Representation theory of finite dimensional algebras (NMAG 442)

Notes for the streamed lecture

Jan Šťovíček April 23, 2020

Department of Algebra, Charles University, Prague

Roots of Dynkin and Eucledian diagrams-continued

Reflections

Coxeter transformation

Reflection functors

Roots of Dynkin and Eucledian diagrams—continued

Reminder [Kra, §4.3]

 $\bullet~$ Let Γ be a Dynkin or a Euclidean diagram and

$$q(x) = \sum_{i \in \Gamma_0} x_i^2 - \sum_{i \leq j} d_{ij} x_i x_j$$

- Then (x, y) = q(x + y) q(x) q(y) is positive semidefinite and q(x) = ¹/₂(x, x).
- A root is a non-zero element of $\Delta = \{x \in \mathbb{Z}^n \mid q(x) \le 1\}.$
- Facts about roots ([Kra, Prop. 4.3.1]):
 - 1. The basis vector e_i is a root for each $i \in \Gamma_0$.
 - 2. x is a root iff -x is a root.
 - 3. Each root x is positive (x > 0) or negative (x < 0).

Finiteness for roots—the Euclidean case [Kra, §4.3]

Proposition (Proposition 4.3.1(2) and (4)) Let Γ be Euclidean. Then:

- 1. If $x \in \Delta$ and $y \in \operatorname{rad} q$, then $x + y \in \Delta$.
- 2. Δ /rad *q* is finite.

Proof.

- q(x + y) = q(x) + (x, y) + q(y) = q(x). This proves 1.
- Let δ ∈ Zⁿ be the smallest positive radical vector and i ∈ Γ₀ such that δ_i = 1.
- If $x \in \Delta$, then $y := x x_i \delta \in \Delta$ defines the same coset in $\Delta / \operatorname{rad} q$ and $y_i = 0$.
- Moreover, both $\delta + y$ and δy are positive roots (look at the *i*-th coordinate!)

• Hence
$$-\delta < y < \delta$$
.

Corollary (Proposition 4.3.1(5)) If Γ be Dynkin, then Δ is finite.

Proof.

- There is a Euclidean diagram Γ such that Γ is obtained by deleting a vertex *i* from Γ.
- A root of Γ can be viewed as a root of Γ whose *i*-th coordinate is 0.

Reflections

Simple reflections [Kra, §3.2]

- Let Q be a finite quiver, $q(x) = \sum_{i \in Q_0} x_i^2 \sum_{\alpha: i \to j} x_i x_j$ and (x, y) = q(x + y) q(x) q(y), as before.
- Assume Q has no loops, i.e. no (). Then

$$(e_i, e_i) = 2\langle e_i, e_i \rangle = 2.$$

 In that case, we can always define the reflection with respect to vertex i: σ_i: ℤⁿ → ℤⁿ

$$x\mapsto x-2\frac{(x,e_i)}{(e_i,e_i)}e_i=x-(x,e_i)e_i$$

- Observation: $\sigma_i^2 = \mathbb{1}_{\mathbb{Z}^n}$.
- Observation: $(\sigma_i(x), \sigma_i(y)) = (x, y) \quad (\forall x, y \in \mathbb{Z}^n).$
- Observation: If the underlying graph of Q is Dynkin or Euclidean, then σ_i permutes roots (as $q(x) = q(\sigma_i(x))$).

- If q is positive def. (= Q Dynkin), then (-, -): Zⁿ × Zⁿ → Z extends to a scalar product (-, -): Rⁿ × Rⁿ → R.
- Then we can also extend σ_i to ℝⁿ → ℝⁿ and we really get a reflection with respect to the hyperplane orthogonal to e_i:

Reflections and roots [Kra, $\S4.3$]

Lemma ([Kra, Lemma 4.3.2]) Let Q be a quiver whose underlying graph is Dynkin or Euclidean, and let $i \in \Gamma_0$. If x is a positive root and $\sigma_i(x)$ is not positive, then $x = e_i$.

Proof.

- If $\sigma_i(x)$ is not positive, then $\sigma_i(x) < 0$.
- But $\sigma_i(x) = x (x, e_i)e_i$, so $\sigma_i(x)_j = x_j$ for each $j \neq i$.
- It follows that $x_j = 0$ for all $j \neq i$, so $x = e_i$.

Example

Coxeter transformation

Change or orientation and admissible orderings [Kra, $\S3.1$]

Definition

Let Q be a finite quiver. An ordering of vertices $Q_0 = \{1, 2, ..., n\}$ is admissible, if $(\exists \alpha : i \to j) \implies (i > j)$.

Examples

 $Q=(3\rightarrow 2\rightarrow 1).$

Definition

If Q is a quiver and $i \in Q_0$, we denote $\sigma_i Q$ the quiver obtained from Q by changing orientation of the arrows incident at *i*.

Lemma

An ordering $Q_0 = \{1, 2, ..., n\}$ is admissible iff i is a sink of $\sigma_{i-1} \cdots \sigma_1 Q$ for each $i \in Q_0$.

Examples

 $\overline{Q} = (3 \to 2 \to 1) \rightsquigarrow \sigma_1 Q = (3 \to 2 \leftarrow 1) \rightsquigarrow \sigma_2 \sigma_1 Q = (3 \leftarrow 2 \to 1) \rightsquigarrow \sigma_3 \sigma_2 \sigma_1 Q = Q.$

Coxeter transformation [Kra, §4.4]

Definition

Let Q be a finite quiver with an admissible ordering of vertices, $Q_0 = \{1, 2, ..., n\}$. The automorphism

$$c: \mathbb{Z}^n \to \mathbb{Z}^n,$$
$$x \mapsto \sigma_n \cdots \sigma_2 \sigma_1(x)$$

is called the Coxeter transformation.

Lemma ([Kra, Lemma 4.4.3]) Let $x \in \mathbb{Z}^n$. Then c(x) = x iff $x \in rad q$.

Proof.

The following statements are equivalent for $x \in \mathbb{Z}^n$:

• c(x) = x,

•
$$x_i = \sigma_i(x)_i (= x_i - (x, e_i))$$
 for each i ,

• $(x, e_i) = 0$ for each *i*.

Coxeter and positivity in the Dynkin case [Kra, $\S4.4$]

- If Q is of Dynkin type, then $c \colon \mathbb{Z}^n \to \mathbb{Z}^n$ permutes the finite set Δ .
- In particular, for each *i* there is $r_i > 0$ such that $c^{h_i}(e_i) = e_i$.
- It follows that c^h = 1_{ℤⁿ} for some h > 0. The smallest such h is called the Coxeter number.

Lemma ([Kra, Lemma 4.4.4]) Let Q be of Dynkin type and $x \in \mathbb{Z}^n$. Then $\exists r \ge 0$ such that $c^r(x)$ is not positive.

Proof.

- Put $y = \sum_{r=0}^{h-1} c^r(x)$.
- Then c(y) = y, so $y \in \operatorname{rad} q = \{0\}$.
- Consequently, $c^{r}(x)$ is not positive for some $0 \le r < h$.

Enumerating roots in the Dynkin case

- Let Q be of Dynkin type with admissibly ordered vertices
 Q₀ = {1, 2, ..., n} and x a positive root.
- Let $r \ge 0$ and $1 \le s \le n$ be smallest possible such that

$$\sigma_s\sigma_{s-1}\cdots\sigma_1(\sigma_n\cdots\sigma_2\sigma_1)^r(x)<0.$$

- Then $\sigma_{s-1}\cdots\sigma_1(\sigma_n\cdots\sigma_2\sigma_1)^r(x)=e_s$ (recall Lemma).
- Thus, each positive root has an expression of the form

$$(\sigma_1\sigma_2\cdots\sigma_n)^r\sigma_1\cdots\sigma_{s-1}(e_s),$$

where all the intermediate roots

$$\sigma_t \cdots \sigma_n (\sigma_1 \sigma_2 \cdots \sigma_n)^{r'} \sigma_1 \cdots \sigma_{s-1} (e_s)$$

for all shorter expressions are also positive!

Reflection functors

Reflection functors [Kra, §3.3]

- Let Q be a quiver with a sink $i \in Q_0$. So i is a source in $Q' := \sigma_i Q$.
- We define additive functors S_i^- : $\operatorname{Rep}_{\mathsf{K}}(Q') \rightleftharpoons \operatorname{Rep}_{\mathsf{K}}(Q)$: S_i^+ .
- Consider $M = (M_i, f_\alpha) \in \operatorname{Rep}_K Q$ and the exact sequence

$$0 \longrightarrow M'_i \xrightarrow{(f'_\alpha)} \bigoplus_{(\alpha: j \to i) \in Q_1} M_j \xrightarrow{(f_\alpha)} M_i$$

- We define $S_i^+(M) = (M'_i, f'_\alpha)$ as follows
 - 1. M'_i is as above and $M'_i = M_j$ if $j \neq i$.
 - 2. If $(\alpha: i \to k) \in Q'_1$, then f'_{α} is as above, and if $(\alpha: j \to k) \in Q'_1$ has $j \neq i$, then $f'_{\alpha} = f_{\alpha}$.
- If N = (N_i, g_α) ∈ Rep_K(Q'), then S⁻_i(N) is defined dually using

$$N_i \xrightarrow{(g_{\alpha})} \bigoplus_{(\alpha: i \to j) \in Q'_1} N_j \xrightarrow{(g'_{\alpha})} N'_i \longrightarrow 0$$

Reflections versus reflection functors [Kra, §3.3]

- Consider Q with a sink $i \in Q_0$, $Q' := \sigma_i Q$, and $S_i^-: \operatorname{Rep}_{\mathsf{K}}(Q') \rightleftharpoons \operatorname{Rep}_{\mathsf{K}}(Q): S_i^+.$
- Then we have natural morphisms

$$\iota_i \colon S_i^- S_i^+(M) \rightarrowtail M,$$

 $\pi_i \colon N \twoheadrightarrow S_i^+ S_i^-(N)$

Lemma ([Kra, Lemma 3.3.2])

- M ≃ (S⁻_i S⁺_i(M)) ⊕ Coker ι_i and Coker ι_i is a direct sum of copies of the simple S(i).
 M ≃ (S⁺_i S⁻_i(M)) ⊕ K_i = i = 1
- N ≅ (S⁺_i S⁻_i(N)) ⊕ Ker π_i and Ker π_i is a direct sum of copies of the simple S(i).
- 3. If $M \in \operatorname{rep}_{K}(Q)$ and M has no summand isomorphic to S(i), then $\underline{\dim}S_{i}^{+}(M) = \sigma_{i}(\underline{\dim}M)$.
- 4. If $N \in \operatorname{rep}_{\mathsf{K}}(Q')$ and N has no summand isomorphic to S(i), then $\underline{\dim}S_i^-(N) = \sigma_i(\underline{\dim}N)$.

Lemma ([Kra, Lemma 3.3.3]) Let Q be a quiver, $i \in Q_0$ a sink and $M = (M_j, f_\alpha) \in \operatorname{rep}_K(Q)$ indecomposable. TFAE:

- 1. $M \not\cong S(i)$.
- 2. $S_i^+(M) \neq 0$.
- 3. $S_i^+(M)$ is indecomposable.
- 4. $S_i^-S_i^+(M) \cong M$.
- 5. The map (f_{α}) : $\bigoplus_{\alpha: j \to i} M_j \to M_i$ is surjective.
- 6. $\sigma_i(\underline{\dim}M) > 0.$
- 7. $\sigma_i(\underline{\dim}M) = \underline{\dim}S_i^+(M).$

Bijections between indecomposable representations [Kra, §3.3]

Theorem ([Kra, Theorem 3.3.5]) Let Q be a quiver with sink $i \in Q_0$ and $Q' = \sigma_i Q$. Then the functors S_i^+ and S_i^- induce mutually inverse bijections between

- 1. the isomorphism classes of indecomposable representations of $\ensuremath{\mathcal{Q}}$ and
- 2. the isomorphism classes of indecomposable representations of $Q^\prime,$

with the exception of the simple representation S(i) (both over Q and Q'), which is annihilated by these functors.

Moreover, $\underline{\dim}S^{\pm}M = \sigma_i(\underline{\dim}M)$ for every indecomposable representation M of the corresponding quiver which is not isomorphic to S(i).