)
,

(
a b
c d

)
(0, α) =

(
c d
0 0

)
(
a b
c d

)
(ε0, 0) =

(
a 0
c 0

)
,

(
a b
c d

)
(0, ε0) =

(
a b
0 0

)
Then we define a KQ−isomorphism ϕ : I(a)⊗ I(a)→ A by a prescription

ϕ (aε∗0, bε
∗
0) =

(
ab 0
0 0

)
, ϕ (aα∗, bε∗0) =

(
0 ab
0 0

)

ϕ (aε∗0, bα
∗) =

(
0 0
ab 0

)
, ϕ (aα∗, bα∗) =

(
0 0
0 ab

)

where a, b ∈ K. Finally the bilinear map β : I(a)n ⊗ I(a)n → A is defined for
c, d ∈ I(a)n by

β(c, d) =
n∑
i=1

ϕ (ci, di) .

The situation for Dynkin quiver An is analogous only we take A isomorphic to
Mn(K) and we need to generalize the multiplication by the element of the path
algebra KAn. If we keep the idea of the notation of the previous example then
the multiplication in AKAn⊗KAn looks like



k0,0 k0,1 . . . k0,n
...

...
...

...
ki−1,0 ki−1,1 . . . ki−1,n
ki,0 ki,1 . . . ki,n
ki+1,0 ki+1,1 . . . ki+1,n

...
...

...
...

kn,0 kn,1 . . . kn,n


(εi, 0) =



0 0 . . . 0
...

...
...

...
0 0 . . . 0
ki,0 ki,1 . . . ki,n
0 0 . . . 0
...

...
...

...
0 0 . . . 0


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

k0,0 k0,1 . . . k0,n
...

...
...

...
ki−2,0 ki−2,1 . . . ki−2,n
ki−1,0 ki−1,1 . . . ki−1,n
ki,0 ki,1 . . . ki,n
...

...
...

...
kn,0 kn,1 . . . kn,n


(αi, 0) =



0 0 . . . 0
...

...
...

...
0 0 . . . 0
ki,0 ki,1 . . . ki,n
0 0 . . . 0
...

...
...

...
0 0 . . . 0




k0,0 k0,1 . . . k0,n
...

...
...

...
ki,0 ki,1 . . . ki,n
...

...
...

...
kn,0 kn,1 . . . kn,n

 (βi, 0) =


ki,0 ki,1 . . . ki,n
0 0 . . . 0
...

...
...

...
0 0 . . . 0



The rest we obtain from linearity and associativity.
For a general quiver Q and its indecomposable injective module I(a), the

(KQ⊗KQ)−module A can have quite complex structure which can be still
represented by matrix, only indexes of row and columns cannot be denoted by
numbers but by basis elements of I(a) and the computation is defined with respect
to the structure of a quiver, so this bilinear form can work in a general case.

4.1 Homogeneous weight

Now we have an alphabet and a bilinear map for gaining a dual code but as
we mentioned before we will use more complex weight function than Hamming
weight, we will use homogeneous weight which better describes the structure of
modules, especially a lattice of submodules. The definition below shows the main
properties of homogeneous weight.

Definition 4.1. Let M be a right R−module. A function ω : M → R is called
homogeneous weight if

• ω(0) = 0.

• If xR = yR, then ω(x) = ω(y).

• There exists γ ∈ R such that∑
m∈xR

ω(m) = γ|xR| ∀x ∈M − {0} .

The number γ may be called the average of homogeneous weight ω.

For obtaining a formula for computing homogenous weight more easily we use
the Möbius inversion on a finite partially ordered set (B,≤).

Definition 4.2. Let (B,≤) be a finite partially ordered set, the Möbius function
µ : B ×B → Q is defined by
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• µ(x, x) = 1.

• µ(x, y) = 0 if x 6≤ y.

•
∑

y≤t≤x µ(t, x) = 0 if y < x.

Using the Möbius function we get a result from [7, p.224].

Theorem 4.3. Let µ denote the Möbius function. A real-valued function w on
the finite module MR is homogeneous weight if and only if there exists a real
number γ such that

w(x) = γ

(
1− µ (O, xR)

|x∗R|

)
,

where x∗A is set of all generating elements of the submodule xR.

Proof. Let γ be a real number and w be the real-valued function from theorem

w(x) = γ

(
1− µ (O, xR)

|x∗R|

)
.

We will prove that the function w satisfies the conditions for homogeneous weight
defined in Definition 4.1. By definition of the Möbius function we get that
µ(0, 0) = 1 and the module 0R is generated only by the element 0, hence

w(0) = γ

(
1− 1

1

)
= 0

and the first condition holds. For x, y ∈ M such that xR = yR its trivial that
the number of generating elements of module xR is the same as the number of
generating elements of yR and the values of the Möbius function is the same as
well. Hence w(x) = w(y).

For a nonzero element x of M we denote x1, . . . , xn the generating elements
of all submodules xR. Then 0 ⊆ xiR ⊆ xR for all i and let us suppose that
x1R = 0R and xnR = xR. Hence

∑
m∈xR

w(m) =
∑
m∈xR

γ

(
1− µ(0,mR)

|m ∗R|

)
= γ |xR| −

∑
m∈xR

µ(0,mR)

|m ∗R|
=

= γ |xR| −
n∑
i=1

|x∗iR|
µ(0, xiR)

|x∗iR|
= γ |xR| −

n∑
i=1

µ(0, xiR).

Since xiR are all submodules between 0R and xR, by definition of the Möbius
function µ, we get that

∑n
i=1 µ(0, xiR) = 0 and finally w(x) = γ |xR| for a general

nonzero element of M .
Now let ω be a homogenous weight by Definition 4.1. Let w be a real-valued

function defined as

w(x) = γ

(
1− µ (O, xR)

|x∗R|

)
,

where γ is the average of homogeneous weight ω. We get easily that ω(0) = 0 =
w(0). Now let assume that a element x ∈M generates a minimal one-generated
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module of M which means that for every nonzero y ∈M such, that 0 ⊆ yR ⊆ xR,
is yR = xR. Since xR is a module, the zero element is in xR and from submodule
minimality of xR we have |x ∗R|+ 1 = |xR|. By applying of all three properties
of homogeneous weight from definition we get

γ |xR| = γ (|x∗R|+ 1) =
∑
y∈xR

ω(y) = ω(0) +
∑
y∈x∗R

ω(y) = 0 + |x∗R|ω(x).

Since xR is minimal submodule of M from the properties of the Möbius function
we have that µ(0, xR) = 0− µ(0, 0) = −1. Hence

ω(x) = γ

(
|x ∗R|+ 1

|x ∗R|

)
= γ

(
1− µ(0, xR)

|x ∗R|

)
= w(x).

Finally let x be an arbitrary nonzero element of M and let us suppose that for
each y ∈ M such, that yR ( xR, we have that ω(y) = w(y). Let Y denote the
set xR− x∗R.

∑
m∈xR

ω(m) =
∑

m∈x∗R

ω(m) +
∑
y∈Y

w(y) = |x∗R|ω(x) +
∑
y∈Y

γ

(
1− µ(0, yR)

y∗R

)
= |x∗R|ω(x) + γ |Y | − γ

∑
0⊂yR(xR

(
|x∗R| µ(0, yR)

|x∗R|

)

= |x∗R|ω(x) + γ |Y |+ γ

(
−

∑
0⊂yR(xR

µ(0, yR)

)

Similarly, one of the properties of the Möbius function implies that

µ(0, xR) = −
∑

0⊂yR(xR

µ(0, yR).

Hence

γ |xR| =
∑
m∈xR

ω(m) = |x∗R|ω(x) + γ |xR− x∗R|+ γµ(0, xR)

and we finally get that

ω(x) = γ
|xR| − |xR− x∗R| − µ(0, xR)

|x∗R|
= γ

(
1− µ(0, xR)

|x∗R|

)
= w(x).

In our case M is injective module I(a). This module has only one simple
module S(a) hence socle soc(Ia) = S(a) and as we presume KQ is Artinian so
S(a) is essential submodule. This means that every submodule N of I(a) contains
submodule S(a),

0 ⊂ S(a) ⊆ N ⊆ I(a).

Now we can define the Möbius function for partially ordered set of submodules
of I(a).For our purpose ( to obtain homogeneous weight ) we need only values of
the Möbius function with argument (0, N) for all submodules N of I(a).
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By definition µ(0, 0) = 1 and µ(0, 0) + µ(0, S(a)) = 0, thus µ(0, S(a)) = −1.
For any other submodule N of I(a) which has to be bigger than S(a) is easy to
see (for example by induction on number of submodules of N ) that µ(0, N) = 0.

Theorem 4.4. If we denote S∗ as set of the generating elements of S(a) then we
can define homogeneous weight of I(a) by the following prescription:

ω(x) =


0, for x = 0

γ
(
1 + 1

|S∗|

)
, for x ∈ S∗

1, else

The proof of the theorem simply comes from the paragraph above. So we
get that the homogeneous weight is quite similar to Hamming weight in cases of
codes over injective modules I(a).
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5. Dimension and minimal
distance of linear codes over I(a)
Now we have everything to define linear codes over path algebras and we can
be curious what parameters the code will have. If we define code over I(a) as a
submodule of In(a) then the length of the code is trivially n. Since the code is
not a vector space, a dimension of the code cannot be defined properly. But we
will prove that if we have a code C such that In(a) is a direct sum of C and some
module N , we can get some variation on the dimension of the code C.

We will prove that if C is a summand of In(a) then C ∼= Im(a) for some
m ≤ n. The value m will be called the rank of code C, then the code C contains
|Im(a)| = |I(a)|m codewords which reminds us the term of dimension in linear
codes theory over finite field Fq, where the number of codewords of code C is
equal to qdimC .

At first we focus on indecomposable decomposition of In(a). We will use the
theorem for a general module, known as the Krull-Schmidt theorem. We took it
from [4] where its poof can be found.

Theorem 5.1 (Krull-Schmidt). Let M be a right R−module of finite length.
Then M is a direct sum of indecomposable modules. The indecomposable com-
ponents are uniquely determined up to isomorphism

If we have a decomposition of module L on indecomposable modules L1, . . . , Ll
and we get two modules M and N such that M ⊕N = L we get from the Krull-
Schmidt theorem the decompositions M = ⊕mi=1Mi and N = ⊕ni=1Ni and from
the uniqueness of notation we get that (M1, . . .Mm, N1, . . . , Nn) = (L1, . . . , Ll)
up to an isomorphism and a permutation.

Since the module I(a) is indecomposible, then as a consequence of the Krull
Schmidt theorem we get that any summand of In(a) is isomorphic to Im(a) for
some m ≤ n.

Definition 5.2. Let C be a linear code of length n, which is a summand of I(a)n

as submodule. Then the rank of the code C is m, where C ∼= Im(a).

Next we want to know when the code is a summand or how we can find out if
the code is a summand or not. A trivial condition for the code to be a summand
comes from the indecomposability of I(a).

Lemma 5.3. If a code C of length n and of rank m is a summand if In(a), then
the number of codewords of C is equal to |I(a)|m.

Proof. Since C is isomorphic to Im(a) from definition of rank, we get that the
number of codewords is |Im(a)| = |I(a)|m.

However the previous condition does not say whether a code is a summand,
we can only find out that code is not a summand. To obtain exact condition
for summands of In(a) we define the following closure operator of subsets of
soc(In(a)).
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Definition 5.4. For a set M ⊂ soc(In(a)) we define closure of M 〈M〉 by

r ∈ 〈M〉 ⇔ rx ∈M ∪ {0} for all x ∈ KQ such that rx ∈ soc(In(a)).

A trivial fact, which comes straight from the definition of the closure, is that

〈soc(In(a)〉 = In(a).

Before we will finally state the condition when a code is a summand of In(a),
we need to focus on properties of the socle of I(a). We start we theorem which
describe a structure of the socle. This theorem is taken from [2, p.81].

Theorem 5.5 (Socle of I(a)). Let I(a) be an indecomposible injective ideal of a
path algebra KQ for some a ∈ Q0. The simple module S(a) is isomorphic to the
simple socket of I(a).

The simple modules S(a) are defined at the beginning of Section 3.2 and
hence we get that soc(I(a)) ∼= K. We mention that the socle is in general case
an essential module, now we get that in case of I(a) is even simple. It gives us
that each submodule of I(a) contains the socle of I(a) as a submodule.

Theorem 5.6. Let C be a code of length n. Then C is a summand of In(a) if
and only if C = 〈C ∩ soc(In(a)〉.

Proof. At first let us take an element c from C. Since C is code which by definition
means that C is KQ−module, for each r ∈ KQ cr ∈ C as well. This implies for
all r ∈ KQ that if cr ∈ soc(In(a) then cr ∈ C ∩ soc(In(a), which is equivalent by
Definition 5.4 to c ∈ 〈C ∩ soc(In(a)〉. We get that C ⊂ 〈C ∩ soc(In(a)〉.

By Theorem 5.5 we know that the socle of I(a) is essential simple submodule
of I(a). Hence C ∩ soc(In(a) ∼= socm(I(a)) ∼= soc(Im(a) for some m ≤ n. For
some submodule D of soc(In(a) we get that

soc(In(a)) = soc(Im(a))⊕ soc(In−m(a)) ∼= C ∩ soc(In(a)⊕D.

The trivial property of the closure operator, which we mention also above, is
〈soc(In(a)〉 = In(a), which holds for any n ≥ 1. Hence

I(a) = 〈soc(In(a))〉 = 〈soc(Im(a))〉 ⊕ 〈soc(In−m(a))〉 ∼= 〈C ∩ soc(In(a)〉 ⊕ 〈D〉,

which gives us that 〈C ∩ soc(In(a)〉 is a summand of In(a). Trivially we get that
if C = 〈C ∩ soc(In(a)〉 then C is a summand as well.

Finally let us assume that C ( 〈C ∩ soc(In(a)〉 and let c be an element from
〈C ∩ soc(In(a)〉 − C. From the definition of the closure we get that there exist
r ∈ KQ such that cr ∈ C ∩ soc(In(a) and hence cr ∈ C. Now let us suppose
that the code C is a summand of In(a) so there exists some submodule D of
In(a) such that In(a) = C ⊕D and C ∩D = {0}. Since c /∈ C there must hold
that c ∈ D. The fact D is module implies that cr ∈ D but we mentioned above
cr ∈ C as well, which gives us contradiction with properties of direct summands
and hence C is not a summand.
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The previous proof gives us a method how we prove that the code is a sum-
mand. If we know that C is a summand and we only want to compute its rank
we use the following procedure. Since in our situation the socle of I is an es-
sential module and for direct sum holds that soc(In) = soc(I)n, we get that
soc(C) ⊂ soc(I)n and since soc(I) is a simple module there is some m such that
soc(C) ∼= soc(I)m. From essentiality of soc(I) and the fact that C is a summand
of I we finally get that C ∼= Im.

The minimal distance of a code C can be computed as minimal Hamming
weight of codeword since C is assumed be linear. But we can transfer the com-
putation to socle of code since the following theorem from [5, p.258] holds.

Theorem 5.7. Let C be a linear code over I(a) of length n than soc(C) is code
over I(a) and for the Hamming minimal distance d of C, we have the equality

d(C) = d(soc(C)).

5.1 Bounds on number of codewords

The method from the previous section will not give us rank of a code in all
cases, it is more probable that randomly chosen code will not be a summand. In
these cases we have to suffice with the number of codewords. Now we get all the
parameters and we would like to know, whether the code is optimal, which means
whether there is no code with better parameters. Traditionally we get a length n
and a minimal distance d and we ask how many codewords the code with length
n and minimal Hamming distance d can have .

In the theory of codes over field Fq there are many of these bounds. Let us
denote Aq(n,d) a maximal number of words that a code of length n over Fq with
minimum Hamming distance d can have. The first bound is called Singleton
bound and states that

Aq(n,d) ≤ qn+1−d

If we denote α = q−1
q

and assume that αn < d then the Plotkin bound holds. It
says that

Aq(n,d) ≤
d

d− αn
Now we denote volq(n, t) the volume of the sphere of radius t in the space Fn

q

and it is easy to prove that

volq(n, t) =
t∑
i=0

(
n

i

)
(q − 1)i.

An extensive refinement of the Plotkin bound, the Elias bound says that for every
t ∈ R with t < αn and t2 − 2tαn+ dαn > 0 it holds

Aq(n,d) ≤
αnd

t2 − 2tαn+ dnα
· qn

volq(n, t
.

The previous bounds can be found with their proofs in [10].
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Of course there were studies whether these bounds can be stated for codes
over rings especially Frobenius rings. It is also clear that we need to generalize
these bounds for weight functions that differ from the Hamming weight. We will
focus on homogeneous weight as we did in the previous chapters. Let R be a
finite Frobenius ring and let ω be a homogeneous weight on R of average value γ.
We denote Ahom(n,d) the maximal number of codewords of a code of length n
over R with minimum homogeneous distance d and volω(n, t) the volume of the
sphere of homogeneous radius t in the space Rn.

Then we can state the Plotkin bound

Ahom(n,d) ≤
d

d− γn

and the Elias bound

Ahom(n,d) ≤
γnd

t2 − 2tαn+ dnγ
· |R|n

volq(n, t)
.

Both these bounds are studied in [6] by Marcus Greferath and Michael E. O’Sullivan.
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6. Dual codes over I(a)
Since we defined the bilinear form on I(a) ⊗ I(a) we should look at the dual
codes of codes over I(a).

Definition 6.1. For a code C ≤ I(a)n we define the dual code

C⊥ = {x ∈ I(a) | β(c, x) for all c ∈ C}

where β is the bilinear form defined in the Chapter 4.

From the definition of the bilinear form β and the choice of A with multipli-
cation by elements of KQ ⊗ KQ it is easy to see that C⊥ is indeed a code since
if β(c, d) = 0 then for all x ∈ KQ β(c, dx) = β(c, d)(1, x) = 0 as well.

After definition of the dual code there arises question whether the codes over
I(a) are closed which means whether C = C⊥⊥. The answer is ”no” in general
case but we will prove that there is a simple condition for a code to be closed.
First we state and prove a theorem about structure of dual codes.

Theorem 6.2. Let C be a linear code of length n then code C⊥ is a summand of
I(a)n.

Proof. To prove this theorem we use the closure operator defined in the Definition
5.4. From the proof of the Theorem 5.6 we get that for every code C ≤ In(a)
the set 〈C ∩ soc(In(a)〉 is a summand of In(a) and C ⊂ 〈C ∩ soc(In(a)〉. So
all we need to prove is the inequality 〈C⊥ ∩ soc(In(a)〉 ⊂ C⊥, then the equality
〈C⊥ ∩ soc(In(a)〉 = C⊥ implies that C⊥ is a summand of In(a).

We assume that r ∈ 〈C⊥ ∩ soc(In(a))〉. The assumption of r ∈ 〈C⊥ ∩
soc(In(a))〉 gives us that for y ∈ KQ there holds that if ry ∈ soc(In(a)) then
ry ∈ C⊥ ∩ soc(In(a)) which implies that ry ∈ C⊥. Let us suppose that r /∈ C⊥ so
there exists d ∈ C such that β(d, r) 6= 0 where 0 ∈ AKQ⊗KQ. Since 1 =

∑
b∈Q0

εb
in KQ there exists a point b ∈ Q0 such that β(d, rεb) 6= 0. From definition of I(a)
in Theorem 3.11 we get that rεb is element of dual space to vector space εbKQεa,
let γ ∈ εbKQεa is one of its basis vector for which rεbγ 6= 0. Since rεb 6= 0 there
has to exist such γ. As rεbγ 6= we get that rεbγ = kε∗a for k ∈ K − {0} and
so rεbγ ∈ soc(In(a)). From definition of multiplication of A by basis elements
of KQ ⊗ KQ we know that β(d, rεbγ) = β(d, r)(1, εbγ) = β(d, r)(1, γ) 6= 0 since
β(d, r) 6= 0. This implies that rεbγ /∈ C⊥ what gives us contradiction with our
original assumption of r ∈ 〈C⊥ ∩ soc(In(a))〉.

Now we can state the theorem about condition for closed codes.

Theorem 6.3. A code C of length n is closed if and only if C is a summand of
I(a)n.

Proof. From the previous theorem we know that dual code is a summand of I(a)n
so C⊥⊥ is also a summand, hence if code C is not a summand then C 6= C⊥⊥.

Now we need to prove that if C is a summand of I(a)n then the code C is
closed. A trivial general property of dual codes is C ≤ C⊥⊥. Since we assume
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that C is a summand of I(a), there exists m ≤ n that C ∼= I(a)m. Hence
C ∩ soc(In(a)) ∼= Km and by a value of dimension of dual code over field we get
that

C⊥ ∩ soc(In(a)) ∼= Kn−m

. Using this property once more we finally get that

C⊥⊥ ∩ soc(In(a)) ∼= Km

and since C⊥⊥ is a summand of I(a)n by Theorem 6.2 then C⊥⊥ ∼= I(a)m. Now
we summarize our results. We know that C ≤ C⊥⊥ and C ∼= C⊥⊥ which implies
C = C⊥⊥.

6.1 MacWilliams Identity

After definition of the duality we will focus on variation of MacWilliams identity
theorem. Since we will use the version for the complete weight enumerator, where
a generating character plays a significant role, we have to start studying characters
over I(a).

Let M be a union over points b ∈ Q0 of sets of the basis vectors of duals I(a)b
from representation I(a) as we defined in Theorem 3.11. This set is K−generating
set of I(a) which means that each element of I(a) is K−linear combination of
elements from M . According the general definitions of characters for each element
β∗ of M we define a character χβ∗ as

χβ∗(x) =

{
ζ, for x = β∗

1, for x 6= β∗,

where ζ is primitive pth complex root of unity and p is characteristic of field K.
If it is not clear, we assume the complex characters. Since characters are group
homomorphisms we can extend χβ∗ on the whole I(a) by rule

χβ∗(x+ y) = χβ∗(x) + χβ∗(y).

Then we define a character χγ∗ for general element γ∗ of I(a), which has the form
γ∗ =

∑
β∗∈M kβ∗β

∗ where kβ∗ ∈ K, by

χγ∗(x) =
∑
β∗∈M

kβ∗χβ∗(x).

From [5, p.253] we get that there can be defined a left multiplication on the set
of all characters of I(a) by elements from I(a). If we define the multiplication
for elements of M then by K−linearity of I(a) and the set of characters we can
obtain the multiplication by general element of I(a). Let β∗ be a element of M
and let β be the element of KQ such that β∗ is dual to basis elements β of vector
space s(β)KQt(β) where s, t are source and target functions from the Definition
of quiver 2.1. Similarly we have γ∗ ∈M and its dual γ. Then

β∗χγ∗(x) = χδ∗(x)

for δ∗ which is a dual to βγ ∈ KQ. Since M ⊂ I(a) contains only the duals of
the path with target a we easily get that for β∗, γ∗ ∈M
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β∗χγ∗(x) =

{
χβ∗(x), for γ∗ = ε∗a
χ0(x) = 0, else .

Hence χε∗a is so called a generating character of I(a) which means that I(a)χε∗a =
I(a)χ where I(a)χ denotes the set of all characters of I(a). Now we can state
the theorem which is variation of MacWilliams identity for complete weight enu-
merator.

Theorem 6.4. Let I(a) be an injective indecomposable KQ−module with a bi-
linear form β which defines the duality of codes over I(a). Let C ≤ I(a)n be a
linear code with complete weight enumerator cweC(x). Then the complete weight
enumerator of C⊥ is given by

cwe⊥C (x) =
1

|C|
cweC(Mx)

where M is the matrix with entry Mi,j = χε∗a(ij).

The character χε∗a is a generating character of I(a), it is the reason why is
chosen for definition of the matrix M . Since I(a) is module over KQ there is no
multiplication of two elements of I(a)χ but since I(a) has the structure of right
KQ−module we can define left multiplication of I(a)χ by elements of I(a) as

χ(γδ) = δχ(γ).

The proof of this theorem can be found in [15]. The proof is quite complicated
and for the purpose of this thesis it is more important the theorem. For an
illustration we give an example.

Example. We consider I(0) for Dynkin quiver A2 over field K = Z2. Hence
the elements of I(a) are {0, ε∗a, α∗, ε∗a + α∗}. For easier notation we denote ε∗a =
e, α∗ = a. Then we have four characters with values by the following table.

χi(j) 0 e a e+a

0 1 1 1 1
e 1 -1 1 -1
a 1 1 -1 -1

e+a 1 -1 -1 1

From the table we obtain the matrix M with entries Mi,j = χe(ij) using that
χe(ij) = jχe(i) = χj(i).

M =


1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1


Now for the code C = {0000, 0a0a, aaa0, a0aa, 0e0e, eee0, e0ee, 0b0b, bbb0, b0bb, aeab,

abae, eaeb, ebea, babe, beba} which is a summand of dimension 2 and where b de-
notes e+ a = ε∗0 + α∗ we have complete weight enumerator

cweC(x) = x40+x
2
0x

2
a+x

2
0x

2
e+x

2
0x

2
b+2x0x

3
a+2x0x

3
e+2x0x

3
b+2xaxex

2
b+2xax

2
exb+2x2axexb.
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cweC⊥(x0, xe, xa, xb) =
1
16
cweC(M(x0, xe, xa, xb)

T )
= 1

16
cweC(x0 + xe + xa + xb, x0 − xe + xa − xb, x0 + xe − xa − xb, x0 − xe − xa + xb)

= x40 + x20x
2
a + x20x

2
e + x20x

2
b + 2x0x

3
a + 2x0x

3
e + 2x0x

3
b + 2xaxex

2
b + 2xax

2
exb + 2x2axexb

which is indeed a complete weight enumerator of C⊥ since C⊥ = {0000, a0a0, 0aaa, aa0a,
e0e0, 0eee, ee0e, b0b0, 0bbb, bb0b, baea, eaba, beae, aebe, ebab, abeb}.
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7. Equivalence of codes
In this chapter we will focus on a modification of the MacWilliams equivalence
theorem for linear codes over path algebras equipped with homogeneous weight.
We start with a definition of monomial transformation and then we define an
equivalence of codes.

Definition 7.1 (Monomial Transformation on In(a)). The monomial transfor-
mation over I(a) is called each function f : In(a)→ In(a) which is the form

f(x1, . . . , xn) =
(
f1
(
xσ(1)

)
, . . . , fn

(
xσ(n)

))
,

where σ is a permutation from S(n) and f1, . . . , fn are KQ−automorphisms of
I(a).

Definition 7.2. Two linear coded C, C ′ over I(a)n are equivalent when there
exists a monomial transformation ϕ : I(a)n → I(a)n taking C to C ′, ϕ(C) = C ′.

For a better understanding to monomial transformations we should now focus
on the form of KQ− automorphisms of I(a). Let f be a KQ−automorphism on
In(a) and let β∗1 , . . . , β

∗
p denote all elements of I(a) such that βi is a basis vector

of KQ for all i = 1, . . . , p. Then for each element x of I(a) holds

x = x (ε1 + . . .+ εm) = xε1 + . . .+ xεm = k1β
∗
1 + . . . kpβ

∗
p , (7.1)

where ki are taken from K and ε1, . . . , εm are all trivial ( stationary ) paths in Q.
Now we suppose that βj has as its source the point b and as its target point a
and f(β∗j ) = x for x ∈ In(a). From the KQ−linearity of f we get that

f(β∗j εi) = f(δib(β
∗
j )) = δib

(
f(β∗j )

)
= δib(x)

where δ is again the Kronecker delta. Hence, in the decomposition by 7.1 of
ω
(
β∗j
)
= x the only nonzero coefficients are by the elements β∗i such that the

source of βi is b. This implies that x is a element of dual space to vector space
εbKQεa. Using the KQ−linearity of f once more we get

xβi = f(β∗j )βj = f(β∗jβi) = f(δij(ε
∗
a) = δij (f(εa))

because of f is isomorphism f(εa) 6= 0. Hence the only one nonzero coefficient in
the decomposition of x is kj by the element β∗j . Since f(β∗j ) = kjβ

∗
j .

We got that for any element β∗j from In(a) the KQ−automorphism f satisfy
f(β∗j ) = kjβ

∗
j . By KQ−linearity we get that

f(ε∗a) = f(β∗jβj) = kjβ
∗
jβj = kjε

∗
a.

Hence the automorphism has the form f(x) = kix for some nonzero ki from field
K.

Theorem 7.3 (KQ−automorphisms of I(a)). Let f be a KQ−automorphism
then there exists nonzero k from K such that f(x) = kx.
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Since the socle of I(a) is an essential simple module of I(a), any module gen-
erated by elements of I(a) over KQ contains the socle as a submodule, especially
one generated modules. Hence for every x ∈ I(a) there exists r ∈ KQ such that
xr lies in soc(I(a)) and xr 6= 0. This is an important fact and it will help us to
prove the following lemma.

Lemma 7.4. Let C be a code over I(a) of length n. Let D denotes C∩soc(In(a)) =
C ∩ socn(I(a)). Then D ≤ C is also code over I(a) of length n, and for each
codeword c ∈ C and for each coordinate i holds that if ci 6= 0 then there exists
d ∈ D such that di 6= 0 as well.

Proof. Since soc(In(a)) = socn(I(a)) is module over KQ, D is a code trivially.
The second part of the lemma comes from paragraph right above the lemma.

Now we focus on the equivalency theorem.

Theorem 7.5. Let C1, C2 be two linear codes over I(a), which are summands
of In(a). These codes are equivalent if and only if there exists a KQ−linear
isomorphism f : C1 → C2 preserving the homogeneous weight.

Proof. Since a monomial transformation is KQ−automorphism of In(a) and pre-
serves the homogeneous weight then the straight implication is clear.

We assume that for codes C1, C2 we have KQ−isomorphism ϕ preserving the
homogeneous weight. We intersect each code with socle of I(a)n to obtain codes
D1 ( resp. D2) as in the previous Lemma 7.4. Let us assume that ϕ(D1) 6= D2

it means that there exists d ∈ D1 such that ϕ(d) = c /∈ D2 ⊂ soc(In(a)). As
0 ∈ soc(In(a)) and c = c (ε1 + . . .+ εn), then there exists a point j from Q such
that cεj 6= 0. Since for each element x from I(a) there holds that xεa ∈ soc(I(a)),
there exists a point i 6= a such that cεi 6= 0. We also know that for y an element
of socle I(a) yεa = y which implies that yεi = 0 for i 6= a. This gives us that
ϕ(dεi) = ϕ(0) = cεi 6= 0 which is contradiction with the KQ−linearity of ϕ.

Hence ϕ(D1) = D2 and we can restrict the isomorphism ϕ on D1 to get
an isomorphism φ : D1 → D2. Since soc(I(a))n ∼= Kn and D1 and D2 lies
in soc(I(a))n there exist linear codes L1,L2 over K equipped with Hamming
weight which are isomorphic to D1,D2 respectively and there exists isomorphism
φK : L1 → L2 induced by isomorphism φ. Since homogeneous weight is constant
on nonzero elements of socle of I(a) there is no problem in transition to Hamming
weight. From the MacWilliams equivalence theorem we get that for isomorphism
φK there exists a monomial transformation ηK : Kn → Kn such that ηK(L1) = L2

and its form is
ηK (x1, . . . , xn) =

(
xσ(1)k1, . . . , xσ(n)kn

)
for k1, . . . , kn from K and the permutation σ ∈ Sn. Now we go back to codes
D1 and D2. Because of isometry between soc(In(a)) and Kn we get monomial
transformation ηsocle : soc(I(a)n)→ soc(I(a)n) such that ηsocle(D1) = D2 and its
form is the same as ηK.

The last step is an extension of ηsocle on the entire I(a)n. As we can see
the monomial transformation ηsocle has the form of a monomial transformation
on In(a) since the KQ isomorphism of I(a) are form kx, according the Theo-
rem 7.3. So we would like to prove that ηsocle is in fact the required monomial
trasnformarion of In(a).
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Since soc(In(a)) ∼= Kn we can see codes D1 and D2 as K−subspaces of
soc(In(a)). Let u1, . . . , us be a basis of D1 and let v1, . . . , ut be a basis of D2.
Since there exists isomorphism between D1 and D2 then t = s and let us suppose
that ηsocle(ui) = vi for each i. Using the closure operator from Definition 5.4 we
easily get

C1 ⊂ 〈u1〉 ⊕ . . .⊕ 〈us〉 C2 ⊂ 〈v1〉 ⊕ . . .⊕ 〈vs〉.
Generally there holds

C1 ⊇ (C1 ∩ 〈u1〉)⊕ . . .⊕ (C1 ∩ 〈us〉)

respectively for C2. As we assumes the codes C1, C2 are summands, which implies
by the Theorem 5.6 that C1 ∩ 〈ui〉 = 〈ui〉 for ui from soc(C1) = D1, respectively
for C2. Hence we get that

C1 = 〈u1〉 ⊕ . . .⊕ 〈us〉 C2 = 〈v1〉 ⊕ . . .⊕ 〈vs〉.

We can suppose that ηsocle is identity on soc(In(a)) so ui = vi for each i and
then there is trivial identity KQ−isomorphism between 〈ui〉 and 〈vi〉. Now we
can each element of C1 decompose on the sum c = w1 + . . . + ws, where wi lies
in C1 ∩ 〈ui〉 and we know that wi lies in C2 ∩ 〈ui〉 as well, hence c lies also in
C2 by properties of modules. We get that if we define η : In(a) → In(a) as
identity then η is trivially a monomial transformation and η(C1) = C2. We see
that the extension of ηsocle on In(a) is equal to ηsocle, so if ηsocle is not identity,
the situation is not more complicated since η has the same form as ηsocle.

The situation when the codes are not summands is more difficult since the
permutation is not uniquely determined. It may happen that we cannot obtain
the monomial transformation η from ηsocle as the following example shows.

Example. We use simple A1 quiver with binary field F2, then I(0) has elements
0, β∗0 , β

∗
1 , β

∗
0 + β∗1 . Let us denote the elements as a = β∗0 ,b = β∗1 and c = β∗0 + β∗1 .

The codes are C1 = {0000, 0101, 1110, 1011, 2220, 3330, 3231, 1213} and C2 =
{0000, 0101, 1011, 1110, 2022, 3033, 3132, 1312}.

The KQ−isomorphism preserving the homogeneous weight is obvious and the
monomial transformation is easy to find as well, since the KQ−isomorphisms
used in the monomial transformation have to be identities because we are in the
binary field. So we need to find only the permutation.

The codes D1 and D2 are the same and their elements are {0000, 0101, 1110, 1011}.
Since they are the same we can take the required permutation as the identi-
ty. However the monomial transformation with trivial permutation and trivial
KQ−automorphism of I(a) does not meet the requirement of equality η(C1) = C2.

However as we can see the permutation (2, 4) is the permutation, which gives
us the required monomial transformation.

Generally for codes which are not summands, we cannot say whenever the
obtained monomial transformation ηsocle can be extended on the entire In(a).
The general proof for Frobenius rings from [15] assumes only commutative rings
so it cannot be use in this case as well.

At the following example shows that using KQ−isomorphism for equivalence
of codes would not be the best choice.
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Example. Let K be the binary field F2 and Q be a quiver

α β

1 20

then the elements of I(0) have form k0ε
∗
0 + k1α

∗ + k2β
∗ for k0, k1, k2 ∈ K. From

the properties of multiplication in I(a) by element of KQ we know that there is
no such r in KQ that α∗r = β∗.

Now we assume two codes over I(a) of length 1 to avoid doubts about potential
influence of permutation of coordinates. We denote them Cα and Cβ such that
Cα = {0, ε∗0, α∗, ε∗0 + α∗} and Cβ = {0, ε∗0, β∗, ε∗0 + β∗}. It is obvious that the map
ω defined by

ω(0) = 0
ω(ε∗0) = ε∗0
ω(α∗) = β∗

ω(ε∗0 + α∗) = ε∗0 + β∗

is K−isomorphism preserving the homogeneous weight. If there exists some
monomial transformation ϕ it has to have a form ϕ(x) = kx where k is a element
of K but as we mention before β∗ /∈ α∗KQ not even in αK what implies that there
is no monomial transformation such that ϕ(Cα) = Cβ.

With this result we should change the definition of equivalence of codes since
the codes from the example above should be equivalent as they distinguish only
in a choice of character from the alphabet I(a). If we change the definition
of monomial transformation such that we require K−isomorphisms instead of
KQ−isomorphisms then the codes from the previous example will be equivalent.

Definition 7.6 (K−linear Monomial Transformation on In(a)). The K−linear
monomial transformation over I(a) is called each function f : In(a) → In(a)
which is the form

f(x1, . . . , xn) =
(
f1
(
xσ(1)

)
, . . . , fn

(
xσ(n)

))
,

where σ is a permutation from S(n) and f1, . . . , fn are K−automorphisms of I(a)
which preserves the homogeneous weight.

On the other side there is no variation on the Theorem 7.5 for K−isomorphism
between two codes. The following example shows that there may not be a
K−linear monomial transformation for two K−isomorphic codes.

Example. We assume the Dynkin quiver A1 over binary field F2. As in the Ex-
ample 7 we denote the elements of I(0) 0, a, b and c. The values of homogeneous
weight of elements of I(0) are

ωhom(0) = 0, ωhom(a) = 2, ωhom(b) = 1, ωhom(c) = 1 (7.2)

If we take codes C1 = {00, aa, 0a, a0} and C2 = {00, aa, bb, cc} then there exists
K−isomorphism between C1 and C2 which preserves the homogeneous weight.
The prescription of this isomorphism is

f(0, 0) = (0, 0), f(a, a) = (a, a), f(b, b) = (a, 0), f(c, c) = (0, a).(7.3)
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It is easy to see that there is no K−linear monomial transformation which maps
C1 onto C2.

We get two possibilities how we can see the equivalence of codes over inde-
composible injective ideal I(a). The first one allowed us to state a variation of
the MacWilliams equivalency theorem and it sees the codes as the modules. The
second one extends equivalence classes of codes but the codes are there rather
K−vector spaces and there is no equivalence theorem.
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8. Other approaches
The previous constructions of codes were not exactly codes over rings so we
now focus on the question when a path algebra or some ring defined over a
quiver is self-injective. The self-injective algebras, with some exceptions, are
infinite dimensional, which means that their quivers are not acyclic, which makes
their studying quite complicated. One option is use bound quivers with some
admissible ideal. By Theorem 2.21, we will obtain the finite dimensional bound
quivers algebra which is self-injective as well as original infinite dimensional path
algebra.

Second option is taken from [11, p397-398]. The authors say that there exists
some deformation of self-injective algebras so we can study corresponding objects
of finite dimension. These objects are describe by the following definition but
first we recall a term of category.

A category K is an algebraic structure containing a set of objects OK and
a set of morphisms MorK , each morphism f has a unique source object a and
target object b, a, b ∈ OK and we denote that f is from MorK(a, b), and a binary
associative operation called composition of morphisms. For objects a, b, c ∈ OK

the composition of morphisms is a map MorK(a, b) ×MorK(b, c) → MorK(a, c).
We can write f : a → b for f ∈ HomK(a, b) so the composition operation of
f : a→ b and g : b→ c is written g ◦ f or simplier gf . Moreover for each object
a ∈ OK there exists an identity morphism in MorK(a, a).

Definition 8.1. Let B be a algebra and 1 = e1 + . . . + en a decomposition of
identity of B into sum of orthogonal primitive idempotents then we define

I. The repetitive category B̂ of B is category with the objects em,i ∈ Z ×
{1, . . . , n} and the morphism space

B̂ (em,i, er,j) =


ejBei, if r = m

D (eiBej) , if r = m+ 1

0, else.

II. A group G of K−linear automorphisms of the category B̂ is said to be
admissible if G has finitely many orbits and acts freely on the objects of B̂
which means that g · ei,j = ei,j forces g = 1.

III. The orbit category B̂/G, for an admissible group G of automorphisms of B̂,
has natural structure of a finite dimensional self-injective K−algebra, called
the orbit algebra of B̂ with respect to G.

IV. The Nakayama automorphism νB̂ of B̂ is defined by νB̂(em,i) = em+1,i for
all (m, i) ∈ Z× {1, . . . , n}.

V. The orbit algebra with respect to the admissible infinite cyclic group
(
νB̂
)

generated by Nakayama automorphism νB̂ is denoted T (B) = B̂/
(
νB̂
)
.

The [11, p.396] gives us that a finite dimensional self-injective K−algebra is
the Frobenius algebra.
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Definition 8.2. Let A be K−algebra. Then A is a Frobenius algebra if there
exists non-degenerated K−bilinear form β

β : A× A→ K

satisfying β(ab, c) = β(a, bc) for all a, b, c ∈ A.

From [12] we get that every finite dimensional Frobenius algebra is Frobenius
ring.

Theorem 8.3. Let A be a finite dimensional K−algebra over field K. The fol-
lowing conditions are equivalent.

• A is Frobenius ring.

• There exists a non-degenerated associative K−bilinear form (−,−) : A ×
A→ K.

• There exists an isomorphism θ : AA → D(A)A of right A−modules.

• There exists an isomorphism θ′ :A A→A D(A) of left A−modules.

The most of results for codes over Frobenius algebras can be found in [5],
where the authors define duality via character module or by using the bilinear
form. They study also an equivalence of codes and the MacWilliams identity
theorem over Frobenius rings.
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Conclusion
Our goal in this thesis was to find and describe codes over path algebras. We
found out that for our cause it would be better to study codes over indecomposi-
ble injective modules of path algebras. For these modules we define a bilinear
form which allows us to define dual codes, a homogeneous weight which is not too
different from classic Hamming weight in this case and the theorem which gives us
the condition when a code is closed. Based on these definition we studied varia-
tion of elementary properties from theory of codes over fields. The MacWilliams
identity and the MacWilliams equivalence theorem. We showed that for these
codes there exists properly defined dual codes with exact condition for closed
codes and we state the theorem about a relation between complete weight enu-
merator of these codes and theirs duals. The situation about equivalence of codes
is not so accurate since the codes are not defined over Frobenius ring only over
injective modules which has structure of K− vector space. We defined equiva-
lence as J.MacWilliams mentioned in [7] or J.Wood [13] in theirs works. However
we found out that we would use only K−linear monomial transformation instead
of KQ−linear monomial transformation to obtain more accurate equivalence of
codes. Finally with respect to the name of the thesis we take a look at which
path algebras could be interesting in the coding theory over rings.
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[11] Simon, Daniel. Skowrońsky, Andrzej. Elements of the Representation
Theory of Associative Algebras: Volume III Representation-Infinite Tilted
Algebras Cambridge University Press, 2007. ISBN-13 978-0-521-88218-7.
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