Representation theory of finite dimensional algebras (NMAG 442)

Notes for the streamed lecture

Jan Štovíček

April 23, 2020

Department of Algebra, Charles University, Prague

Table of contents

Roots of Dynkin and Eucledian diagrams-continued

Reflections

Coxeter transformation

Reflection functors

Roots of Dynkin and Eucledian diagrams-continued

Reminder [Kra, §4.3]

- Let Γ be a Dynkin or a Euclidean diagram and

$$
q(x)=\sum_{i \in \Gamma_{0}} x_{i}^{2}-\sum_{i \leq j} d_{i j} x_{i} x_{j}
$$

- Then $(x, y)=q(x+y)-q(x)-q(y)$ is positive semidefinite and $q(x)=\frac{1}{2}(x, x)$.
- A root is a non-zero element of $\Delta=\left\{x \in \mathbb{Z}^{n} \mid q(x) \leq 1\right\}$.
- Facts about roots ([Kra, Prop. 4.3.1]):

1. The basis vector e_{i} is a root for each $i \in \Gamma_{0}$.
2. x is a root iff $-x$ is a root.
3. Each root x is positive $(x>0)$ or negative $(x<0)$.

Finiteness for roots-the Euclidean case [Kra, §4.3]

Proposition (Proposition 4.3.1(2) and (4))
Let Γ be Euclidean. Then:

1. If $x \in \Delta$ and $y \in \operatorname{rad} q$, then $x+y \in \Delta$.
2. $\Delta / \operatorname{rad} q$ is finite.

Proof.

- $q(x+y)=q(x)+(x, y)+q(y)=q(x)$. This proves 1 .
- Let $\delta \in \mathbb{Z}^{n}$ be the smallest positive radical vector and $i \in \Gamma_{0}$ such that $\delta_{i}=1$.
- If $x \in \Delta$, then $y:=x-x_{i} \delta \in \Delta$ defines the same coset in $\Delta / \mathrm{rad} q$ and $y_{i}=0$.
- Moreover, both $\delta+y$ and $\delta-y$ are positive roots (look at the i-th coordinate!)
- Hence $-\delta<y<\delta$.

Finiteness for roots-the Dynkin case [Kra, §4.3]

Corollary (Proposition 4.3.1(5))

 If Γ be Dynkin, then Δ is finite.
Proof.

- There is a Euclidean diagram $\tilde{\Gamma}$ such that Γ is obtained by deleting a vertex i from $\tilde{\Gamma}$.
- A root of Γ can be viewed as a root of $\tilde{\Gamma}$ whose i-th coordinate is 0 .

Reflections

Simple reflections [Kra, §3.2]

- Let Q be a finite quiver, $q(x)=\sum_{i \in Q_{0}} x_{i}^{2}-\sum_{\alpha: i \rightarrow j} x_{i} x_{j}$ and $(x, y)=q(x+y)-q(x)-q(y)$, as before.
- Assume Q has no loops, i.e. no \bullet. Then $\left(e_{i}, e_{i}\right)=2\left\langle e_{i}, e_{i}\right\rangle=2$.
- In that case, we can always define the reflection with respect to vertex i :

$$
\begin{aligned}
\sigma_{i}: \mathbb{Z}^{n} & \rightarrow \mathbb{Z}^{n} \\
x & \mapsto x-2 \frac{\left(x, e_{i}\right)}{\left(e_{i}, e_{i}\right)} e_{i}=x-\left(x, e_{i}\right) e_{i}
\end{aligned}
$$

- Observation: $\sigma_{i}^{2}=1_{\mathbb{Z}^{n}}$.
- Observation: $\left(\sigma_{i}(x), \sigma_{i}(y)\right)=(x, y) \quad\left(\forall x, y \in \mathbb{Z}^{n}\right)$.
- Observation: If the underlying graph of Q is Dynkin or Euclidean, then σ_{i} permutes roots (as $q(x)=q\left(\sigma_{i}(x)\right)$).

Why reflections?

- If q is positive def. ($=Q$ Dynkin), then $(-,-): \mathbb{Z}^{n} \times \mathbb{Z}^{n} \rightarrow \mathbb{Z}$ extends to a scalar product $(-,-): \mathbb{R}^{n} \times \mathbb{R}^{n} \rightarrow \mathbb{R}$.
- Then we can also extend σ_{i} to $\mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ and we really get a reflection with respect to the hyperplane orthogonal to e_{i} :

Reflections and roots [Kra, §4.3]

Lemma ([Kra, Lemma 4.3.2])

Let Q be a quiver whose underlying graph is Dynkin or Euclidean, and let $i \in \Gamma_{0}$. If x is a positive root and $\sigma_{i}(x)$ is not positive, then $x=e_{i}$.

Proof.

- If $\sigma_{i}(x)$ is not positive, then $\sigma_{i}(x)<0$.
- But $\sigma_{i}(x)=x-\left(x, e_{i}\right) e_{i}$, so $\sigma_{i}(x)_{j}=x_{j}$ for each $j \neq i$.
- It follows that $x_{j}=0$ for all $j \neq i$, so $x=e_{i}$.

Example

Coxeter transformation

Change or orientation and admissible orderings [Kra, §3.1]

Definition

Let Q be a finite quiver. An ordering of vertices $Q_{0}=\{1,2, \ldots, n\}$ is admissible, if $\quad(\exists \alpha: i \rightarrow j) \Longrightarrow(i>j)$.

Examples
$Q=(3 \rightarrow 2 \rightarrow 1)$.

Definition

If Q is a quiver and $i \in Q_{0}$, we denote $\sigma_{i} Q$ the quiver obtained from Q by changing orientation of the arrows incident at i.

Lemma

An ordering $Q_{0}=\{1,2, \ldots, n\}$ is admissible iff i is a sink of $\sigma_{i-1} \cdots \sigma_{1} Q$ for each $i \in Q_{0}$.

Examples
$Q=(3 \rightarrow 2 \rightarrow 1) \rightsquigarrow \sigma_{1} Q=(3 \rightarrow 2 \leftarrow 1) \rightsquigarrow$
$\sigma_{2} \sigma_{1} Q=(3 \leftarrow 2 \rightarrow 1) \rightsquigarrow \sigma_{3} \sigma_{2} \sigma_{1} Q=Q$.

Coxeter transformation [Kra, §4.4]

Definition

Let Q be a finite quiver with an admissible ordering of vertices, $Q_{0}=\{1,2, \ldots, n\}$. The automorphism

$$
\begin{aligned}
c: \mathbb{Z}^{n} & \rightarrow \mathbb{Z}^{n}, \\
x & \mapsto \sigma_{n} \cdots \sigma_{2} \sigma_{1}(x)
\end{aligned}
$$

is called the Coxeter transformation.

$$
\begin{aligned}
& \text { Example } \\
& \text { If } Q=(3 \rightarrow 2 \rightarrow 1) \text {, then } \\
& c: e_{2} \mapsto e_{1}, \\
& \quad e_{1} \mapsto-e_{1}-e_{2} .
\end{aligned}
$$

Fixed points of the Coxeter transformation [Kra, §4.4]

Lemma ([Kra, Lemma 4.4.3])
Let $x \in \mathbb{Z}^{n}$. Then $c(x)=x$ iff $x \in \operatorname{rad} q$.

Proof.

The following statements are equivalent for $x \in \mathbb{Z}^{n}$:

- $c(x)=x$,
- $x_{i}=\sigma_{i}(x)_{i}\left(=x_{i}-\left(x, e_{i}\right)\right)$ for each i,
- $\left(x, e_{i}\right)=0$ for each i.

Coxeter and positivity in the Dynkin case [Kra, §4.4]

- If Q is of Dynkin type, then $c: \mathbb{Z}^{n} \rightarrow \mathbb{Z}^{n}$ permutes the finite set Δ.
- In particular, for each i there is $r_{i}>0$ such that $c^{h_{i}}\left(e_{i}\right)=e_{i}$.
- It follows that $c^{h}=1_{\mathbb{Z}^{n}}$ for some $h>0$. The smallest such h is called the Coxeter number.

Lemma ([Kra, Lemma 4.4.4])
Let Q be of Dynkin type and $x \in \mathbb{Z}^{n}$. Then $\exists r \geq 0$ such that $c^{r}(x)$ is not positive.

Proof.

- Put $y=\sum_{r=0}^{h-1} c^{r}(x)$.
- Then $c(y)=y$, so $y \in \operatorname{rad} q=\{0\}$.
- Consequently, $c^{r}(x)$ is not positive for some $0 \leq r<h$.

Enumerating roots in the Dynkin case

- Let Q be of Dynkin type with admissibly ordered vertices $Q_{0}=\{1,2, \ldots, n\}$ and x a positive root.
- Let $r \geq 0$ and $1 \leq s \leq n$ be smallest possible such that

$$
\sigma_{s} \sigma_{s-1} \cdots \sigma_{1}\left(\sigma_{n} \cdots \sigma_{2} \sigma_{1}\right)^{r}(x)<0
$$

- Then $\sigma_{s-1} \cdots \sigma_{1}\left(\sigma_{n} \cdots \sigma_{2} \sigma_{1}\right)^{r}(x)=e_{s}($ recall Lemma $)$.
- Thus, each positive root has an expression of the form

$$
\left(\sigma_{1} \sigma_{2} \cdots \sigma_{n}\right)^{r} \sigma_{1} \cdots \sigma_{s-1}\left(e_{s}\right)
$$

where all the intermediate roots

$$
\sigma_{t} \cdots \sigma_{n}\left(\sigma_{1} \sigma_{2} \cdots \sigma_{n}\right)^{r^{\prime}} \sigma_{1} \cdots \sigma_{s-1}\left(e_{s}\right)
$$

for all shorter expressions are also positive!

Reflection functors

Reflection functors [Kra, §3.3]

- Let Q be a quiver with a sink $i \in Q_{0}$. So i is a source in $Q^{\prime}:=\sigma_{i} Q$.
- We define additive functors $S_{i}^{-}: \operatorname{Rep}_{K}\left(Q^{\prime}\right) \rightleftarrows \operatorname{Rep}(Q): S_{i}^{+}$.
- Consider $M=\left(M_{i}, f_{\alpha}\right) \in \operatorname{Rep}_{K} Q$ and the exact sequence

$$
0 \longrightarrow M_{i}^{\prime} \xrightarrow{\left(f_{\alpha}^{\prime}\right)} \bigoplus_{(\alpha: j \rightarrow i) \in Q_{1}} M_{j} \xrightarrow{\left(f_{\alpha}\right)} M_{i}
$$

- We define $S_{i}^{+}(M)=\left(M_{i}^{\prime}, f_{\alpha}^{\prime}\right)$ as follows

1. M_{i}^{\prime} is as above and $M_{j}^{\prime}=M_{j}$ if $j \neq i$.
2. If $(\alpha: i \rightarrow k) \in Q_{1}^{\prime}$, then f_{α}^{\prime} is as above, and if $(\alpha: j \rightarrow k) \in Q_{1}^{\prime}$ has $j \neq i$, then $f_{\alpha}^{\prime}=f_{\alpha}$.

- If $N=\left(N_{i}, g_{\alpha}\right) \in \operatorname{Rep}_{K}\left(Q^{\prime}\right)$, then $S_{i}^{-}(N)$ is defined dually using

$$
N_{i} \xrightarrow{\left(g_{\alpha}\right)} \bigoplus_{(\alpha: i \rightarrow j) \in Q_{1}^{\prime}} N_{j} \xrightarrow{\left(g_{\alpha}^{\prime}\right)} N_{i}^{\prime} \longrightarrow 0
$$

Reflections versus reflection functors [Kra, §3.3]

- Consider Q with a sink $i \in Q_{0}, Q^{\prime}:=\sigma_{i} Q$, and

$$
S_{i}^{-}: \operatorname{Rep}_{K}\left(Q^{\prime}\right) \rightleftarrows \operatorname{Rep}{ }_{K}(Q): S_{i}^{+} .
$$

- Then we have natural morphisms

$$
\begin{aligned}
\iota_{i}: S_{i}^{-} S_{i}^{+}(M) & \mapsto M \\
\pi_{i}: N & \rightarrow S_{i}^{+} S_{i}^{-}(N)
\end{aligned}
$$

Lemma ([Kra, Lemma 3.3.2])

1. $M \cong\left(S_{i}^{-} S_{i}^{+}(M)\right) \oplus \operatorname{Coker} \iota_{i}$ and

Coker ι_{i} is a direct sum of copies of the simple $S(i)$.
2. $N \cong\left(S_{i}^{+} S_{i}^{-}(N)\right) \oplus \operatorname{Ker} \pi_{i}$ and
$\operatorname{Ker} \pi_{i}$ is a direct sum of copies of the simple $S(i)$.
3. If $M \in \operatorname{rep}_{k}(Q)$ and M has no summand isomorphic to $S(i)$, then $\operatorname{dim} S_{i}^{+}(M)=\sigma_{i}(\operatorname{dim} M)$.
4. If $N \in \operatorname{rep}_{k}\left(Q^{\prime}\right)$ and N has no summand isomorphic to $S(i)$, then $\underline{\operatorname{dim}} S_{i}^{-}(N)=\sigma_{i}(\underline{\operatorname{dim}} N)$.

Lemma ([Kra, Lemma 3.3.3])
Let Q be a quiver, $i \in Q_{0}$ a sink and $M=\left(M_{j}, f_{\alpha}\right) \in \operatorname{rep}_{k}(Q)$ indecomposable. TFAE:

1. $M \not \approx S(i)$.
2. $S_{i}^{+}(M) \neq 0$.
3. $S_{i}^{+}(M)$ is indecomposable.
4. $S_{i}^{-} S_{i}^{+}(M) \cong M$.
5. The map $\left(f_{\alpha}\right): \bigoplus_{\alpha: j \rightarrow i} M_{j} \rightarrow M_{i}$ is surjective.
6. $\sigma_{i}(\underline{\operatorname{dim}} M)>0$.
7. $\sigma_{i}(\underline{\operatorname{dim}} M)=\underline{\operatorname{dim}} S_{i}^{+}(M)$.

Bijections between indecomposable representations [Kra, §3.3]

Theorem ([Kra, Theorem 3.3.5])
Let Q be a quiver with sink $i \in Q_{0}$ and $Q^{\prime}=\sigma_{i} Q$. Then the functors S_{i}^{+}and S_{i}^{-}induce mutually inverse bijections between

1. the isomorphism classes of indecomposable representations of Q and
2. the isomorphism classes of indecomposable representations of Q^{\prime}, with the exception of the simple representation $S(i)$ (both over Q and Q^{\prime}), which is annihilated by these functors.

Moreover, $\underline{\operatorname{dim}} S^{ \pm} M=\sigma_{i}(\underline{\operatorname{dim}} M)$ for every indecomposable representation M of the corresponding quiver which is not isomorphic to $S(i)$.

