Representation theory of finite dimensional algebras (NMAG 442)

Notes for the streamed lecture

Jan Šťovíček April 30, 2020

Department of Algebra, Charles University, Prague

Reflection functors-continued

Coxeter functors

Preprojective and preinjective representations

Reflection functors—continued

Reflection functors—reminder [Kra, §3.3]

- Let Q be a quiver with a sink $i \in Q_0$ and $Q' := \sigma_i Q$.
- We have additive functors S_i^- : $\operatorname{Rep}_{\mathsf{K}}(Q') \rightleftharpoons \operatorname{Rep}_{\mathsf{K}}(Q) \colon S_i^+$.
- If $M = (M_i, f_\alpha) \in \operatorname{Rep}_{\mathsf{K}} Q$, then $S_i^+(M)$ is defined via

$$0 \longrightarrow M'_i \xrightarrow{(f'_{\alpha})} \bigoplus_{(\alpha: j \to i) \in Q_1} M_j \xrightarrow{(f_{\alpha})} M_i,$$

• Recall: We natural split monomorphism

$$\iota_{i,M}\colon S_i^-S_i^+(M)\rightarrowtail M,$$

where Coker $\iota_{i,M}$ is a direct sum of copies of the simple S(i).

- *M* has no summand isomorphic to S(i) iff $(f_{\alpha}): \bigoplus_{\alpha: i \to i} M_j \to M_i$ is surjective.
- In that case, dim $S_i^+(M)_i = \sum_{\alpha: j \to i} M_j M_i$.
- On the other hand, $\sigma_i(\underline{\dim}M) = \underline{\dim}M (\underline{\dim}M, e_i)e_i$, so

$$\sigma_i(\underline{\dim}M)_i = \dim M_i - (\underline{\dim}M, e_i)$$

= dim $M_i - (2 \dim M_i - \sum_{\alpha: j \to i} \dim M_j)$
= $\sum_{\alpha: j \to i} \dim M_j - \dim M_i.$

• Thus, if $M \in \operatorname{rep}_{\mathsf{K}}(Q)$ and M has no summands isomorphic to S(i), then $\underline{\dim}S_i^+(M) = \sigma_i(\underline{\dim}M)$. Dually for S_i^- .

Bijections between indecomposable representations [Kra, §3.3]

Theorem ([Kra, Theorem 3.3.5]) Let Q be a quiver with sink $i \in Q_0$ and $Q' = \sigma_i Q$. Then the functors S_i^+ and S_i^- induce mutually inverse bijections between

- 1. the isomorphism classes of indecomposable representations of $\ensuremath{\mathcal{Q}}$ and
- 2. the isomorphism classes of indecomposable representations of $Q^\prime,$

with the exception of the simple representation S(i) (both over Q and Q'), which is annihilated by these functors.

Moreover, $\underline{\dim}S^{\pm}M = \sigma_i(\underline{\dim}M)$ for every indecomposable representation M of the corresponding quiver which is not isomorphic to S(i).

Coxeter functors

Coxeter functors [Kra, §3.4]

- Let Q be a quiver with admissibly ordered vertices
 Q₀ = {1, 2, ..., n}.
- Recall, $(\exists \alpha : i \to j) \implies (i > j)$, or equivalently: *i* is a sink of $\sigma_{i-1} \cdots \sigma_1 Q$ for each $i \in Q_0$
- The Coxeter functors C⁻: Rep_K(Q)
 ⊂ Rep_K(Q): C⁺ are defined as the compositions

$$C^{-}: \operatorname{Rep}_{\mathsf{K}}(Q) \stackrel{S_{n}^{-}}{\underset{S_{n}^{+}}{\overset{\operatorname{Rep}_{\mathsf{K}}}}} \operatorname{Rep}_{\mathsf{K}}(\sigma_{n-1} \cdots \sigma_{1}Q) \stackrel{S_{n-1}^{-}}{\underset{S_{n-1}^{+}}{\overset{\operatorname{C}}{\underset{S_{n-1}^{+}}{\overset{\operatorname{Rep}_{\mathsf{K}}}}}} \cdots$$
$$\cdots \stackrel{S_{3}^{-}}{\underset{S_{3}^{+}}{\overset{\operatorname{Rep}_{\mathsf{K}}}} \operatorname{Rep}_{\mathsf{K}}(\sigma_{2}\sigma_{1}Q) \stackrel{S_{2}^{-}}{\underset{S_{2}^{+}}{\overset{\operatorname{Rep}_{\mathsf{K}}}} \operatorname{Rep}_{\mathsf{K}}(\sigma_{1}Q) \stackrel{S_{1}^{-}}{\underset{S_{1}^{+}}{\overset{\operatorname{Rep}_{\mathsf{K}}}} \operatorname{Rep}_{\mathsf{K}}(Q): C^{+}$$

Independence on the admissible ordering

Lemma ([Kra, Lemma 3.4.1]) The functors C^{\pm} : $\operatorname{Rep}_{\mathsf{K}}(Q) \to \operatorname{Rep}_{\mathsf{K}}(Q)$ do not depend on the choice of the admissible ordering of vertices of Q.

Proof.

- Key observation: If $i \neq j$ are two sinks of Q, then $S_i^+S_j^+=S_j^+S_i^+.$
- Suppose that $Q_0 = \{1, 2, ..., n\}$ is admissibly ordered and $Q_0 = \{i_1, i_2, ..., i_n\}$ is another admissible ordering.
- Then i_1 is a sink. By the above, $S_{i_1}^+S_{i_1-1}^+\cdots S_1^+=S_{i-1}^+\cdots S_1^+S_{i_1}^+,$

SO

 $S_{n}^{+} \cdots S_{1}^{+} = S_{n}^{+} \cdots \widehat{S_{i_{1}}^{+}} \cdots S_{1}^{+} S_{i_{1}}^{+}.$ • Similarly $S_{n}^{+} \cdots \widehat{S_{i_{1}}^{+}} \cdots S_{1}^{+} S_{i_{1}}^{+} = S_{n}^{+} \cdots \widehat{S_{i_{1}}^{+}} \cdots \widehat{S_{i_{2}}^{+}} \cdots S_{1}^{+} S_{i_{2}}^{+} S_{i_{1}}^{+},$ and so on.

Projectives as reflections of simples

Lemma ([Kra, Lemma 3.4.2(1)]) Let Q be a quiver with admissibly ordered vertices $Q_0 = \{1, 2, ..., n\}$. Given $i \in Q_0$, then $\underline{\dim}P(i) = \sigma_1 \cdots \sigma_{i-1}(e_i)$ and $\underline{\dim}I(i) = \sigma_n \cdots \sigma_{i+1}(e_i)$.

Proof.

• This is a direct computation:

$$\begin{aligned} \sigma_{i-1}(e_i) &= e_i - (e_i, e_{i-1})e_{i-1} = e_i + \left| \{ \alpha : i \to i-1 \} \right| \cdot e_{i-1}, \\ \sigma_{i-2}\sigma_{i-1}(e_i) &= \sigma_i(e_i) - (\sigma_i(e_{i-1}), e_{i-2})e_{i-2} \\ &= e_i - (e_i, e_{i-1})e_{i-1} \\ &- (e_i, e_{i-2})e_{i-2} + (e_i, e_{i-1})(e_{i-1}, e_{i-2})e_{i-2} \\ &= e_i + \left| \{ \alpha : i \to i-1 \} \right| \cdot e_{i-1} + \left| \{ \alpha : i \rightsquigarrow i-2 \} \right| \cdot e_{i-2}. \end{aligned}$$

• In general, induction shows for each $0 \le \ell \le i - 1$: $\sigma_{i-\ell} \cdots \sigma_{i-1}(e_i) = \sum_{i=0}^{\ell} |\{\alpha : i \rightsquigarrow i-\ell\}| \cdot e_{i-\ell}.$

7

Projectives as reflections of simples—continued

Lemma ([Kra, Lemma 3.4.2(2)]) Let Q be a quiver with admissibly ordered vertices $Q_0 = \{1, 2, ..., n\}$. Given $i \in Q_0$, we have 1. $P(i) \cong S_1^- \cdots S_{i-1}^-(S(i))$ (here $S(i) \in \operatorname{rep}_{\mathsf{K}}(\sigma_{i-1} \cdots \sigma_1 Q))$, 2. $I(i) \cong S_n^+ \cdots S_{i+1}^+(S(i))$ (here $S(i) \in \operatorname{rep}_{\mathsf{K}}(\sigma_{i+1} \cdots \sigma_n Q)$).

Proof.

- We know that $\underline{\dim}P(i) = \sigma_1 \cdots \sigma_{i-1}(e_i)$.
- Therefore, for each $0 \le \ell \le i 1$:

$$\underline{\dim}S^+_{\ell}\cdots S^+_1(P(i))=\sigma_{\ell+1}\cdots \sigma_{i-1}(e_i).$$

• In particular (for $\ell = i - 1$), $\underline{\dim} S_{i-1}^+ \cdots S_1^+ (P(i)) = e_i$, so $S_{i-1}^+ \cdots S_1^+ (P(i)) \cong S(i)$.

• It follows that $P(i) \cong S_1^- \cdots S_{i-1}^-(S(i))$.

Indecomposables annihilated by Coxeter functors

Proposition ([Kra, Proposition 3.4.3]) Let Q be a finite acyclic quiver, K a field and $M \in ind-KQ$.

- 1. $C^+(M) = 0$ iff M is projective. Otherwise, $C^-C^+(M) \cong M$ and $\underline{\dim}C^+(M) = c(\underline{\dim}M)$.
- 2. $C^{-}(M) = 0$ iff M is injective. Otherwise, $C^{+}C^{-}(M) \cong M$ and $\underline{\dim}C^{-}(M) = c^{-1}(\underline{\dim}M)$.

Proof.

- Let $Q_0 = \{1, 2, \dots, n\}$ be an admissible ordering.
- Suppose that $C^+(M) = 0$ and let $1 \le i \le n$ be smallest possible such that $S_i^+ \cdots S_1^+(M) = 0$.
- Then $S^+_{i-1}\cdots S^+_1(M)\cong S(i)$, so

$$M \cong S_1^- \cdots S_{i-1}^-(S(i)) \cong P(i).$$

• Otherwise $C^-C^+(M) \cong M$ and $\underline{\dim}C^+(M) = c(\underline{\dim}M)$ by the theorem about reflection functors.

Action of the Coxeter functors on indecomposables

Corollary

Let Q be a finite acyclic quiver. Then the functors C^+ and C^- induce mutually inverse bijections between

- 1. the isomorphism classes of non-projective indecomposable representations of ${\boldsymbol{Q}}$ and
- 2. the isomorphism classes of non-injective indecomposable representations of Q.

Moreover, $\underline{\dim} C^{\pm}(M) = c^{\pm 1}(\underline{\dim} M)$ for every indecomposable representation M which is non-projective (for C^+) or non-injective (for C^-), respectively.

Corollary

The Coxeter transformation $c = \sigma_n \cdots \sigma_2 \sigma_1 \colon \mathbb{Z}^n \to \mathbb{Z}^n$ does not depend on the choice of the admissible ordering of vertices.

More on the Coxeter transformation

Lemma ([Kra, Lemma 4.4.1]) Let Q be a finite acyclic quiver $(n = |Q_0|)$ and K a field.

• $c(\underline{\dim}P(i)) = -\underline{\dim}I(i)$ for each $i \in Q_0$.

• $\{\underline{\dim}P(i) \mid i \in Q_0\}$ and $\{\underline{\dim}I(i) \mid i \in Q_0\}$ are bases of \mathbb{Z}^n .

Proof. 1. $c(\underline{\dim}P(i)) = c\sigma_1 \cdots \sigma_{i-1}(e_i) = \sigma_n \cdots \sigma_{i+1}\sigma_i(e_i) = -\sigma_n \cdots \sigma_{i+1}(e_i) = -\underline{\dim}I(i).$

2. We have for each $i \in Q_0$: $e_i = \underline{\dim}P(i) - \sum_{\alpha: i \to j} \underline{\dim}P(j)$ since $\operatorname{rad}P(i) \cong \bigoplus_{\alpha: i \to j} P(j)$, $= \underline{\dim}I(i) - \sum_{\alpha: j \to i} \underline{\dim}I(j)$ since $I(i)/\operatorname{soc}I(i) \cong \bigoplus_{\alpha: j \to i} I(j)$.

Preprojective and preinjective representations

Notation

Let K be a field, Q a finite acyclic quiver and $r \in \mathbb{Z}$. Then

$$C^{r} = \begin{cases} (C^{+})^{r} & \text{if } r > 0, \\ 1_{\operatorname{Rep}_{\mathsf{K}}(Q)} & \text{if } r = 0, \\ (C^{-})^{|r|} & \text{if } r < 0. \end{cases}$$

Definition

Let M be an indecomposable representation of Q. Then

- 1. *M* is preprojective if $M \cong C^r P(i)$ for some $i \in Q_0$ and $r \leq 0$.
- 2. *M* is preinjective if $M \cong C^r I(i)$ for some $i \in Q_0$ and $r \ge 0$.
- 3. *M* is regular otherwise (equivalently: $C^r(M) \neq 0 \ \forall r \in \mathbb{Z}$).

Proposition ([Kra, Proposition 3.5.2])

Let K be a field and Q a finite acyclic quiver. If M, N are two indecomposable representations and M is preprojective or preinjective, then

$$M \cong N \iff \underline{\dim}M = \underline{\dim}N.$$

Proof.

- If M is preprojective, then $M \cong C^r P(i)$ for $i \in Q_0$ and $r \leq 0$.
- If $\underline{\dim}M = \underline{\dim}N$, then

$$\underline{\dim} N = (\sigma_1 \cdots \sigma_n)^r \sigma_1 \cdots \sigma_{i-1}(e_i).$$

• In particular
$$S_{i-1}^+ \cdots S_1^+ C^{-r}(M) \cong S(i)$$
 and, thus
 $N \cong C^r S_1^- \cdots S_{i-1}^-(S(i)) \cong C^r P(i) \cong M.$

Proposition ([Kra, Proposition 3.5.2]) Let K be a field and Q a finite acyclic quiver.

- 1. $C^r P(i) = C^s P(j) \neq 0$ implies i = j and r = s.
- 2. $C^r I(i) = C^s I(j) \neq 0$ implies i = j and r = s.

Proof.

- If $C^r P(i) \cong C^s P(j) \neq 0$, then $P(i) \cong C^{s-r} P(j)$, so $s-r \leq 0$.
- By symmetry also $r s \leq 0$, so r = s.
- Now P(i) ≅ P(j), which implies i = j (e.g. look at the quotients modulo the radical).