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Finite representation type



The main theorem

Theorem (Gabriel) [Kra, Theorem 5.1.1 and Corollary 5.3.3]
Let K be a field and Q a finite connected quiver.

1. There are only finitely many indecomposable representations
in repK(Q) iff Q is of Dynkin type.

2. If Q is of Dynkin type, then M 7→ dimM induces a bijection{
indecomposable

representations of Q

}
/ ∼= ←→

{
positive

roots of Q

}
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The Dynkin case

• Suppose that Q is of Dynkin type.

• If M ∈ ind-Q, consider the shortest expression such that

σiσi−1 · · ·σ1(σn · · ·σ2σ1)r (dimM) < 0

• Then σi−1 · · ·σ1c r (dimM) = ei , so S+
i−1 · · · S

+
1 C

r (M) ∼= S(i).

• Consequently M ∼= C−rP(i) is preprojective and preprojective
indecomposable representations are determined by their
dimension vectors.

• On the other hand, any positive root x ∈ Zn is of the form
c−rσ1 · · ·σi−1(ei ) for some i ∈ Q0 and r ≥ 0 such that all
shorter expressions are also positive roots.

• It follows that dimM = x for M = C−rP(i).
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The general case

• Since any non-Dynkin quiver has a subquiver of Euclidean
type, it suffices to prove that there are infinitely many
indecomposable representations for Euclidean quivers.

• Method 1: Find ∞-many indecomposable regular
representations.

• Suppose for simplicity that K is an infinite field. Then we
have from instance

K
1 λ

K (1 λ) K(1 1)

Ãn : K
1
K
1
· · ·

1
K
1
K , D̃n : K2

1
· · ·

1
K2

(1 0)
K

(0 1)
K .

• Method 2: Prove that there are ∞-many preprojectives and
preinjectives in the Euclidean type.
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Representations of Euclidean quivers



The defect of a representation [Kra, §5.2]

• Let Q be an acyclic quiver of Euclidean type (Ãm, D̃m or
Ẽ6,7,8), n = m + 1 = |Q0| and δ ∈ Zn the generating radical
vector:

1

1 2

Ãm : 1 1 · · · 1 1 Ẽ6 : 1 2 3 2 1

2

1 1 Ẽ7 : 1 2 3 4 3 2 1

D̃m : 2 · · · 2 3

1 1 Ẽ8 : 2 4 6 5 4 3 2 1

• Given x ∈ Zn, we have 0 = (δ, x) = 〈δ, x〉+ 〈x , δ〉.
• The number ∂x := 〈δ, x〉 = −〈x , δ〉 if called the defect of x .
• If M ∈ repK(Q), then the defect of M is ∂M := ∂dimM.
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Indecomposable representations sorted out [Kra, §5.2]

Proposition ([Kra, Proposition 5.2.1])
Let Q be an acyclic quiver of Euclidean type, n = |Q0| and
M ∈ ind-Q.

1. M is preprojective iff ∂M < 0.

2. M is preinjective iff ∂M > 0.

3. M is regular iff ∂M = 0.
Proof.
• Since (δ, ei ) = 0 for each i ∈ Q0, we have
σi (δ) = δ − (δ, ei )ei = δ. Hence c±1(δ) = δ.

• Say M = C rP(i) is preprojective (r ≤ 0, i ∈ Q0).

• Since the Euler form is invariant under c : Zn → Zn, we have

∂M = −
〈
c r (dimP(i)), c r (δ)

〉
= −〈dimP(i), δ〉 = −δi < 0.

• Similarly ∂M > 0 for M preinjective. It remains to prove that
∂M = 0 if M is regular. 6



Periodicity of c in the Euclidean case

• Recall that if Q is a quiver of Euclidean type and
∆ = {x ∈ Zn | q(x) ≤ 1}, then ∆/Zδ is finite.
• Since ei ∈ ∆ for each i , there exists h > 0 such that

ch(x)− x ∈ Zδ for each x ∈ Zn.

Lemma ([Kra, Lemma 4.4.5])
Let Q be a quiver of Euclidean type and x ∈ Zn. Then

1. If c r (x) > 0 for all r ∈ Z, then ch(x) = x .

2. If ch(x) = x , then ∂x = 0.
Proof.

1. Suppose ch(x) = x + mδ for m 6= 0. Then ckh(x) = x + kmδ

by induction, so ckh(x) 6> 0 for some k ∈ Z since δ is sincere.

2. Then y =
∑h−1

r=0 c
r (x) is fixed by c , so y ∈ Zδ. Now

0 = 〈δ, y〉 =
∑h−1

r=0

〈
c r (δ), c r (x)

〉
= h · 〈δ, x〉.
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Preprojectives and preinjectives in the Euclidean case

Theorem ([Kra, Theorem 5.3.1])
Let Q be a finite acyclic quiver of Euclidean type. The assignment
M 7→ dimM induces a bijections between

1. the isomorphism classes of indecomposable preprojective
representations of Q and the positive roots of Q with negative
defect and

2. the isomorphism classes of indecomposable preinjective
representations of Q and the positive roots of Q with positive
defect.

The preprojective and preinjective indecomposables form 2n
countably infinite series C−rP(i) and C r I (i), r ≥ 0, i ∈ Q0 of
pairwise non-isomorphic representations.
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Preprojectives and preinjectives in the Euclidean case—proof

Proof.
• If x ∈ ∆ has non-zero defect, then c r (x) < 0 for some r ∈ Z.

• Then x = dimM for M indecomposable preprojective (if
r > 0) or preinjective (if r < 0).

• Finally, C r (P(i)) is non-injective (so non-zero) for each r ≤ 0,
since ∂C r (P(i)) = ∂P(i) < 0. Hence the preprojectives form
n countably infinite series of pairwise non-isomorphic
representations.

• Similarly for preinjectives.
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