Representation Theory of Finite-Dimensional Algebras NMAG442

Exercise session 6—May 5, 2023

We work over an algebraically closed field k and with finite-dimensional modules.

Reflection functors, Coxeter functor and roots.

Exercise 1. Consider the following orientation of the Dynkin diagram D_4

a) Compute $\sigma_2(\underline{\dim}P_1)$ and $S_2^+(P_1)$ and then iterate with sinks 1, 3 and 4.

b) Given the representation X:

Compute $\sigma_2(\underline{\dim}X)$ and $S_2^+(X)$ and then iterate with sinks 1, 3 and 4.

Exercise 2. Consider the following representation X of the Kronecker quiver:

$$k^2 \xrightarrow[\psi]{\varphi} k^3$$

where φ is the inclusion on the first two coordinates, ψ is the inclusion on the last two coordinates and vertices are labelled from left to right. Compute $\sigma_2(\underline{\dim}X)$ and $S_2^+(X)$.

Exercise 3. Find a root of the Dynkin diagram E_6 which has a number 3 in one of its components. Choose an orientation of the diagram and describe the corresponding indecomposable representation of the resulting quiver.

You can contact me at sava@karlin.mff.cuni.cz .