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Reminder and aims



Classification results so far

1. If Q is an orientation of a Dynkin diagram of type A, D or E ,
then ind-KQ has finitely many objects and these correspond
bijectively to positive roots in Z|Q0|.

2. If K is algebraically closed and Q = (• ////•), then the
indecomposable representations are precisely

2.1 the preprojectives Pn : K
n

( I0 ) //

( 0I )
//K n+1 , n ≥ 0,

2.2 the preinjectives In : K
n+1

( I 0 ) //
( 0 I )

//K n , n ≥ 0,

2.3 the regular ones Rn,λ, n ≥ 1, λ ∈ P1K , with dimRn,λ = (n, n).
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The aim

• We wish to understand (parts of) the category ind-KQ, where
K is a field and Q a finite acyclic quiver, in terms of
generating morphisms and relations among them.

• E.g. if K is any field, Q = (1→ 2→ 3), then ind-KQ is
generated by the quiver

(K
1→K

1→K)

(( ((
(0→K

1→K)

66
66

(( ((

(K→K
1→0)

(( ((
(0→0→K)

66
66

(0→K→0)
66

66

(K→0→0).

• The relations are generated by two zero relations and one
commutativity relation (the dotted lines above).
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The radical of a category of modules



Definition of the radical [Kra, §2.3]

Definition
Let C be a small preadditive category and X ,Y ∈ obj C. Then we
define
RadC(X ,Y ) = {ϕ : X → Y | 1X − ψϕ is invertible ∀ψ : Y → X}

= {ϕ : X → Y | ψϕ ∈ rad EndC(X ) ∀ψ : Y → X}.
Remarks

1. This generalizes the notion of radical of a ring A—take for C
the category with a single object ∗ such that EndC(∗) = A.

2. A morphism
⊕m

i=1 Xi →
⊕n

i=1 Yj is in the radical iff all the
components Xi → Yj are in the radical (exercise).

3. RadC(X ,X ) = rad End(X ) (exercise).

4. Main interest: C = mod-A or C = ind-A, A fin. dim. alg.

5. If C = ind-A, then
RadC(X ,Y ) = {ϕ : X → Y | ϕ is non-isomorphism}. 4



Powers of the radical [Kra, §6.1]

Definition
Let C be a small preadditive category and X ,Y ∈ obj C. We
inductively define

• Rad0C(X ,Y ) = HomC(X ,Y ),

• Radn+1C (X ,Y ) =

{∑n
i=1 ϕ

′′
i ϕ
′
i |
ϕ′i ∈ RadC(X ,Zi ),

ϕ′′i ∈ RadnC(Zi ,Y )

}
,

• Rad∞C (X ,Y ) =
⋂

n≥0 Rad
n
C(X ,Y ).

Remarks

1. If C is additive (such as C = mod-A), then
Radn+1C (X ,Y ) = {ϕ′′ϕ′ | ϕ′ ∈ RadC(X ,Z ) and ϕ′′ ∈
RadnC(Z ,Y )}:

X
ϕ′=(ϕ′i )−→

n⊕
i=1

Zi
ϕ′′=(ϕ′′i )−→ Y .

2. Beware: Rad2C(X ,X ) 6= rad2 EndC(X ) in general! 5



Irreducible morphisms [Kra, §6.2]

Analogy
We hope to understand generating morphisms for the category
ind-A via representatives of cosets in Rad(X ,Y )/Rad2(X ,Y ) as
we understood A itself (in Gabriel’s theorem) via representatives of
cosets in rad(A)/ rad2(A).

Definition
A morphism ϕ : X → Y in mod-A is irreducible if

1. ϕ is neither a split mono nor a split epi, and

2. whenever we have ϕ = ϕ′′ϕ′ in mod-A, then ϕ′ is a split
mono or ϕ′′ is a split epi.

Lemma ([Kra, Lemma 6.2.1])
Any irreducible morphism is a monomorphism or an epimorphism.

Proof.
Consider the factorization X

ϕ′

� Imϕ
ϕ′′

� Y .
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Irreducible morphisms and the radical [Kra, §6.2]

Lemma ([Kra, Lemma 6.2.2])
Let ϕ : X → Y be a morphism in mod-A.

1. If X is indec., then ϕ ∈ Rad(X ,Y ) iff ϕ is not a split mono.

2. If Y is indec., then ϕ ∈ Rad(X ,Y ) iff ϕ is not a split epi.

3. If X and Y are both indecomposable, then
ϕ ∈ Rad(X ,Y ) \ Rad2(X ,Y ) iff ϕ is irreducible.

Proof.

1. We have ϕ = (ϕi ) : X →
⊕n

i=1 Yi = Y . Then ϕ ∈ Rad(X ,Y )

iff all ϕi ∈ Rad(X ,Yi ) iff all ϕi are non-isomorphisms iff ϕ is
not a split mono.

2. is dual to 1.

3. is an immediate consequence of 1. and 2.
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Generating morphisms [Kra, §6.2]

Proposition ([Kra, Proposition 6.2.4])
Let X ,Y ∈ ind-A be indecomposable and suppose that
Radn(X ,Y ) = 0 for some n ≥ 0. Then every non-isom. ϕ : X → Y

a sum of compositions of irreducible morphisms in ind-A.

Proof.
• If ϕ is irreducible (equivalently ϕ 6∈ Rad2(X ,Y )), we are done.

• Otherwise ϕ =
∑n

i=1 ϕ
′′
i ϕ
′
i , where ϕ′i ∈ Rad(X ,Zi ) and

ϕ′′i ∈ Rad(Zi ,Y ) and the Zi are all indecomposable.

• We repeat the procedure for each ϕ′i and ϕ′′i —either they are
irreducible or they have a similar expression, and so on.

• After n steps, we obtain an expression ϕ =
∑

j ϕjnj · · ·ϕj2ϕj1,
where ϕjk are radical maps in ind-A and irreducible if nj < n.

• However, all the terms ϕjnj · · ·ϕj2ϕj1 with nj = n vanish as
we assume Radn(X ,Y ) = 0. 8



The Harada-Sai lemma and
consequences



The Harada-Sai lemma [Kra, §6.3]

Lemma (Harada-Sai, [Kra, Lemma 6.3.1])
Let n ≥ 1 and suppose we have in ind-A a chain of
non-isomorphisms X1

ϕ1−→ X2
ϕ2−→ · · ·

ϕ2n−2−→ X2n−1
ϕ2n−1−→ X2n

between modules of dimension ≤ n. Then ϕ2n−1 · · ·ϕ1 = 0.

Proof.
• We prove that dim Im(ϕ2m−1 · · ·ϕ1) ≤ n −m by induction on

1 ≤ m ≤ n. Clear for m = 1 as Im(ϕ1) � X2.

• If m > 1, consider X1
ϕ′−→ X2m−1

ϕ2m−1−→ X2m−1+1
ϕ′′−→ X2m .

• If dim Im(ϕ′′ϕ2m−1ϕ
′) = n −m + 1, the same holds for

Im(ϕ′′), Im(ϕ′′ϕ2m−1), Im(ϕ2m−1ϕ
′), Im(ϕ′) by induction.

• So Ker(ϕ′′ϕ2m−1) ∩ Im(ϕ′) = 0, dimX2m−1 = dimKer(ϕ′′ϕ2m−1)

+ dim Im(ϕ′′ϕ2m−1) = dimKer(ϕ′′ϕ2m−1) + dim Im(ϕ′).

• Hence X2m−1 = Ker(ϕ′′ϕ2m−1)⊕ Im(ϕ′) and, as X2m−1 ∈ ind-A,
ϕ2m−1 is monic. Dually, ϕ2m−1 is epic, so an isomorphism  . 9



Finite representation type

• Suppose that A is a finite dimensional algebra which is of finite
representation type (i.e. ind-A has finitely many objects).

• Then ∃N > 0 such that RadN(X ,Y ) = 0 for all X ,Y ∈ ind-A

by Harada-Sai.

• In particular, each non-isomorphism in ind-A is a sum of
compositions of irreducible morphisms by [Kra, Proposition
6.2.4].
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