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Motivation



Longer-term goal

• Let K be a field and Q a finite acyclic quiver and A = KQ the
finite dimensional hereditary algebra.

• Let ind-A be a skeleton of the full subcategory of mod-A

formed by indecomposable modules.
• Aim: to understand the category ind-A, or at least for which

quivers there are only finitely many isomorphism classes of
finitely generated indecomposable A-modules.

Example
If K any field, Q = (1→ 2→ 3), then ind-KQ looks like:
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The Euler form



The group K0

• Aim: Given an abelian category A, understand functions
δ : objA → G , G abelian group, such that

δ(L) = δ(K ) + δ(M) ∀(0→ K → L→ M → 0).

• A prototype: dimK : vect-K → Z, V 7→ dimK (V ).

• Key observation: There is a universal such function
A → K0(A)!
• Generators of K0(A): Isomorphism classes [M], M ∈ objA.
• Relations in K0(A):

[L] = [K ] + [M] ∀(0→ K → L→ M → 0).

• How can we compute K0(mod-A) for finite dimensional
algebras?

3



K0 for a path algebra

Definition
Given M = (Mi , fα) ∈ repK(Q, I ), we define the dimension vector
dimM :=

(
dimK (Mi )

)
i∈Q0

.

Proposition
K0(mod-KQ/I ) ∼= K0(repK(Q, I )) ∼= ZQ0 .

Proof.
• We have a group homomorphism ϕ : K0(repK(Q, I ))→ ZQ0

which sends [M] 7→ dim(M).

• ϕ is surjective since it maps simples [Si ] to a basis of ZQ0 .

• Each M ∈ repK(Q, I ) has a filtration
0 = M0 ≤ M1 ≤ M2 ≤ · · · ≤ M`−1 ≤ M` = M

such that each Mi/Mi−1 is simple, so [M] =
∑`

i=1[Mi/Mi−1].

• The classes of simples [Si ], i ∈ Q0, are linearly independent
since their images over ϕ are such. Hence ϕ is injective. 4



An attempt to compute dimensions of Hom-groups

• Let A = KQ for Q finite acyclic and M,N ∈ mod-A.
• Can we compute dimK HomA(M,N) from dim(M) and

dim(N)?
• Not really in general. However we actually can compute

dimK HomA(M,N)− dimK Ext1A(M,N)!

• Idea: If 0→ M1 → M2 → M3 → 0 is exact in mod-A, we have

0→ HomA(M3,N)→ HomA(M2,N)→ HomA(M1,N)→
→ Ext1A(M3,N)→ Ext1A(M2,N)→ Ext1A(M1,N)→ 0.

• So (dimK HomA(M2,N)− dimK Ext1A(M2,N)) =

(dimK HomA(M3,N)− dimK Ext1A(M3,N)) +

(dimK HomA(M1,N)− dimK Ext1A(M1,N)).
• One can also do similar considerations for N. 5



The Euler form

• By the previous slide, we obtain a bilinear form

〈−,−〉 : K0(mod-A)× K0(mod-A)→Z,

([M], [N]) 7→ dimK HomA(M,N)−
dimK Ext1A(M,N).

• This is the Euler form.
• More generally, if A has finite global dimension, we have

([M], [N]) 7→
gldim(A)∑

n=0

(−1)n dimK ExtnA(M,N).

• Since [M]→ dim(M) induces K0(mod-A) ∼= ZQ0 , the Euler
form can be computed just from the dimension vectors.
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A formula for the Euler form

• Given a finite acyclic quiver Q with Q0 = {1, . . . , n} vertices
and a field K , we have the Euler bilinear form such that for
each M,N ∈ repK Q,

〈dimM, dimN〉 = dimK HomA(M,N)− dimK Ext1A(M,N),

• The dimension vectors ei := dimSi of simples Si , i ∈ Q0, form
the standard basis for Zn.
• Then

〈ei , ej〉 = dimK Hom(Si ,Sj)− dimK Ext1(Si ,Sj)

= δij − |{α : i → j in Q1}|.

• Hence, if x = (x1, . . . xn) and y = (y1, . . . , yn) ∈ Zn, then

〈x , y〉 =
∑
i∈Q0

xiyi −
∑
α : i→j

xiyj .
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Forms associated with quivers and
graphs



The yoga of forms [Kra, §§3.2 and 4.1]

• Let Q be a finite quiver with Q0 = {1, . . . , n}, Γ the
underlying graph and di ,j be the number of edges i — j .
• Then we have the Euler form

〈x , y〉 =
∑
i∈Q0

xiyi −
∑
α : i→j

xiyj .

• There is an associated quadratic form q : Zn → Z,

q(x) = 〈x , x〉 =
∑
i∈Q0

x2i −
∑
α : i→j

xixj =
∑
i∈Γ0

x2i −
∑
i≤j

dijxixj .

• We cannot reconstruct 〈−,−〉 from Q, but we can reconstruct
the symmetrized Euler form (−,−) : Zn × Zn → Z,

(x , y) = q(x + y)− q(x)− q(y) = 〈x , y〉+ 〈y , x〉 =

=
∑
i∈Γ0

(2− 2dii ) · xiyi −
∑
i 6=j

dijxiyj .
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Example—continued

• Let Q = (1→ 2→ 3), so that Γ = (1— 2— 3).

• 〈x , y〉 = x1y1 + x2y2 + x3y3 − x1y2 − x2y3.

• q(x) = x21 + x22 + x23 − x1x2 − x2x3

= 1
2 ·
(
x21 + (x1 − x2)

2 + (x2 − x3)
2 + x23

)
.

• This is a positive definite quadratic form, i.e.
q(x) > 0 (∀x ∈ Z3 \ {0}), which will turn out to be closely
related to the finite representation type of Q!
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Some terminology related to forms

Definition
Let q : Zn → Z be a quadratic form. Then

• q is positive definite if q(x) > 0 for all x ∈ Zn \ {0}.
• q is positive semi-definite if q(x) ≥ 0 for all x ∈ Zn.

The radical of q is the subgroup

rad q = {x ∈ Zn | (x ,−) ≡ 0} ≤ Zn,

where (x , y) = q(x + y)− q(x)− q(y) is the associated bilinear
form.

Definition
Given x , y ∈ Zn, we write x ≤ y if xi ≤ yi for all i , and x < y if
x ≤ y and x 6= y (a partial order).

Finally, a vector x = (x1, . . . , xn) ∈ Zn is sincere if xi 6= 0 for all i . 10
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