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Forms associated with quivers and
graphs—continued



The yoga of forms [Kra, §§3.2 and 4.1]

• Let Q be a finite quiver with Q0 = {1, . . . , n}, Γ the
underlying graph and di ,j be the number of edges i — j .
• Then we have the Euler form

〈x , y〉 =
∑
i∈Q0

xiyi −
∑
α : i→j

xiyj .

• There is an associated quadratic form q : Zn → Z,

q(x) = 〈x , x〉 =
∑
i∈Q0

x2i −
∑
α : i→j

xixj =
∑
i∈Γ0

x2i −
∑
i≤j

dijxixj .

• We cannot reconstruct 〈−,−〉 from Q, but we can reconstruct
the symmetrized Euler form (−,−) : Zn × Zn → Z,

(x , y) = q(x + y)− q(x)− q(y) = 〈x , y〉+ 〈y , x〉 =

=
∑
i∈Γ0

(2− 2dii ) · xiyi −
∑
i 6=j

dijxiyj .
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Some terminology related to forms

Definition
Let q : Zn → Z be a quadratic form. Then

• q is positive definite if q(x) > 0 for all x ∈ Zn \ {0}.
• q is positive semi-definite if q(x) ≥ 0 for all x ∈ Zn.

The radical of q is the subgroup

rad q = {x ∈ Zn | (x ,−) ≡ 0} ≤ Zn,

where (x , y) = q(x + y)− q(x)− q(y) is the associated bilinear
form.

Definition
Given x , y ∈ Zn, we write x ≤ y if xi ≤ yi for all i , and x < y if
x ≤ y and x 6= y (a partial order).

Finally, a vector x = (x1, . . . , xn) ∈ Zn is sincere if xi 6= 0 for all i . 3



A key lemma

Lemma ([Kra, Lemma 4.1.3])
Let Γ be a finite connected graph, q : Zn → Z the associated
quadratic form and y ∈ rad q such that y > 0. Then y is sincere
and q is positive semidefinite. Moreover, for each x ∈ Zn we have

q(x) = 0⇐⇒ x ∈ Qy ⇐⇒ x ∈ rad q.

Proof.
• By the assumption on y , we have for each i :

0 = (ei , y) = (2− 2dii )yi −
∑
i 6=j

dijyj .

• If yi = 0 for some i , then also
∑

i 6=j dijyj = 0.

• Since yj ≥ 0 for each j , we have yj = 0 whenever dij > 0, i.e.
there is an edge i — j .

• As Γ is connected, this would imply y = 0, a contradiction!

• It follows that y is sincere. 4



Proof of the key lemma—continued

• We know that (2− 2dii )yi =
∑

i 6=j dijyj for each i .
• Then q : Zn → Z is positive semi-definite, since

q(x) =
∑
i

(1− dii )x
2
i −

∑
i<j

dijxixj ( def. of q )

=
∑
i

(2− 2dii )yi ·
1

2yi
· x2i −

∑
i<j

dijxixj

=
∑
i 6=j

dij ·
yj

2yi
· x2i −

∑
i<j

dijxixj (by above)

=
∑
i<j

dij ·
yj

2yi
· x2i −

∑
i<j

dijxixj +
∑
i<j

dij ·
yi

2yj
· x2j

=
∑
i<j

dij ·
yiyj

2
·
(
xi
yi
−

xj
yj

)2
.
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Proof of the key lemma—still continued

• So far we know that y ∈ rad q is sincere and ∀x ∈ Zn:

q(x) =
∑
i<j

dij ·
yiyj

2
·
(
xi
yi
−

xj
yj

)2
.

• It remains to prove that q(x) = 0⇐⇒ x ∈ Qy ⇐⇒ x ∈ rad q.

• If q(x) = 0, then xi
yi

=
xj
yj

whenever i — j in Γ. Since Γ is
connected, this implies that x ∈ Qy .

• If x ∈ Qy , then clearly x ∈ rad q (recall def. of rad q ).

• Finally, x ∈ rad q always implies q(x) = 1
2(x , x) = 0.
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When is q positive (semi-)definite? [Kra, §4.2]

Theorem ([Kra, Theorem 4.2.1])
Let Γ be a connected finite graph, n = |Γ0| and q : Zn → Z the
associated quadratic form.

1. q is positive definite iff Γ is a Dynkin diagram:

•

An : • • · · · • • E6 : • • • • •

•

• E7 : • • • • • •

Dn : • · · · • •

• • E8 : • • • • • • •
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When is q positive (semi-)definite? [Kra, §4.2]

Theorem ([Kra, Theorem 4.2.1])
Let Γ be a connected finite graph, n = |Γ0| and q : Zn → Z the
associated quadratic form.

2. q is positive semi-definite but not positive definite iff Γ is a
Euclidean diagram:

•

• •

Ãn : • • · · · • • Ẽ6 : • • • • •

•

• • Ẽ7 : • • • • • • •

D̃n : • · · · • •

• • E8 : • • • • • • • •

In that case, ∃!δ ∈ Zn such that δ > 0 and rad q = Zδ. 8



Proof of the theorem—the Euclidean case [Kra, §4.2]

• Suppose that Γ is a Euclidean diagram.
• Then we can explicitly find a positive radical vector δ ∈ Zn:

1

1 2

Ãn : 1 1 · · · 1 1 Ẽ6 : 1 2 3 2 1

2

1 1 Ẽ7 : 1 2 3 4 3 2 1

D̃n : 2 · · · 2 3

1 1 E8 : 2 4 6 5 4 3 2 1

• The quadratic form q is positive semi-definite and rad q = Zδ
by the Key Lemma .
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Proof of the theorem—the Dynkin case [Kra, §4.2]

• Suppose that Γ is a Dynkin diagram with n = |Γ0|.
• Then there is an Euclidean diagram Γ̃ such that Γ is obtained

from Γ̃ by deleting a vertex i .

• If q and q̃ are the corresponding quadratic forms and x ∈ Zn,
then q(x) = q̃(x̃), where x̃ ∈ Zn+1 is obtained from x by
adding zero coordinate at vertex i . So q is positive
semi-definite.

• The rest follows from the Key Lemma : If x 6= 0, then x 6∈ rad q

(since x̃ is not sincere). Hence q(x) 6= 0.
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Proof of the theorem—the remaining cases [Kra, §4.2]

• Suppose not that Γ is neither Dynkin nor Euclidean and
q : Zn → Z its quadratic form.
• Recall: q(x) =

∑
i∈Γ0

x2i −
∑

i≤j dijxixj .
• We must prove that q is not positive semi-definite.
• Observation: There is a subgraph of Γ′ $ Γ which is

Euclidean. Let δ ∈ Zn′ ≤ Zn its positive radical vector as
above.
• Beware: We must also consider Ã0 : • with q(x1) ≡ 0,

and Ã1 : • • with q(x1, x2) = (x1 − x2)
2!

• If Γ′0 = Γ0, then q(δ) < 0.
• If Γ′0 $ Γ0, then there exists a vertex j ∈ Γ0 \ Γ′0 connected to

Γ′0 by an edge. It follows that

q(2δ+ei ) = 4q(δ)+2(δ, ej)+q(ej) ≤ −2
∑
i∈Γ′

0

dijδi+(1−dii ) < 0.
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Back to quivers

Corollary
Let Q be a finite acyclic quiver and K a field. Then the form

q : Zn → Z,

dimM 7→ dimK Hom(M,M)− dimK Ext1(M,M)

is positive definite iff the underlying graph of Q is a Dynkin
diagram.

Example
Let Q be an orientation of the An = (1— 2— · · · — n). Then

q(x) =
1
2
·
(
x21 + (x1− x2)

2+ (x2− x3)
2+ · · ·+ (xn−1− xn)2+ x2n

)
.
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Roots of Dynkin and Eucledian
diagrams



Roots [Kra, §4.3]

• Let Γ be a Dynkin or a Euclidean diagram.

• Let q(x) =
∑

i∈Γ0
x2i −

∑
i≤j dijxixj = 1

2(x , x) and
(x , y) = q(x + y)− q(x)− q(y) be as before.

• Put ∆ = {x ∈ Zn | q(x) ≤ 1}.
• A root is a non-zero element of ∆.

• Motivation: Suppose Q is an acyclic quiver whose underlying
diagram is Γ. We will show later that the roots of Γ are
precisely the dimension vectors of indecomposable finitely
generated KQ-modules.

• Observation: ei is a root for each i ∈ Γ0.

• Observation: x ∈ ∆⇐⇒ −x ∈ ∆.
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Examples

• If q is positive def. (= Q Dynkin), then (−,−) : Zn ×Zn → Z
extends to a scalar product (−,−) : Rn × Rn → R.
• The picture below is drawn in a basis of Rn where (−,−) is

the usual scalar product.

Example
• Let Γ = A2 = (2— 1), so q(x) = 1

2 ·
(
x21 + (x1 − x2)

2 + x22
)
.

• The roots: e2 e1 + e2

−e1 oo

[[ CC

//

����

e1

−e1 − e2 −e2
• Try to draw the roots of A3 = (3— 2— 1)!
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Properties of roots [Kra, §4.3]

Lemma (Proposition 4.3.1(3))
Let Γ be Dynkin or Euclidean. If x ∈ ∆ is a root, then x > 0 or
x < 0.

Proof.
• We can write x = x+ − x−, where x+, x− ≥ 0 have disjoint

support.

• 1 ≥ q(x) = q(x+) + q(x−)− (x+, x−) ≥ q(x+) + q(x−) ≥ 0.

• Thus, q(x+) = 0 or q(x−) = 0.

• If both x+, x− were non-zero, they would be sincere, a
contradiction!
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