Representation theory of finite dimensional algebras (NMAG 442)

Notes for the streamed lecture

Jan Šťovíček May 21, 2020

Department of Algebra, Charles University, Prague

Reminder and aims

The radical of a category of modules

The Harada-Sai lemma and consequences

Reminder and aims

Classification results so far

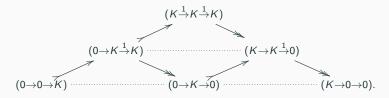
- If Q is an orientation of a Dynkin diagram of type A, D or E, then ind-KQ has finitely many objects and these correspond bijectively to positive roots in Z^{|Q₀|}.
- 2. If K is algebraically closed and $Q = (\bullet \implies \bullet)$, then the indecomposable representations are precisely

2.1 the preprojectives
$$P_n: K^n \xrightarrow{\begin{pmatrix} l \\ 0 \end{pmatrix}} K^{n+1}, n \ge 0,$$

- 2.2 the preinjectives $I_n: K^{n+1} \xrightarrow{(I \ 0)} K^n$, $n \ge 0$,
- 2.3 the regular ones $R_{n,\lambda}$, $n \ge 1$, $\lambda \in \mathbb{P}^1_K$, with $\underline{\dim} R_{n,\lambda} = (n, n)$.

The aim

- We wish to understand (parts of) the category *ind-KQ*, where K is a field and Q a finite acyclic quiver, in terms of generating morphisms and relations among them.
- E.g. if K is any field, $Q = (1 \rightarrow 2 \rightarrow 3)$, then *ind-KQ* is generated by the quiver



• The relations are generated by two zero relations and one commutativity relation (the dotted lines above).

The radical of a category of modules

Definition of the radical [Kra, \S 2.3]

Definition

Let $\mathcal C$ be a small preadditive category and $X,Y\in {\rm obj}\,\mathcal C.$ Then we define

$$\mathsf{Rad}_{\mathcal{C}}(X,Y) = \{\varphi \colon X \to Y \mid \mathbf{1}_{X} - \psi\varphi \text{ is invertible } \forall \psi \colon Y \to X\}$$
$$= \{\varphi \colon X \to Y \mid \psi\varphi \in \mathsf{rad} \operatorname{End}_{\mathcal{C}}(X) \forall \psi \colon Y \to X\}.$$

Remarks

- This generalizes the notion of radical of a ring A—take for C the category with a single object * such that End_C(*) = A.
- 2. A morphism $\bigoplus_{i=1}^{m} X_i \to \bigoplus_{i=1}^{n} Y_j$ is in the radical iff all the components $X_i \to Y_j$ are in the radical (exercise).
- 3. $\operatorname{Rad}_{\mathcal{C}}(X, X) = \operatorname{rad} \operatorname{End}(X)$ (exercise).
- 4. Main interest: C = mod-A or C = ind-A, A fin. dim. alg.

5. If
$$C = ind-A$$
, then
 $\operatorname{Rad}_{\mathcal{C}}(X, Y) = \{ \varphi \colon X \to Y \mid \varphi \text{ is non-isomorphism} \}.$

Powers of the radical [Kra, $\S6.1$]

Definition

Let \mathcal{C} be a small preadditive category and $X, Y \in \operatorname{obj} \mathcal{C}$. We inductively define

•
$$\operatorname{Rad}_{\mathcal{C}}^{0}(X, Y) = \operatorname{Hom}_{\mathcal{C}}(X, Y),$$

• $\operatorname{Rad}_{\mathcal{C}}^{n+1}(X, Y) = \left\{ \sum_{i=1}^{n} \varphi_{i}'' \varphi_{i}' \mid \begin{array}{c} \varphi_{i}' \in \operatorname{Rad}_{\mathcal{C}}(X, Z_{i}), \\ \varphi_{i}'' \in \operatorname{Rad}_{\mathcal{C}}^{n}(Z_{i}, Y) \end{array} \right\},$

•
$$\operatorname{Rad}_{\mathcal{C}}^{\infty}(X,Y) = \bigcap_{n \ge 0} \operatorname{Rad}_{\mathcal{C}}^{n}(X,Y).$$

Remarks

1. If C is additive (such as C = mod-A), then $\operatorname{Rad}_{C}^{n+1}(X, Y) = \{\varphi''\varphi' \mid \varphi' \in \operatorname{Rad}_{C}(X, Z) \text{ and } \varphi'' \in \operatorname{Rad}_{C}^{n}(Z, Y)\}:$ $X \xrightarrow{\varphi'=(\varphi'_{i})} \bigoplus_{i=1}^{n} Z_{i} \xrightarrow{\varphi''=(\varphi''_{i})} Y.$

2. Beware: $\operatorname{Rad}^2_{\mathcal{C}}(X, X) \neq \operatorname{rad}^2 \operatorname{End}_{\mathcal{C}}(X)$ in general!

Analogy

We hope to understand generating morphisms for the category *ind-A* via representatives of cosets in $\operatorname{Rad}(X, Y)/\operatorname{Rad}^2(X, Y)$ as we understood A itself (in Gabriel's theorem) via representatives of cosets in $\operatorname{rad}(A)/\operatorname{rad}^2(A)$.

Definition

A morphism $\varphi \colon X \to Y$ in *mod-A* is irreducible if

- 1. φ is neither a split mono nor a split epi, and
- 2. whenever we have $\varphi = \varphi'' \varphi'$ in *mod-A*, then φ' is a split mono or φ'' is a split epi.

Lemma ([Kra, Lemma 6.2.1]) Any irreducible morphism is a monomorphism or an epimorphism.

Proof. Consider the factorization $X \xrightarrow{\varphi'} \operatorname{Im} \varphi \xrightarrow{\varphi''} Y$.

Irreducible morphisms and the radical [Kra, \S 6.2]

Lemma ([Kra, Lemma 6.2.2]) Let $\varphi: X \to Y$ be a morphism in mod-A.

- 1. If X is indec., then $\varphi \in \operatorname{Rad}(X, Y)$ iff φ is not a split mono.
- 2. If Y is indec., then $\varphi \in \operatorname{Rad}(X, Y)$ iff φ is not a split epi.
- 3. If X and Y are both indecomposable, then $\varphi \in \operatorname{Rad}(X, Y) \setminus \operatorname{Rad}^2(X, Y)$ iff φ is irreducible.

Proof.

- 1. We have $\varphi = (\varphi_i) \colon X \to \bigoplus_{i=1}^n Y_i = Y$. Then $\varphi \in \operatorname{Rad}(X, Y)$ iff all $\varphi_i \in \operatorname{Rad}(X, Y_i)$ iff all φ_i are non-isomorphisms iff φ is not a split mono.
- 2. is dual to 1.
- 3. is an immediate consequence of 1. and 2.

Generating morphisms [Kra, \S 6.2]

Proposition ([Kra, Proposition 6.2.4]) Let $X, Y \in ind$ -A be indecomposable and suppose that $\operatorname{Rad}^n(X, Y) = 0$ for some $n \ge 0$. Then every non-isom. $\varphi \colon X \to Y$ a sum of compositions of irreducible morphisms in *ind*-A.

Proof.

- If φ is irreducible (equivalently $\varphi \notin \operatorname{Rad}^2(X, Y)$), we are done.
- Otherwise $\varphi = \sum_{i=1}^{n} \varphi_i'' \varphi_i'$, where $\varphi_i' \in \operatorname{Rad}(X, Z_i)$ and $\varphi_i'' \in \operatorname{Rad}(Z_i, Y)$ and the Z_i are all indecomposable.
- We repeat the procedure for each φ'_i and φ''_i—either they are irreducible or they have a similar expression, and so on.
- After *n* steps, we obtain an expression $\varphi = \sum_{j} \varphi_{jn_j} \cdots \varphi_{j2} \varphi_{j1}$, where φ_{jk} are radical maps in *ind-A* and irreducible if $n_j < n$.
- However, all the terms φ_{jnj} · · · φ_{j2}φ_{j1} with n_j = n vanish as we assume Radⁿ(X, Y) = 0.

The Harada-Sai lemma and consequences

The Harada-Sai lemma [Kra, §6.3]

Lemma (Harada-Sai, [Kra, Lemma 6.3.1]) Let $n \ge 1$ and suppose we have in ind-A a chain of non-isomorphisms $X_1 \xrightarrow{\varphi_1} X_2 \xrightarrow{\varphi_2} \cdots \xrightarrow{\varphi_{2^n-2}} X_{2^n-1} \xrightarrow{\varphi_{2^n-1}} X_{2^n}$ between modules of dimension $\le n$. Then $\varphi_{2^n-1} \cdots \varphi_1 = 0$.

Proof.

- We prove that dim Im(φ_{2^m-1}···φ₁) ≤ n − m by induction on 1 ≤ m ≤ n. Clear for m = 1 as Im(φ₁) ≤ X₂.
- If m > 1, consider $X_1 \xrightarrow{\varphi'} X_{2^{m-1}} \xrightarrow{\varphi_{2^{m-1}}} X_{2^{m-1}+1} \xrightarrow{\varphi''} X_{2^m}$.
- If dim Im $(\varphi''\varphi_{2^{m-1}}\varphi') = n m + 1$, the same holds for Im (φ'') , Im $(\varphi''\varphi_{2^{m-1}})$, Im $(\varphi_{2^{m-1}}\varphi')$, Im (φ') by induction.
- So $\operatorname{Ker}(\varphi''\varphi_{2^{m-1}}) \cap \operatorname{Im}(\varphi') = 0$, $\dim X_{2^{m-1}} = \dim \operatorname{Ker}(\varphi''\varphi_{2^{m-1}})$ + $\dim \operatorname{Im}(\varphi''\varphi_{2^{m-1}}) = \dim \operatorname{Ker}(\varphi''\varphi_{2^{m-1}}) + \dim \operatorname{Im}(\varphi')$.
- Hence X_{2^{m-1}} = Ker(φ["]φ_{2^{m-1}}) ⊕ Im(φ[']) and, as X_{2^{m-1}} ∈ ind-A, φ_{2^{m-1}} is monic. Dually, φ_{2^{m-1}} is epic, so an isomorphism *ξ*.

- Suppose that A is a finite dimensional algebra which is of finite representation type (i.e. *ind-A* has finitely many objects).
- Then ∃N > 0 such that Rad^N(X, Y) = 0 for all X, Y ∈ ind-A by Harada-Sai.
- In particular, each non-isomorphism in *ind-A* is a sum of compositions of irreducible morphisms by [Kra, Proposition 6.2.4].