Representation theory of finite dimensional algebras (NMAG 442)

Notes for the streamed lecture

Jan Štovíček
April 16, 2020

Department of Algebra, Charles University, Prague

Table of contents

Motivation

The Euler form

Forms associated with quivers and graphs

Motivation

Longer-term goal

- Let K be a field and Q a finite acyclic quiver and $A=K Q$ the finite dimensional hereditary algebra.
- Let ind $-A$ be a skeleton of the full subcategory of $\bmod -A$ formed by indecomposable modules.
- Aim: to understand the category ind- A, or at least for which quivers there are only finitely many isomorphism classes of finitely generated indecomposable A-modules.

Example

If K any field, $Q=(1 \rightarrow 2 \rightarrow 3)$, then ind- $K Q$ looks like:

The Euler form

The group K_{0}

- Aim: Given an abelian category \mathcal{A}, understand functions δ : obj $\mathcal{A} \rightarrow G, G$ abelian group, such that

$$
\delta(L)=\delta(K)+\delta(M) \quad \forall(0 \rightarrow K \rightarrow L \rightarrow M \rightarrow 0)
$$

- A prototype: dim_{K} : vect- $K \rightarrow \mathbb{Z}, V \mapsto \operatorname{dim}_{K}(V)$.
- Key observation: There is a universal such function $\mathcal{A} \rightarrow K_{0}(\mathcal{A})$!
- Generators of $K_{0}(\mathcal{A})$: Isomorphism classes $[M], M \in \operatorname{obj} \mathcal{A}$.
- Relations in $K_{0}(\mathcal{A})$:

$$
[L]=[K]+[M] \quad \forall(0 \rightarrow K \rightarrow L \rightarrow M \rightarrow 0) .
$$

- How can we compute $K_{0}(\bmod -A)$ for finite dimensional algebras?

K_{0} for a path algebra

Definition

Given $M=\left(M_{i}, f_{\alpha}\right) \in \operatorname{rep}_{K}(Q, I)$, we define the dimension vector $\underline{\operatorname{dim}} M:=\left(\operatorname{dim}_{K}\left(M_{i}\right)\right)_{i \in Q_{0}}$.
Proposition
$K_{0}(\bmod -K Q / I) \cong K_{0}\left(\operatorname{rep}_{K}(Q, I)\right) \cong \mathbb{Z}^{Q_{0}}$.

Proof.

- We have a group homomorphism $\varphi: K_{0}\left(\operatorname{rep}_{K}(Q, I)\right) \rightarrow \mathbb{Z}^{Q_{0}}$ which sends $[M] \mapsto \underline{\operatorname{dim}(M) \text {. }}$
- φ is surjective since it maps simples $\left[S_{i}\right]$ to a basis of $\mathbb{Z}^{Q_{0}}$.
- Each $M \in \operatorname{rep}_{K}(Q, I)$ has a filtration

$$
0=M_{0} \leq M_{1} \leq M_{2} \leq \cdots \leq M_{\ell-1} \leq M_{\ell}=M
$$

such that each M_{i} / M_{i-1} is simple, so $[M]=\sum_{i=1}^{\ell}\left[M_{i} / M_{i-1}\right]$.

- The classes of simples $\left[S_{i}\right], i \in Q_{0}$, are linearly independent since their images over φ are such. Hence φ is injective.

An attempt to compute dimensions of Hom-groups

- Let $A=K Q$ for Q finite acyclic and $M, N \in \bmod -A$.
- Can we compute $\operatorname{dim}_{K} \operatorname{Hom}_{A}(M, N)$ from $\operatorname{dim}(M)$ and $\operatorname{dim}(N) ?$
- Not really in general. However we actually can compute

$$
\operatorname{dim}_{K} \operatorname{Hom}_{A}(M, N)-\operatorname{dim}_{K} \operatorname{Ext}_{A}^{1}(M, N)!
$$

- Idea: If $0 \rightarrow M_{1} \rightarrow M_{2} \rightarrow M_{3} \rightarrow 0$ is exact in $\bmod -A$, we have

$$
\begin{aligned}
0 & \rightarrow \operatorname{Hom}_{A}\left(M_{3}, N\right) \rightarrow \operatorname{Hom}_{A}\left(M_{2}, N\right) \rightarrow \operatorname{Hom}_{A}\left(M_{1}, N\right) \rightarrow \\
& \rightarrow \operatorname{Ext}_{A}^{1}\left(M_{3}, N\right) \rightarrow \operatorname{Ext}_{A}^{1}\left(M_{2}, N\right) \rightarrow \operatorname{Ext}_{A}^{1}\left(M_{1}, N\right) \rightarrow 0 .
\end{aligned}
$$

- So $\left(\operatorname{dim}_{K} \operatorname{Hom}_{A}\left(M_{2}, N\right)-\operatorname{dim}_{K} \operatorname{Ext}_{A}^{1}\left(M_{2}, N\right)\right)=$ $\left(\operatorname{dim}_{K} \operatorname{Hom}_{A}\left(M_{3}, N\right)-\operatorname{dim}_{K} \operatorname{Ext}_{A}^{1}\left(M_{3}, N\right)\right)+$ $\left(\operatorname{dim}_{K} \operatorname{Hom}_{A}\left(M_{1}, N\right)-\operatorname{dim}_{K} \operatorname{Ext}_{A}^{1}\left(M_{1}, N\right)\right)$.
- One can also do similar considerations for N.

The Euler form

- By the previous slide, we obtain a bilinear form

$$
\begin{aligned}
\langle-,-\rangle: K_{0}(\bmod -A) \times K_{0}(\bmod -A) \rightarrow & \mathbb{Z}, \\
([M],[N]) \mapsto & \operatorname{dim}_{K} \operatorname{Hom}_{A}(M, N)- \\
& \operatorname{dim}_{K} \operatorname{Ext}_{A}^{1}(M, N) .
\end{aligned}
$$

- This is the Euler form.
- More generally, if A has finite global dimension, we have

$$
([M],[N]) \mapsto \sum_{n=0}^{\operatorname{gldim}(A)}(-1)^{n} \operatorname{dim}_{K} \operatorname{Ext}_{A}^{n}(M, N)
$$

- Since $[M] \rightarrow \underline{\operatorname{dim}}(M)$ induces $K_{0}(\bmod -A) \cong \mathbb{Z}^{Q_{0}}$, the Euler form can be computed just from the dimension vectors.

A formula for the Euler form

- Given a finite acyclic quiver Q with $Q_{0}=\{1, \ldots, n\}$ vertices and a field K, we have the Euler bilinear form such that for each $M, N \in \operatorname{rep}_{k} Q$,

$$
\langle\underline{\operatorname{dim}} M, \underline{\operatorname{dim}} N\rangle=\operatorname{dim}_{K} \operatorname{Hom}_{A}(M, N)-\operatorname{dim}_{K} \operatorname{Ext}_{A}^{1}(M, N),
$$

- The dimension vectors $e_{i}:=\underline{\operatorname{dim}} S_{i}$ of simples $S_{i}, i \in Q_{0}$, form the standard basis for \mathbb{Z}^{n}.
- Then

$$
\begin{aligned}
\left\langle e_{i}, e_{j}\right\rangle & =\operatorname{dim}_{K} \operatorname{Hom}\left(S_{i}, S_{j}\right)-\operatorname{dim}_{K} \operatorname{Ext}^{1}\left(S_{i}, S_{j}\right) \\
& =\delta_{i j}-\mid\left\{\alpha: i \rightarrow j \text { in } Q_{1}\right\} \mid
\end{aligned}
$$

- Hence, if $x=\left(x_{1}, \ldots x_{n}\right)$ and $y=\left(y_{1}, \ldots, y_{n}\right) \in \mathbb{Z}^{n}$, then

$$
\langle x, y\rangle=\sum_{i \in Q_{0}} x_{i} y_{i}-\sum_{\alpha: i \rightarrow j} x_{i} y_{j}
$$

Forms associated with quivers and graphs

The yoga of forms [Kra, $\S \S 3.2$ and 4.1]

- Let Q be a finite quiver with $Q_{0}=\{1, \ldots, n\}, \Gamma$ the underlying graph and $d_{i, j}$ be the number of edges $i-j$.
- Then we have the Euler form

$$
\langle x, y\rangle=\sum_{i \in Q_{0}} x_{i} y_{i}-\sum_{\alpha: i \rightarrow j} x_{i} y_{j}
$$

- There is an associated quadratic form $q: \mathbb{Z}^{n} \rightarrow \mathbb{Z}$,

$$
q(x)=\langle x, x\rangle=\sum_{i \in Q_{0}} x_{i}^{2}-\sum_{\alpha: i \rightarrow j} x_{i} x_{j}=\sum_{i \in \Gamma_{0}} x_{i}^{2}-\sum_{i \leq j} d_{i j} x_{i} x_{j} .
$$

- We cannot reconstruct $\langle-,-\rangle$ from Q, but we can reconstruct the symmetrized Euler form $(-,-): \mathbb{Z}^{n} \times \mathbb{Z}^{n} \rightarrow \mathbb{Z}$,

$$
\begin{aligned}
(x, y) & =q(x+y)-q(x)-q(y)=\langle x, y\rangle+\langle y, x\rangle= \\
& =\sum_{i \in \Gamma_{0}}\left(2-2 d_{i i}\right) \cdot x_{i} y_{i}-\sum_{i \neq j} d_{i j} x_{i} y_{j} .
\end{aligned}
$$

Example-continued

- Let $Q=(1 \rightarrow 2 \rightarrow 3)$, so that $\Gamma=(1-2-3)$.
- $\langle x, y\rangle=x_{1} y_{1}+x_{2} y_{2}+x_{3} y_{3}-x_{1} y_{2}-x_{2} y_{3}$.
- $q(x)=x_{1}^{2}+x_{2}^{2}+x_{3}^{2}-x_{1} x_{2}-x_{2} x_{3}$

$$
=\frac{1}{2} \cdot\left(x_{1}^{2}+\left(x_{1}-x_{2}\right)^{2}+\left(x_{2}-x_{3}\right)^{2}+x_{3}^{2}\right) .
$$

- This is a positive definite quadratic form, ie. $q(x)>0\left(\forall x \in \mathbb{Z}^{3} \backslash\{0\}\right)$, which will turn out to be closely related to the finite representation type of Q !

Some terminology related to forms

Definition

Let $q: \mathbb{Z}^{n} \rightarrow \mathbb{Z}$ be a quadratic form. Then

- q is positive definite if $q(x)>0$ for all $x \in \mathbb{Z}^{n} \backslash\{0\}$.
- q is positive semi-definite if $q(x) \geq 0$ for all $x \in \mathbb{Z}^{n}$.

The radical of q is the subgroup

$$
\operatorname{rad} q=\left\{x \in \mathbb{Z}^{n} \mid(x,-) \equiv 0\right\} \leq \mathbb{Z}^{n}
$$

where $(x, y)=q(x+y)-q(x)-q(y)$ is the associated bilinear form.

Definition
Given $x, y \in \mathbb{Z}^{n}$, we write $x \leq y$ if $x_{i} \leq y_{i}$ for all i, and $x<y$ if $x \leq y$ and $x \neq y$ (a partial order).

Finally, a vector $x=\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{Z}^{n}$ is sincere if $x_{i} \neq 0$ for all i.

