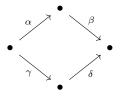
Representation Theory of Finite-Dimensional Algebras NMAG442

Exercise session 2—March 9, 2023

We work over an algebraically closed field k and with finite-dimensional modules.

Admissible ideals, endomorphism ring and indecomposable representations.

Exercise 1. Let Q be the quiver



and $I_1 = \langle \alpha \beta + \gamma \delta \rangle$, $I_2 = \langle \alpha \beta - \gamma \delta \rangle$ two-sided ideals of kQ.

- a) Decide whether I_1 and I_2 are admissible.
- b) Show that there is an isomorphism $kQ/I_1 \cong kQ/I_2$.

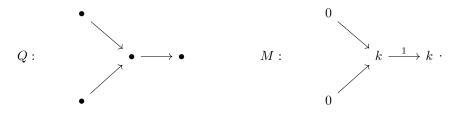
Exercise 2. Let Q be the Kronecker quiver and M the following representation of Q

$$k^3 \xrightarrow[J_{3,0}]{1} k^3$$

where 1 denotes the identity and $J_{3,0} = \begin{bmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}$.

- a) Compute End(M), the endomorphism ring of M.
- b) Show that End(M) is a local ring.

Exercise 3. Consider the following quiver Q and his representation M



Compute $\operatorname{End}(M)$.

Exercise 4. Let A be a finite-dimensional algebra over k. Then, for every S simple module over A, show that $\operatorname{End}_A(S) \cong k$.

- *Exercise* 5. a) Let A be a k-algebra. Show that an A-module M is indecomposable if and only if $\operatorname{End}_A(M)$ has no non-trivial idempotents.
 - b) Consider the quiver ${\cal Q}$

$\bullet \longrightarrow \bullet \longrightarrow \bullet$

of type A_3 . Find all the indecomposable representations of A_3 . (*Hint*: In total they are 6).

You can contact me at ${\tt sava@karlin.mff.cuni.cz}$.