Representation theory of finite dimensional algebras (NMAG 442)

Notes for the streamed lecture

Jan Šťovíček April 16, 2020

Department of Algebra, Charles University, Prague

Forms associated with quivers and graphs—continued

Roots of Dynkin and Eucledian diagrams

Forms associated with quivers and graphs—continued

The yoga of forms [Kra, \S 3.2 and 4.1]

- Let Q be a finite quiver with Q₀ = {1,...,n}, Γ the underlying graph and d_{i,j} be the number of edges i — j.
- Then we have the Euler form

$$\langle x, y \rangle = \sum_{i \in Q_0} x_i y_i - \sum_{\alpha \colon i \to j} x_i y_j.$$

• There is an associated quadratic form $q: \mathbb{Z}^n \to \mathbb{Z}$,

$$q(x) = \langle x, x \rangle = \sum_{i \in Q_0} x_i^2 - \sum_{\alpha : i \to j} x_i x_j = \sum_{i \in \Gamma_0} x_i^2 - \sum_{i \le j} d_{ij} x_i x_j.$$

 We cannot reconstruct (-, -) from Q, but we can reconstruct the symmetrized Euler form (-, -): Zⁿ × Zⁿ → Z,

$$egin{aligned} &\langle x,y \end{pmatrix} = q(x+y) - q(x) - q(y) = \langle x,y
angle + \langle y,x
angle = \ &= \sum_{i \in \Gamma_0} (2 - 2d_{ii}) \cdot x_i y_i - \sum_{i
eq j} d_{ij} x_i y_j. \end{aligned}$$

Some terminology related to forms

Definition Let $q: \mathbb{Z}^n \to \mathbb{Z}$ be a quadratic form. Then

- q is positive definite if q(x) > 0 for all $x \in \mathbb{Z}^n \setminus \{0\}$.
- q is positive semi-definite if $q(x) \ge 0$ for all $x \in \mathbb{Z}^n$.

The radical of q is the subgroup

$$\operatorname{\mathsf{rad}} q = \{x \in \mathbb{Z}^n \mid (x, -) \equiv 0\} \leq \mathbb{Z}^n,$$

where (x, y) = q(x + y) - q(x) - q(y) is the associated bilinear form.

Definition

Given $x, y \in \mathbb{Z}^n$, we write $x \leq y$ if $x_i \leq y_i$ for all *i*, and x < y if $x \leq y$ and $x \neq y$ (a partial order).

Finally, a vector $x = (x_1, \ldots, x_n) \in \mathbb{Z}^n$ is sincere if $x_i \neq 0$ for all i.

3

A key lemma

Lemma ([Kra, Lemma 4.1.3]) Let Γ be a finite connected graph, $q: \mathbb{Z}^n \to \mathbb{Z}$ the associated quadratic form and $y \in \operatorname{rad} q$ such that y > 0. Then y is sincere and q is positive semidefinite. Moreover, for each $x \in \mathbb{Z}^n$ we have

$$q(x) = 0 \iff x \in \mathbb{Q}y \iff x \in \operatorname{rad} q.$$

Proof.

• By the assumption on y, we have for each i:

$$0 = (e_i, y) = (2 - 2d_{ii})y_i - \sum_{i \neq i} d_{ij}y_j.$$

- If $y_i = 0$ for some *i*, then also $\sum_{i \neq j} d_{ij} y_j = 0$.
- Since y_j ≥ 0 for each j, we have y_j = 0 whenever d_{ij} > 0, i.e. there is an edge i − j.
- As Γ is connected, this would imply y = 0, a contradiction!
- It follows that y is sincere.

Proof of the key lemma—continued

- We know that $(2 2d_{ii})y_i = \sum_{i \neq j} d_{ij}y_j$ for each *i*.
- Then $q \colon \mathbb{Z}^n \to \mathbb{Z}$ is positive semi-definite, since

$$\begin{aligned} q(x) &= \sum_{i} (1 - d_{ii}) x_{i}^{2} - \sum_{i < j} d_{ij} x_{i} x_{j} \\ &= \sum_{i} (2 - 2d_{ii}) y_{i} \cdot \frac{1}{2y_{i}} \cdot x_{i}^{2} - \sum_{i < j} d_{ij} x_{i} x_{j} \\ &= \sum_{i \neq j} d_{ij} \cdot \frac{y_{j}}{2y_{i}} \cdot x_{i}^{2} - \sum_{i < j} d_{ij} x_{i} x_{j} \\ &= \sum_{i < j} d_{ij} \cdot \frac{y_{j}}{2y_{i}} \cdot x_{i}^{2} - \sum_{i < j} d_{ij} x_{i} x_{j} \\ &= \sum_{i < j} d_{ij} \cdot \frac{y_{j}}{2y_{i}} \cdot x_{i}^{2} - \sum_{i < j} d_{ij} x_{i} x_{j} + \sum_{i < j} d_{ij} \cdot \frac{y_{i}}{2y_{j}} \cdot x_{j}^{2} \\ &= \sum_{i < j} d_{ij} \cdot \frac{y_{i}y_{j}}{2} \cdot \left(\frac{x_{i}}{y_{i}} - \frac{x_{j}}{y_{j}}\right)^{2}. \end{aligned}$$

Proof of the key lemma—still continued

• So far we know that $y \in \operatorname{rad} q$ is sincere and $\forall x \in \mathbb{Z}^n$:

$$q(x) = \sum_{i < j} d_{ij} \cdot \frac{y_i y_j}{2} \cdot \left(\frac{x_i}{y_i} - \frac{x_j}{y_j}\right)^2.$$

- It remains to prove that $q(x) = 0 \iff x \in \mathbb{Q}y \iff x \in \operatorname{rad} q$.
- If q(x) = 0, then $\frac{x_i}{y_i} = \frac{x_j}{y_j}$ whenever i j in Γ . Since Γ is connected, this implies that $x \in \mathbb{Q}y$.
- If $x \in \mathbb{Q}y$, then clearly $x \in \operatorname{rad} q$ (recall \bullet def. of rad q).
- Finally, $x \in \operatorname{rad} q$ always implies $q(x) = \frac{1}{2}(x, x) = 0$.

When is q positive (semi-)definite? [Kra, §4.2]

Theorem ([Kra, Theorem 4.2.1]) Let Γ be a connected finite graph, $n = |\Gamma_0|$ and $q: \mathbb{Z}^n \to \mathbb{Z}$ the associated quadratic form.

1. q is positive definite iff Γ is a Dynkin diagram:

When is q positive (semi-)definite? [Kra, §4.2]

Theorem ([Kra, Theorem 4.2.1]) Let Γ be a connected finite graph, $n = |\Gamma_0|$ and $q: \mathbb{Z}^n \to \mathbb{Z}$ the associated quadratic form.

 q is positive semi-definite but not positive definite iff Γ is a Euclidean diagram:

In that case, $\exists ! \delta \in \mathbb{Z}^n$ such that $\delta > 0$ and rad $q = \mathbb{Z}\delta$.

Proof of the theorem—the Euclidean case [Kra, §4.2]

- Suppose that Γ is a Euclidean diagram.
- Then we can explicitly find a positive radical vector $\delta \in \mathbb{Z}^n$:

• The quadratic form q is positive semi-definite and rad $q = \mathbb{Z}\delta$ by the • Key Lemma.

- Suppose that Γ is a Dynkin diagram with $n = |\Gamma_0|$.
- Then there is an Euclidean diagram Γ such that Γ is obtained from Γ by deleting a vertex i.
- If q and q̃ are the corresponding quadratic forms and x ∈ Zⁿ, then q(x) = q̃(x̃), where x̃ ∈ Zⁿ⁺¹ is obtained from x by adding zero coordinate at vertex i. So q is positive semi-definite.
- The rest follows from the ► Key Lemma: If x ≠ 0, then x ∉ rad q (since x̃ is not sincere). Hence q(x) ≠ 0.

Proof of the theorem—the remaining cases [Kra, §4.2]

- Suppose not that Γ is neither Dynkin nor Euclidean and q: Zⁿ → Z its quadratic form.
- Recall: $q(x) = \sum_{i \in \Gamma_0} x_i^2 \sum_{i \le j} d_{ij} x_i x_j$.
- We must prove that q is not positive semi-definite.
- Observation: There is a subgraph of Γ' ⊊ Γ which is Euclidean. Let δ ∈ Z^{n'} ≤ Zⁿ its positive radical vector as above.
- Beware: We must also consider Ã₀: with q(x₁) ≡ 0, and Ã₁: with q(x₁, x₂) = (x₁ x₂)²!
- If $\Gamma_0' = \Gamma_0$, then $q(\delta) < 0$.
- If $\Gamma'_0 \subsetneqq \Gamma_0$, then there exists a vertex $j \in \Gamma_0 \setminus \Gamma'_0$ connected to Γ'_0 by an edge. It follows that

$$q(2\delta+e_i)=4q(\delta)+2(\delta,e_j)+q(e_j)\leq -2\sum_{i\in {\sf \Gamma}_0'}d_{ij}\delta_i+(1-d_{ii})<0.$$

Corollary

Let Q be a finite acyclic quiver and K a field. Then the form

$$q: \qquad \mathbb{Z}^n \to \mathbb{Z},$$
$$\underline{\dim} M \mapsto \dim_K \operatorname{Hom}(M, M) - \dim_K \operatorname{Ext}^1(M, M)$$

is positive definite iff the underlying graph of Q is a Dynkin diagram.

Example

Let Q be an orientation of the $A_n = (1 - 2 - \cdots - n)$. Then

$$q(x) = \frac{1}{2} \cdot \left(x_1^2 + (x_1 - x_2)^2 + (x_2 - x_3)^2 + \dots + (x_{n-1} - x_n)^2 + x_n^2 \right).$$

Roots of Dynkin and Eucledian diagrams

Roots [Kra, §4.3]

- Let Γ be a Dynkin or a Euclidean diagram.
- Let $q(x) = \sum_{i \in \Gamma_0} x_i^2 \sum_{i \le j} d_{ij} x_i x_j = \frac{1}{2}(x, x)$ and (x, y) = q(x + y) q(x) q(y) be as before.
- Put $\Delta = \{x \in \mathbb{Z}^n \mid q(x) \leq 1\}.$
- A root is a non-zero element of Δ .
- Motivation: Suppose Q is an acyclic quiver whose underlying diagram is Γ. We will show later that the roots of Γ are precisely the dimension vectors of indecomposable finitely generated KQ-modules.
- Observation: e_i is a root for each $i \in \Gamma_0$.
- Observation: $x \in \Delta \iff -x \in \Delta$.

Examples

- If q is positive def. (= Q Dynkin), then (-, -): Zⁿ × Zⁿ → Z extends to a scalar product (-, -): Rⁿ × Rⁿ → R.
- The picture below is drawn in a basis of ℝⁿ where (−, −) is the usual scalar product.

Example

• Let $\Gamma = A_2 = (2 - 1)$, so $q(x) = \frac{1}{2} \cdot (x_1^2 + (x_1 - x_2)^2 + x_2^2)$.

• Try to draw the roots of $A_3 = (3 - 2 - 1)!$

Lemma (Proposition 4.3.1(3)) Let Γ be Dynkin or Euclidean. If $x \in \Delta$ is a root, then x > 0 or x < 0.

Proof.

- We can write x = x⁺ − x⁻, where x⁺, x⁻ ≥ 0 have disjoint support.
- $1 \ge q(x) = q(x^+) + q(x^-) (x^+, x^-) \ge q(x^+) + q(x^-) \ge 0.$
- Thus, $q(x^+) = 0$ or $q(x^-) = 0$.
- If both x^+, x^- were non-zero, they would be sincere, a contradiction!