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Reflection functors—continued



Reflection functors—reminder [Kra, §3.3]

• Let Q be a quiver with a sink i ∈ Q0 and Q ′ := σiQ.

• We have additive functors S−i : RepK(Q
′)� RepK(Q) : S+

i .

• If M = (Mi , fα) ∈ RepKQ, then S+
i (M) is defined via

0 −→ M ′i
(f ′α)−→

⊕
(α : j→i)∈Q1

Mj
(fα)−→ Mi ,

Qfα1

fα2

fα3

Mi ·
· Mj1

· Mj2 = Mj3

Q ′f ′α1

f ′α2

f ′α3

M ′i ·
· Mj1

· Mj2 = Mj3
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Reflections versus reflection functors [Kra, Lemma 3.3.2]

• Recall: We natural split monomorphism

ιi ,M : S−i S+
i (M)� M,

where Coker ιi ,M is a direct sum of copies of the simple S(i).
• M has no summand isomorphic to S(i) iff

(fα) :
⊕

α : j→i Mj → Mi is surjective.
• In that case, dimS+

i (M)i =
∑

α : j→i Mj −Mi .
• On the other hand, σi (dimM) = dimM − (dimM, ei )ei , so

σi (dimM)i = dimMi − (dimM, ei )

= dimMi − (2 dimMi −
∑

α : j→i
dimMj)

=
∑

α : j→i
dimMj − dimMi .

• Thus, if M ∈ repK(Q) and M has no summands isomorphic to
S(i), then dimS+

i (M) = σi (dimM). Dually for S−i . 3



Bijections between indecomposable representations [Kra, §3.3]

Theorem ([Kra, Theorem 3.3.5])
Let Q be a quiver with sink i ∈ Q0 and Q ′ = σiQ. Then the
functors S+

i and S−i induce mutually inverse bijections between

1. the isomorphism classes of indecomposable representations of
Q and

2. the isomorphism classes of indecomposable representations of
Q ′,

with the exception of the simple representation S(i) (both over Q
and Q ′), which is annihilated by these functors.

Moreover, dimS±M = σi (dimM) for every indecomposable
representation M of the corresponding quiver which is not
isomorphic to S(i).
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Coxeter functors



Coxeter functors [Kra, §3.4]

• Let Q be a quiver with admissibly ordered vertices
Q0 = {1, 2, . . . , n}.
• Recall, (∃α : i → j) =⇒ (i > j), or equivalently:

i is a sink of σi−1 · · ·σ1Q for each i ∈ Q0

• The Coxeter functors C− : RepK(Q)� RepK(Q) : C+ are
defined as the compositions

C− : RepK(Q)
S−n
�
S+
n

RepK(σn−1 · · ·σ1Q)
S−n−1
�
S+
n−1

· · ·

· · ·
S−3
�
S+
3

RepK(σ2σ1Q)
S−2
�
S+
2

RepK(σ1Q)
S−1
�
S+
1

RepK(Q) : C+
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Independence on the admissible ordering

Lemma ([Kra, Lemma 3.4.1])
The functors C± : RepK(Q)→ RepK(Q) do not depend on the
choice of the admissible ordering of vertices of Q.

Proof.

• Key observation: If i 6= j are two sinks of Q, then
S+
i S+

j = S+
j S+

i .

• Suppose that Q0 = {1, 2, . . . , n} is admissibly ordered and
Q0 = {i1, i2, . . . , in} is another admissible ordering.

• Then i1 is a sink. By the above,
S+
i1
S+
i1−1 · · · S

+
1 = S+

i−1 · · · S
+
1 S

+
i1
,

so
S+
n · · · S+

1 = S+
n · · · Ŝ+

i1
· · · S+

1 S
+
i1
.

• Similarly S+
n · · · Ŝ+

i1
· · · S+

1 S
+
i1

= S+
n · · · Ŝ+

i1
· · · Ŝ+

i2
· · · S+

1 S
+
i2
S+
i1

,
and so on. 6



Projectives as reflections of simples

Lemma ([Kra, Lemma 3.4.2(1)])
Let Q be a quiver with admissibly ordered vertices
Q0 = {1, 2, . . . , n}. Given i ∈ Q0, then dimP(i) = σ1 · · ·σi−1(ei )
and dimI (i) = σn · · ·σi+1(ei ).

Proof.

• This is a direct computation:
σi−1(ei ) = ei − (ei , ei−1)ei−1 = ei +

∣∣{α : i → i−1}
∣∣ · ei−1,

σi−2σi−1(ei ) = σi (ei )− (σi (ei−1), ei−2)ei−2

= ei − (ei , ei−1)ei−1

− (ei , ei−2)ei−2 + (ei , ei−1)(ei−1, ei−2)ei−2

= ei +
∣∣{α : i → i−1}

∣∣ · ei−1 + ∣∣{α : i  i−2}
∣∣ · ei−2.

• In general, induction shows for each 0 ≤ ` ≤ i − 1:

σi−` · · ·σi−1(ei ) =
∑`

j=0

∣∣{α : i  i−`}
∣∣ · ei−`.
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Projectives as reflections of simples—continued

Lemma ([Kra, Lemma 3.4.2(2)])
Let Q be a quiver with admissibly ordered vertices
Q0 = {1, 2, . . . , n}. Given i ∈ Q0, we have

1. P(i) ∼= S−1 · · · S
−
i−1
(
S(i)

)
(here S(i) ∈ repK(σi−1 · · ·σ1Q)),

2. I (i) ∼= S+
n · · · S+

i+1

(
S(i)

)
(here S(i) ∈ repK(σi+1 · · ·σnQ)).

Proof.

• We know that dimP(i) = σ1 · · ·σi−1(ei ).
• Therefore, for each 0 ≤ ` ≤ i − 1:

dimS+
` · · · S

+
1

(
P(i)

)
= σ`+1 · · ·σi−1(ei ).

• In particular (for ` = i − 1), dimS+
i−1 · · · S

+
1

(
P(i)

)
= ei , so

S+
i−1 · · · S

+
1

(
P(i)

) ∼= S(i).

• It follows that P(i) ∼= S−1 · · · S
−
i−1
(
S(i)

)
.
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Indecomposables annihilated by Coxeter functors

Proposition ([Kra, Proposition 3.4.3])
Let Q be a finite acyclic quiver, K a field and M ∈ ind-KQ.

1. C+(M) = 0 iff M is projective. Otherwise, C−C+(M) ∼= M

and dimC+(M) = c(dimM).

2. C−(M) = 0 iff M is injective. Otherwise, C+C−(M) ∼= M

and dimC−(M) = c−1(dimM).
Proof.
• Let Q0 = {1, 2, . . . , n} be an admissible ordering.

• Suppose that C+(M) = 0 and let 1 ≤ i ≤ n be smallest
possible such that S+

i · · · S
+
1 (M) = 0.

• Then S+
i−1 · · · S

+
1 (M) ∼= S(i), so

M ∼= S−1 · · · S
−
i−1
(
S(i)

) ∼= P(i).

• Otherwise C−C+(M) ∼= M and dimC+(M) = c(dimM) by
the theorem about reflection functors. 9



Action of the Coxeter functors on indecomposables

Corollary
Let Q be a finite acyclic quiver. Then the functors C+ and C−

induce mutually inverse bijections between

1. the isomorphism classes of non-projective indecomposable
representations of Q and

2. the isomorphism classes of non-injective indecomposable
representations of Q.

Moreover, dimC±(M) = c±1(dimM) for every indecomposable
representation M which is non-projective (for C+) or non-injective
(for C−), respectively.

Corollary
The Coxeter transformation c = σn · · ·σ2σ1 : Zn → Zn does not
depend on the choice of the admissible ordering of vertices.
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More on the Coxeter transformation

Lemma ([Kra, Lemma 4.4.1])
Let Q be a finite acyclic quiver (n = |Q0|) and K a field.

• c(dimP(i)) = −dimI (i) for each i ∈ Q0.

• {dimP(i) | i ∈ Q0} and {dimI (i) | i ∈ Q0} are bases of Zn.

Proof.
1. c(dimP(i)) = cσ1 · · ·σi−1(ei ) = σn · · ·σi+1σi (ei ) =
−σn · · ·σi+1(ei ) = −dimI (i).

2. We have for each i ∈ Q0:
ei = dimP(i)−

∑
α : i→j

dimP(j) since radP(i) ∼=
⊕
α : i→j

P(j),

= dimI (i)−
∑
α : j→i

dimI (j) since I (i)/ soc I (i) ∼=
⊕
α : j→i

I (j).
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Preprojective and preinjective
representations



Preprojective and preinjective representations [Kra, §3.5]

Notation
Let K be a field, Q a finite acyclic quiver and r ∈ Z. Then

C r =


(C+)r if r > 0,

1RepK(Q) if r = 0,

(C−)|r | if r < 0.

Definition
Let M be an indecomposable representation of Q. Then

1. M is preprojective if M ∼= C rP(i) for some i ∈ Q0 and r ≤ 0.

2. M is preinjective if M ∼= C r I (i) for some i ∈ Q0 and r ≥ 0.

3. M is regular otherwise (equivalently: C r (M) 6= 0 ∀r ∈ Z).
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Determination by dimension vectors

Proposition ([Kra, Proposition 3.5.2])
Let K be a field and Q a finite acyclic quiver. If M,N are two
indecomposable representations and M is preprojective or
preinjective, then

M ∼= N ⇐⇒ dimM = dimN.

Proof.
• If M is preprojective, then M ∼= C rP(i) for i ∈ Q0 and r ≤ 0.

• If dimM = dimN, then

dimN = (σ1 · · ·σn)rσ1 · · ·σi−1(ei ).

• In particular S+
i−1 · · · S

+
1 C
−r (M) ∼= S(i) and, thus

N ∼= C rS−1 · · · S
−
i−1
(
S(i)

) ∼= C rP(i) ∼= M.
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A unique form of preprojectives and preinjectives

Proposition ([Kra, Proposition 3.5.2])
Let K be a field and Q a finite acyclic quiver.

1. C rP(i) = C sP(j) 6= 0 implies i = j and r = s.

2. C r I (i) = C s I (j) 6= 0 implies i = j and r = s.

Proof.

• If C rP(i) ∼= C sP(j) 6= 0, then P(i) ∼= C s−rP(j), so s − r ≤ 0.

• By symmetry also r − s ≤ 0, so r = s.

• Now P(i) ∼= P(j), which implies i = j (e.g. look at the
quotients modulo the radical).
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