Representation Theory of Finite-Dimensional Algebras NMAG442

Exercise session 6-May 5, 2023
We work over an algebraically closed field k and with finite-dimensional modules.

Reflection functors, Coxeter functor and roots.

Exercise 1. Consider the following orientation of the Dynkin diagram D_{4}

a) Compute $\sigma_{2}\left(\underline{\operatorname{dim}} P_{1}\right)$ and $S_{2}^{+}\left(P_{1}\right)$ an then iterate with sinks 1,3 and 4 .
b) Given the represetnation X :

Compute $\sigma_{2}(\underline{\operatorname{dim}} X)$ and $S_{2}^{+}(X)$ an then iterate with sinks 1,3 and 4.
Exercise 2. Consider the following representation X of the Kronecker quiver:

$$
k^{2} \xrightarrow[\psi]{\stackrel{\varphi}{\Longrightarrow}} k^{3}
$$

where φ is the inclusion on the first two coordinates, ψ is the inclusion on the last two coordinates and vertices are labelled from left to right. Compute $\sigma_{2}(\underline{\operatorname{dim}} X)$ and $S_{2}^{+}(X)$.
Exercise 3. Find a root of the Dynkin diagram E_{6} which has a number 3 in one of its components. Choose an orientation of the diagram and describe the corresponding indecomposable representation of the resulting quiver.

You can contact me at sava@karlin.mff.cuni.cz .

