Representation theory of finite dimensional algebras (NMAG 442)

Notes for the streamed lecture

Jan Štovíček
May 21, 2020

Department of Algebra, Charles University, Prague

Table of contents

The Harada-Sai lemma and consequences-continued

Irredicible morphisms between preprojectives

The Harada-Sai lemma and consequences-continued

The Harada-Sai lemma [Kra, §6.3]

Lemma (Harada-Sai, [Kra, Lemma 6.3.1]) Let $n \geq 1$ and suppose we have in ind $-A$ a chain of
non-isomorphisms $X_{1} \xrightarrow{\varphi_{1}} X_{2} \xrightarrow{\varphi_{2}} \cdots \xrightarrow{\varphi_{2^{n}}-2} X_{2^{n}-1} \xrightarrow{\varphi_{2^{n}-1}^{1}} X_{2^{n}}$ between modules of dimension $\leq n$. Then $\varphi_{2^{n}-1} \cdots \varphi_{1}=0$.

Corollary
Suppose that A is a finite dimensional algebra which is of finite representation type. Then $\exists N>0$ such that $\operatorname{Rad}^{N}(X, Y)=0$ for all $X, Y \in$ ind- A. In particular, each non-isomorphism in ind- A is a sum of compositions of irreducible morphisms by [Kra, Proposition 6.2.4].

Preprojective (and preinjective) representations

- Suppose that $A=K Q$, where Q is a finite acyclic quiver.
- The for each pair of preprojectives $X, Y \in$ ind- $K Q$, there exists $N>0$ such that $\operatorname{Rad}^{N}(X, Y)=0$
- Indeed, suppose that $X=C^{-r} P(i)$ and $Y=C^{-s} P(j)$ and we have a chain of non-isomorphisms

$$
X=X_{1} \xrightarrow{\varphi_{1}} X_{2} \xrightarrow{\varphi_{2}} \cdots \xrightarrow{\varphi_{N-2}} X_{N-1} \xrightarrow{\varphi_{N-1}^{1}} X_{N}=Y .
$$

- If all the $\varphi_{i} \neq 0$, then each X_{i} is isomorphic to $C^{-t} P(k)$ for $k \in Q_{0}$ and t is between r and s (last time).
- So $\varphi_{N-1} \cdots \varphi_{1}=0$ if $N \gg 0$.
- In particular, each non-isomorphism between preprojective modules in ind-KQ is a sum of compositions of irreducible morphisms by [Kra, Proposition 6.2.4].

Irredicible morphisms between preprojectives

Morphisms induced by arrows

- If Q is a finite acyclic quiver and $\alpha: i \rightarrow j$ is an arrow, then we have a monomorphism

$$
\alpha^{*}=\alpha \cdot-: P(j)=e_{j} \cdot K Q \longmapsto e_{i} \cdot K Q=P(i)
$$

- We can collect there together:

$\bigoplus_{\alpha: j \rightarrow i} P(j)<\tau(i) \quad P(i) \leftarrow \leftarrow^{\sigma(i)}<\bigoplus_{\alpha: i \rightarrow k} P(k)=\operatorname{rad} P(i)$.

Radical morphisms to projectives

Lemma ([Kra, Lemma 7.1.2])

TFAE for a morphism $\varphi: X \rightarrow P(i), X \in \bmod -K Q:$

1. $\varphi \in \operatorname{Rad}(X, P(i))$.
2. φ is not an epimorphism.
3. φ admits a factorization $\varphi=\sigma(i) \varphi^{\prime}$.

Proof.

- 1. $\Longleftrightarrow 2$ 2. follows from [Kra, Lemma 6.2.2] (see here) and the fact that each epimorphism to $P(i)$ is a split epimorphism.
- 2. \Longleftrightarrow 3. follow from the fact that $\sigma(i)$: $\operatorname{rad} P(i) \longmapsto P(i)$ and $\operatorname{rad} P(i)$ is the unique maximal submodule of $P(i)$.

Irreducible morphims to projectives

Lemma ([Kra, Lemma 7.1.3(1)])
Let $i \in Q_{0}$ be a vertex and X an indecomposable representation. If
$\varphi: X \rightarrow P(i)$ is an irreducible morphism then there is an arrow
$\beta: i \rightarrow k$ such that $X \cong P(k)$.

Proof.

- We have a factorization $X \xrightarrow{\varphi^{\prime}} \bigoplus_{\alpha: i \rightarrow k} P(k) \stackrel{\sigma(i)}{\longmapsto} P(i)$.
- Since $\sigma(i)$ is not a split epi, φ^{\prime} is a split mono.
- So $X \cong P(k)$ for some arrow $\beta: i \rightarrow k$.

Irreducible morphims to projectives-continued

Notation

- If $X, Y \in$ ind- $K Q, \operatorname{Irr}(X, Y):=\operatorname{Rad}(X, Y) / \operatorname{Rad}^{2}(X, Y)$.
- If $i, j \in Q_{0}$, then $Q_{1}(i, j)=\left\{\alpha \in Q_{1} \mid \alpha: i \rightarrow j\right\}$.

Lemma ([Kra, Lemma 7.1.4])

Let $i, j \in Q_{0}$. Then the map sending an arrow $\alpha: i \rightarrow j$ to the coset $\alpha^{*}+\operatorname{Rad}^{2}(P(j), P(i))$ induces a K-linear isomorphism

$$
K Q_{1}(i, j) \xrightarrow{\sim} \operatorname{Irr}(P(j), P(i)) .
$$

Proof.
This follow from the facts that

1. $\operatorname{Hom}(P(j), P(i))$ has a basis formed by all paths $i \rightsquigarrow j$ and
2. If $X \in$ ind- $K Q$ and there are non-zero morphisms $P(j) \rightarrow X \rightarrow P(i)$, then $X \cong P(k)$ for some $k \in Q_{0}$.

Irreducible morphims from a simple projective

Lemma ([Kra, Lemma 7.1.3(1)])
Let $i \in Q_{0}$ be a sink and $X=\left(X_{i}, f_{\alpha}\right)$ an indecomposable representation. If $\varphi: P(i)=S(i) \rightarrow X$ is an irreducible morphism then there is an arrow $\alpha: j \rightarrow i$ such that $X \cong P(j)$.

Proof.

- It suffices to prove that there is a factorization $\varphi=\varphi^{\prime} \tau(i)$, where $\tau(i): P(i) \rightarrow \bigoplus_{\alpha: j \rightarrow i} P(j)$ is as before.
- Indeed, since $\tau(i)$ is not a split mono, φ^{\prime} is a split epi and consequently $P(j) \cong X$ for some arrow $\alpha: j \rightarrow i$.
- To finish the proof, note that we have

$$
\begin{gathered}
\operatorname{Hom}\left(\bigoplus_{\alpha: j \rightarrow i} P(j), X\right) \xrightarrow{\operatorname{Hom}(\tau(i), X)} \operatorname{Hom}(P(i), X) \\
\sim \downarrow \\
\bigoplus_{\alpha: j \rightarrow i} X_{j} \xrightarrow{\downarrow} \quad X_{i} .
\end{gathered}
$$

- The lower map is surjective by the prop. of S_{i}^{+}, since $X \not \approx S(i)$.

Reflection functors and the radical

Lemma ([Kra, Lemma 7.3.1])
Let $i \in Q_{0}$ be a sink and $X, Y \in$ ind $-K Q$ not isomorphic to $S(i)$.
Then S_{i}^{+}induces isomorphisms $\operatorname{Rad}^{n}(X, Y) \xrightarrow{\sim} \operatorname{Rad}^{n}\left(S_{i}^{+} X, S_{i}^{+} Y\right)$ for all $n \geq 0$. In particular, S_{i}^{+}induces
$\operatorname{Irr}(X, Y) \xrightarrow{\sim} \operatorname{Irr}\left(S_{i}^{+} X, S_{i}^{+} Y\right)$.

Proof.

- We know the result for $n=0$ already and $n=1$ is easy.
- For $n \geq 2$, it suffices to prove that if we have non-zero morphisms $X \rightarrow Z \rightarrow Y$ in ind- $K Q$, then $Z \not \equiv S(i)$. This is clear as well, since otherwise $X \rightarrow Z$ would be a split mono, so an isomorphism.

Irreducible morphisms from indecomposable projectives

- Suppose $Q_{0}=\{1, \ldots, n\}$ is admissibly ordered and we have an arrow $\alpha: i \rightarrow j(i>j)$.
- We construct an irreducible morphism $\alpha_{*}: P(i) \rightarrow C^{-} P(j)$ as follows:
- Put $Q^{\prime}=\sigma_{i-1} \cdots \sigma_{1} Q$ (so i is a sink of Q^{\prime}).
- Then we have an irreducible morphism in ind- $K Q^{\prime}$ (since we have an arrow $\alpha^{\prime}: j \rightarrow i$ in Q^{\prime}),

$$
\alpha^{\prime *}: P^{\prime}(i)=S^{\prime}(i) \rightarrow P^{\prime}(j)=S_{i}^{-} \cdots S_{n}^{-} S_{1}^{-} \cdots S_{j-1}^{-} S^{\prime}(j)
$$

- Then we just take $\alpha_{*}:=S_{1}^{-} \cdots S_{i-1}^{-} \alpha^{\prime *}$ and use the last lemma to prove that it is irreducible.

Irreducible morphisms between indecomposable preprojectives

Proposition [Kra, Proposition 7.3.4]

Let Q be a finite acyclic quiver, $X=C^{-r} P(i)$ and $Y=C^{-s} P(j)$
$\left(i, j \in Q_{0}\right.$ and $\left.r, s \geq 0\right)$. Then

$$
\operatorname{Irr}(X, Y)=\frac{\operatorname{Rad}(X, Y)}{\operatorname{Rad}^{2}(X, Y)}= \begin{cases}K Q_{1}(j, i) & \text { if } s=r \\ K Q_{1}(i, j) & \text { if } s=r+1 \\ 0 & \text { otherwise }\end{cases}
$$

Proof.

- If $s \leq r$, then

$$
\operatorname{Irr}(X, Y) \cong \operatorname{lrr}\left(C^{s-r} P(i), P(j)\right) \cong \begin{cases}K Q_{1}(j, i) & \text { if } s=r \\ 0 & \text { if } s<r\end{cases}
$$

- If $s \geq r+1, \operatorname{Irr}(X, Y) \cong \operatorname{Irr}\left(P(i), C^{r-s} P(j)\right) \cong$

$$
\operatorname{Irr}\left(S(i), S_{i}^{-} \cdots S_{n}^{-} C^{r-s+1} P(j)\right) \cong \begin{cases}K Q_{1}(i, j) & \text { if } s=r+1 \\ 0 & \text { if } s>r+1\end{cases}
$$

Summary [Kra, §§7.4 and 7.5]

- Any morphism between preprojective representations is a K-linear combination of the identity morphisms and compositions of morphisms (where $\alpha: i \rightarrow j, r \geq 0$):

1. $C^{-r} \alpha^{*}: C^{-r} P(j) \rightarrow C^{-r} P(i)$ and
2. $C^{-r} \alpha_{*}: C^{-r} P(i) \rightarrow C^{-r-1} P(j)$.

- The relations between these compositions are generated by the relations

$$
\sum_{\alpha: j \rightarrow i} C^{-r} \alpha_{*} C^{-r} \alpha^{*}+\sum_{\alpha: i \rightarrow k} C^{-r-1} \alpha^{*} C^{-r} \alpha_{*}=0
$$

where $i \in Q_{0}$ and $r \geq 0$ such that $C^{-r-1} P(i) \neq 0$.

- These relations all come from short exact sequences in $\bmod -K Q$,

$$
0 \rightarrow C^{-r} P(i) \rightarrow \bigoplus_{\alpha: j \rightarrow i} C^{-r} P(j) \oplus \bigoplus_{\alpha: i \rightarrow k} C^{-r-1} P(k) \rightarrow C^{-r-1} P(i) \rightarrow 0
$$

