Representation theory of finite dimensional algebras (NMAG 442)

Notes for the streamed lecture

Jan Štovíček
April 16, 2020

Department of Algebra, Charles University, Prague

Table of contents

Forms associated with quivers and graphs-continued

Roots of Dynkin and Eucledian diagrams

Forms associated with quivers and graphs-continued

The yoga of forms [Kra, $\S \S 3.2$ and 4.1]

- Let Q be a finite quiver with $Q_{0}=\{1, \ldots, n\}, \Gamma$ the underlying graph and $d_{i, j}$ be the number of edges $i-j$.
- Then we have the Euler form

$$
\langle x, y\rangle=\sum_{i \in Q_{0}} x_{i} y_{i}-\sum_{\alpha: i \rightarrow j} x_{i} y_{j}
$$

- There is an associated quadratic form $q: \mathbb{Z}^{n} \rightarrow \mathbb{Z}$,

$$
q(x)=\langle x, x\rangle=\sum_{i \in Q_{0}} x_{i}^{2}-\sum_{\alpha: i \rightarrow j} x_{i} x_{j}=\sum_{i \in \Gamma_{0}} x_{i}^{2}-\sum_{i \leq j} d_{i j} x_{i} x_{j} .
$$

- We cannot reconstruct $\langle-,-\rangle$ from Q, but we can reconstruct the symmetrized Euler form $(-,-): \mathbb{Z}^{n} \times \mathbb{Z}^{n} \rightarrow \mathbb{Z}$,

$$
\begin{aligned}
(x, y) & =q(x+y)-q(x)-q(y)=\langle x, y\rangle+\langle y, x\rangle= \\
& =\sum_{i \in \Gamma_{0}}\left(2-2 d_{i i}\right) \cdot x_{i} y_{i}-\sum_{i \neq j} d_{i j} x_{i} y_{j} .
\end{aligned}
$$

Some terminology related to forms

Definition

Let $q: \mathbb{Z}^{n} \rightarrow \mathbb{Z}$ be a quadratic form. Then

- q is positive definite if $q(x)>0$ for all $x \in \mathbb{Z}^{n} \backslash\{0\}$.
- q is positive semi-definite if $q(x) \geq 0$ for all $x \in \mathbb{Z}^{n}$.

The radical of q is the subgroup

$$
\operatorname{rad} q=\left\{x \in \mathbb{Z}^{n} \mid(x,-) \equiv 0\right\} \leq \mathbb{Z}^{n}
$$

where $(x, y)=q(x+y)-q(x)-q(y)$ is the associated bilinear form.

Definition
Given $x, y \in \mathbb{Z}^{n}$, we write $x \leq y$ if $x_{i} \leq y_{i}$ for all i, and $x<y$ if $x \leq y$ and $x \neq y$ (a partial order).

Finally, a vector $x=\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{Z}^{n}$ is sincere if $x_{i} \neq 0$ for all i.

A key lemma

Lemma ([Kra, Lemma 4.1.3])

Let Γ be a finite connected graph, $q: \mathbb{Z}^{n} \rightarrow \mathbb{Z}$ the associated quadratic form and $y \in \operatorname{rad} q$ such that $y>0$. Then y is sincere and q is positive semidefinite. Moreover, for each $x \in \mathbb{Z}^{n}$ we have

$$
q(x)=0 \Longleftrightarrow x \in \mathbb{Q} y \Longleftrightarrow x \in \operatorname{rad} q .
$$

Proof.

- By the assumption on y, we have for each i :

$$
0=\left(e_{i}, y\right)=\left(2-2 d_{i j}\right) y_{i}-\sum_{i \neq j} d_{i j} y_{j}
$$

- If $y_{i}=0$ for some i, then also $\sum_{i \neq j} d_{i j} y_{j}=0$.
- Since $y_{j} \geq 0$ for each j, we have $y_{j}=0$ whenever $d_{i j}>0$, i.e. there is an edge $i-j$.
- As Γ is connected, this would imply $y=0$, a contradiction!
- It follows that y is sincere.

Proof of the key lemma-continued

- We know that $\left(2-2 d_{i i}\right) y_{i}=\sum_{i \neq j} d_{i j} y_{j}$ for each i.
- Then $q: \mathbb{Z}^{n} \rightarrow \mathbb{Z}$ is positive semi-definite, since

$$
\begin{align*}
q(x) & =\sum_{i}\left(1-d_{i i}\right) x_{i}^{2}-\sum_{i<j} d_{i j} x_{i} x_{j} \tag{q}\\
& =\sum_{i}\left(2-2 d_{i i}\right) y_{i} \cdot \frac{1}{2 y_{i}} \cdot x_{i}^{2}-\sum_{i<j} d_{i j} x_{i} x_{j} \\
& =\sum_{i \neq j} d_{i j} \cdot \frac{y_{j}}{2 y_{i}} \cdot x_{i}^{2}-\sum_{i<j} d_{i j} x_{i} x_{j} \\
& =\sum_{i<j} d_{i j} \cdot \frac{y_{j}}{2 y_{i}} \cdot x_{i}^{2}-\sum_{i<j} d_{i j} x_{i} x_{j}+\sum_{i<j} d_{i j} \cdot \frac{y_{i}}{2 y_{j}} \cdot x_{j}^{2} \\
& =\sum_{i<j} d_{i j} \cdot \frac{y_{i} y_{j}}{2} \cdot\left(\frac{x_{i}}{y_{i}}-\frac{x_{j}}{y_{j}}\right)^{2} .
\end{align*}
$$

(by above)

Proof of the key lemma-still continued

- So far we know that $y \in \operatorname{rad} q$ is sincere and $\forall x \in \mathbb{Z}^{n}$:

$$
q(x)=\sum_{i<j} d_{i j} \cdot \frac{y_{i} y_{j}}{2} \cdot\left(\frac{x_{i}}{y_{i}}-\frac{x_{j}}{y_{j}}\right)^{2}
$$

- It remains to prove that $q(x)=0 \Longleftrightarrow x \in \mathbb{Q} y \Longleftrightarrow x \in \operatorname{rad} q$.
- If $q(x)=0$, then $\frac{x_{i}}{y_{i}}=\frac{x_{j}}{y_{j}}$ whenever $i-j$ in Γ. Since Γ is connected, this implies that $x \in \mathbb{Q} y$.
- If $x \in \mathbb{Q} y$, then clearly $x \in \operatorname{rad} q($ recall \subset def. of rad $q)$.
- Finally, $x \in \operatorname{rad} q$ always implies $q(x)=\frac{1}{2}(x, x)=0$.

When is q positive (semi-)definite? [Kra, §4.2]

Theorem ([Kra, Theorem 4.2.1])
Let Γ be a connected finite graph, $n=\left|\Gamma_{0}\right|$ and $q: \mathbb{Z}^{n} \rightarrow \mathbb{Z}$ the associated quadratic form.

1. q is positive definite iff Γ is a Dynkin diagram:

When is q positive (semi-)definite? [Kra, §4.2]

Theorem ([Kra, Theorem 4.2.1])
Let Γ be a connected finite graph, $n=\left|\Gamma_{0}\right|$ and $q: \mathbb{Z}^{n} \rightarrow \mathbb{Z}$ the associated quadratic form.
2. q is positive semi-definite but not positive definite iff Γ is a Euclidean diagram:

In that case, $\exists!\delta \in \mathbb{Z}^{n}$ such that $\delta>0$ and $\operatorname{rad} q=\mathbb{Z} \delta$.

Proof of the theorem—the Euclidean case [Kra, §4.2]

- Suppose that Γ is a Euclidean diagram.
- Then we can explicitly find a positive radical vector $\delta \in \mathbb{Z}^{n}$:

- The quadratic form q is positive semi-definite and $\operatorname{rad} q=\mathbb{Z} \delta$ by the Key Lemma

Proof of the theorem—the Dynkin case [Kra, §4.2]

- Suppose that Γ is a Dynkin diagram with $n=\left|\Gamma_{0}\right|$.
- Then there is an Euclidean diagram $\tilde{\Gamma}$ such that Γ is obtained from $\tilde{\Gamma}$ by deleting a vertex i.
- If q and \tilde{q} are the corresponding quadratic forms and $x \in \mathbb{Z}^{n}$, then $q(x)=\tilde{q}(\tilde{x})$, where $\tilde{x} \in \mathbb{Z}^{n+1}$ is obtained from x by adding zero coordinate at vertex i. So q is positive semi-definite.
- The rest follows from the \subset Key Lemma: If $x \neq 0$, then $x \notin \operatorname{rad} q$ (since \tilde{x} is not sincere). Hence $q(x) \neq 0$.

Proof of the theorem-the remaining cases [Kra, §4.2]

- Suppose not that Γ is neither Dynkin nor Euclidean and $q: \mathbb{Z}^{n} \rightarrow \mathbb{Z}$ its quadratic form.
- Recall: $q(x)=\sum_{i \in \Gamma_{0}} x_{i}^{2}-\sum_{i \leq j} d_{i j} x_{i} x_{j}$.
- We must prove that q is not positive semi-definite.
- Observation: There is a subgraph of $\Gamma^{\prime} \varsubsetneqq \Gamma$ which is Euclidean. Let $\delta \in \mathbb{Z}^{n^{\prime}} \leq \mathbb{Z}^{n}$ its positive radical vector as above.
- Beware: We must also consider $\tilde{A}_{0}:-\bigcirc$ with $q\left(x_{1}\right) \equiv 0$, and $\tilde{A}_{1}: \bullet$ with $q\left(x_{1}, x_{2}\right)=\left(x_{1}-x_{2}\right)^{2}$!
- If $\Gamma_{0}^{\prime}=\Gamma_{0}$, then $q(\delta)<0$.
- If $\Gamma_{0}^{\prime} \varsubsetneqq \Gamma_{0}$, then there exists a vertex $j \in \Gamma_{0} \backslash \Gamma_{0}^{\prime}$ connected to Γ_{0}^{\prime} by an edge. It follows that

$$
q\left(2 \delta+e_{i}\right)=4 q(\delta)+2\left(\delta, e_{j}\right)+q\left(e_{j}\right) \leq-2 \sum_{i \in \Gamma_{0}^{\prime}} d_{i j} \delta_{i}+\left(1-d_{i i}\right)<0 .
$$

Back to quivers

Corollary
Let Q be a finite acyclic quiver and K a field. Then the form

$$
\begin{aligned}
q: \quad \mathbb{Z}^{n} & \rightarrow \mathbb{Z}, \\
\underline{\operatorname{dim}} M & \mapsto \operatorname{dim}_{K} \operatorname{Hom}(M, M)-\operatorname{dim}_{K} \operatorname{Ext}^{1}(M, M)
\end{aligned}
$$

is positive definite iff the underlying graph of Q is a Dynkin diagram.

Example

Let Q be an orientation of the $A_{n}=(1-2-\cdots-n)$. Then
$q(x)=\frac{1}{2} \cdot\left(x_{1}^{2}+\left(x_{1}-x_{2}\right)^{2}+\left(x_{2}-x_{3}\right)^{2}+\cdots+\left(x_{n-1}-x_{n}\right)^{2}+x_{n}^{2}\right)$.

Roots of Dynkin and Eucledian diagrams

- Let Γ be a Dynkin or a Euclidean diagram.
- Let $q(x)=\sum_{i \in \Gamma_{0}} x_{i}^{2}-\sum_{i \leq j} d_{i j} x_{i} x_{j}=\frac{1}{2}(x, x)$ and $(x, y)=q(x+y)-q(x)-q(y)$ be as before.
- Put $\Delta=\left\{x \in \mathbb{Z}^{n} \mid q(x) \leq 1\right\}$.
- A root is a non-zero element of Δ.
- Motivation: Suppose Q is an acyclic quiver whose underlying diagram is Γ. We will show later that the roots of Γ are precisely the dimension vectors of indecomposable finitely generated $K Q$-modules.
- Observation: e_{i} is a root for each $i \in \Gamma_{0}$.
- Observation: $x \in \Delta \Longleftrightarrow-x \in \Delta$.

Examples

- If q is positive def. (= Q Dynkin), then $(-,-): \mathbb{Z}^{n} \times \mathbb{Z}^{n} \rightarrow \mathbb{Z}$ extends to a scalar product $(-,-): \mathbb{R}^{n} \times \mathbb{R}^{n} \rightarrow \mathbb{R}$.
- The picture below is drawn in a basis of \mathbb{R}^{n} where $(-,-)$ is the usual scalar product.

Example

- Let $\Gamma=A_{2}=(2-1)$, so $q(x)=\frac{1}{2} \cdot\left(x_{1}^{2}+\left(x_{1}-x_{2}\right)^{2}+x_{2}^{2}\right)$.
- The roots:

- Try to draw the roots of $A_{3}=(3-2-1)$!

Properties of roots [Kra, §4.3]

Lemma (Proposition 4.3.1(3))
Let Γ be Dynkin or Euclidean. If $x \in \Delta$ is a root, then $x>0$ or $x<0$.

Proof.

- We can write $x=x^{+}-x^{-}$, where $x^{+}, x^{-} \geq 0$ have disjoint support.
- $1 \geq q(x)=q\left(x^{+}\right)+q\left(x^{-}\right)-\left(x^{+}, x^{-}\right) \geq q\left(x^{+}\right)+q\left(x^{-}\right) \geq 0$.
- Thus, $q\left(x^{+}\right)=0$ or $q\left(x^{-}\right)=0$.
- If both x^{+}, x^{-}were non-zero, they would be sincere, a contradiction!

