NMAG442 Representation Theory of Finite-Dimensional Algebras

Excercise session 4-April 30, 2021
Our goal today is to explore path algebras and their representations and to employ some previously discussed concepts in doing so.

We work over an algebraically closed k and with finite-dimensional modules.

Path algebras and their representations

Exercise 1 (7, III. 4 in [1]). Let us have the following quiver:

bound by $\alpha \beta=0$. Show indecomposability of the following representation:

(Hint: Compute the endomorphism ring.)
Exercise 2 (Subspace quiver). Let Q be a quiver with vertices labelled $0, \ldots, n$ and n arrows such that there is one arrow $i \circ \rightarrow \circ 0$ for each $1 \leq i \leq n$. Then, find:
(i) An embedding $k Q \rightarrow M_{n+1}(k)$ (1.3(d), II. 1 and 3.5(c), II. 3 in [1]);
(ii) Natural direct decomposition for every module over $k Q$ (2.4.2 in [2]).

Exercise 3 (Subspace quiver continued). Express the result of (ii) in Exercise 2 with idempotents. In other words, explicitely describe (not necessarily primitive) idempotents in endomorphism rings of finite-dimensional representations of the subspace quiver. Furthermore, compute endomorphism rings of some non-trivial indecomposable representations of the subspace quiver. For instance:

for suitable values of $\lambda \in k$ (find those as well).

Exercise 4 (Kronecker quiver; 15, III. 4 in [1]). Show that the endomorphism ring of the following representation of the Kronecker quiver $(1 \circ \rightrightarrows \circ 2)$:

$$
k[t] \underset{\cdot t}{\stackrel{1}{\longrightarrow}} k[t]
$$

is not local; even though, the representation is indecomposable.
Exercise 5 (Kronecker quiver continued). For any $n \in \mathbb{N}$ find φ, ψ maps such that

$$
k^{n} \underset{\psi}{\stackrel{\varphi}{\rightrightarrows}} k^{n+1}
$$

is indecomposable. Compute the endomorphism ring of such a representation.
Exercise 6 (5, II. 4 in [1]). Let Q be a finite and acyclic quiver. Prove that $k Q$ is a connected k-algebra if and only if $k Q / R_{Q}^{2}$ is a connected k-algebra (R_{Q} is the ideal of $k Q$ generated by all arrows of Q).
Exercise 7 (5(d) and 7(d) in III. 2 in [1]). Given a quiver on four vertices:

bound by the following relations $\alpha \beta=\gamma \delta$ and $\lambda^{3}=0$ (reason that the ideal generated by these realitions is admissible), compute all simple, indecomposable projective (with radicals) and injective modules (with factors by socles) over this quiver.

References

[1] Assem, I., Skowronski, A., and Simson, D. Elements of the Representation Theory of Associative Algebras: Volume 1: Techniques of Representation Theory, vol. 65. Cambridge University Press, 2006.
[2] Krause, H. Representations of quivers via reflection functors. arXiv preprint arXiv:0804.1428 (2008).

Feel free to reach me at jakub.kopriva@mff.cuni.cz. Also, I am available for short consultations on problems from the exercise sessions after previous arrangment via e-mail.

