Representation theory of finite dimensional algebras (NMAG 442)

Notes for the streamed lecture

Jan Šťovíček April 9, 2020

Department of Algebra, Charles University, Prague

Hereditary algebras

Hereditary algebras

Reminder

- If A is a ring, and M, N ∈ Mod-A modules, we have constructed groups Extⁱ_A(M, N), i ≥ 0, using either a projective resolution of M or an injective coresolution of N.
- The construction is functorial, we have functors

 $\operatorname{Ext}_{A}^{n}(-,-)$: $(\operatorname{Mod} - A)^{\operatorname{op}} \times \operatorname{Mod} - A \to \operatorname{Ab}$,

and $\operatorname{Ext}_{A}^{0}(-,-) \cong \operatorname{Hom}_{A}(-,-).$

• $\operatorname{Ext}^1_A(M,N) \cong \{0 \to N \to E \to M \to 0\}/\sim$ and the zero element is

$$[0 \to N \xrightarrow{\oplus} N \oplus M \xrightarrow{\oplus} M \to 0]_{\sim}.$$

Definition

The projective dimension of $M \in Mod-A$ is the smallest integer n such that M has a projective resolution

$$0 \to P_n \to \cdots \to P_0 \to M \to 0,$$

or the projective dimension is infinite if a finite projective resolution does not exist.

Dually, the injective dimension of N is the smallest n such that

$$0\to N\to E^0\to\cdots\to E^n\to 0,$$

or infinite if a finite injective coresolution does not exist.

Ext-groups and homological dimensions

Proposition

The following are equivalent:

1. The projective dimension of M is at most n;

2.
$$\operatorname{Ext}^i_{\mathcal{A}}(M,-)\equiv 0$$
 for all $i>n;$

3.
$$\operatorname{Ext}_{A}^{n+1}(M,-) \equiv 0.$$

Proposition

The following are equivalent for $N \in Mod-A$:

1. The injective dimension of M is at most n;

2.
$$\operatorname{Ext}^i_{\mathcal{A}}(-, N) \equiv 0$$
 for all $i > n$;

3.
$$Ext_{A}^{n+1}(-, N) \equiv 0;$$

4. $\operatorname{Ext}_{A}^{n+1}(A/I, N) = 0$ for each $I_{A} \leq A$ (Baer lemma);

If A is a finite dimensional algebra, these are equivalent to

5.
$$\operatorname{Ext}_{A}^{n+1}(S, N) \equiv 0$$
 for each S_{A} simple.

Theorem

Let A be a ring. Then the following are equivalent:

- 1. The ring is semisimple.
- 2. Each short exact sequence of A-modules

 $0 \rightarrow N \rightarrow E \rightarrow M \rightarrow 0$ splits.

- 3. $\operatorname{Ext}^1_A(-,-) \equiv 0.$
- 4. Each A-module is projective.
- 5. Each A-module is injective.

The global dimension

Definition

The right global dimension of a ring A is defined as

```
gldim(A) = \sup\{proj. dim. M \mid M \in Mod-A\}.
```

Remark

- 1. gldim(A) $\leq n$ if and only if $\operatorname{Ext}_{A}^{n+1}(-,-) \equiv 0$.
- 2. A is semisimple if and only if gldim(A) = 0.
- 3. $gldim(A) = sup\{proj. dim. A/I \mid I_A \leq A\}$ (Baer lemma).
- If A is a finite dimensional algebra, then even gldim(A) = sup{proj.dim. S | S_A simple}.
- 5. One can define a left global dimension. If A is left and right noetherian, then the dimensions agree (non-trivial!).

Hereditary rings ([ASS, §VII.1])

Definition

A ring A is (right) hereditary if it satisfies the equivalent conditions in the

Theorem ([ASS, Theorem VII.1.4]) The following are equivalent for a ring A:

- 1. $gldim(A) \leq 1$,
- 2. proj. dim. $(A/I) \leq 1$ for each $I_A \leq A$,
- 3. each right ideal $I_A \leq A$ is projective,
- 4. each submodule of a projective right module is projective,
- 5. each factor of an injective right module is injective.

If A is a finite-dimensional algebra, these are further equivalent to

6. proj. dim. $(S) \leq 1$ for each S_A simple.

Examples of hereditary rings

Example Most well-known: \mathbb{Z} !

Lemma ([ASS, Theorem VII.1.7(a)]) If K is a field and Q is a finite acyclic quiver, then KQ is hereditary.

Proof.

- S_A simple $\implies S \cong (e_i A)/(e_i \operatorname{rad}(A))$ for $i \in Q_0$.
- So we have $0 \rightarrow e_i \operatorname{rad}(A) \rightarrow e_i A \rightarrow S \rightarrow 0.$
- Now e_i rad(A) = ⊕_(α: i→j)αA ≃ ⊕_(α: i→j)e_jA is projective.

Remark

KQ is hereditary even if Q has oriented cycles (only need: $|Q_0| < \infty$). The proof is much harder, uses non-commutative Gröbner bases.

Theorem ([ASS, Theorem VII.1.7(b)]) Let A be a hereditary finite dimensional algebra over K such that $A/rad(A) \cong K \times K \times \cdots \times K$ (e.g. if K is alg. closed and A is basic). Then $A \cong KQ_A$, so Q_A is acyclic.

Corollary

Any hereditary finite dimensional algebra over an algebraically closed field is Morita equivalent to KQ, where Q is a finite acyclic quiver.

Lemma ([ASS, Corollary VII.1.5(a)]) Let A be hereditary and $f: Q \rightarrow P$ a map between indecomposable projectives. If f is non-zero, then it is a monomorphism.

Proof.

- Im $f \leq P$ is projective, so $Q \cong \operatorname{Ker} f \oplus \operatorname{Im} f$.
- If $f \neq 0$, then Im $f \cong Q$ and, hence Ker f = 0.

Corollary Suppose that A is hereditary and $A/rad(A) \cong K \times K \times \cdots \times K$. Then Q_A is acyclic.

Theorem ([ASS, Theorem VII.1.7(b)]) Let A be a hereditary finite dimensional algebra over K such that $A/rad(A) \cong K \times K \times \cdots \times K$. Then $A \cong KQ_A$, so Q_A is acyclic.

Proof.

- WLOG $A = KQ_A/I$ with Q_A acyclic and I admissible.
- By [ARS, Lemma III.1.11]: $I \neq 0 \implies A$ not hereditary.
- To this end, we have an exact sequence of A-modules

$$0 \to \frac{I}{R_Q \cdot I} \to \frac{R_Q}{R_Q \cdot I} \xrightarrow{P} \frac{R_Q}{I} \to 0.$$

- As R_Q is projective over KQ, then R_Q/R_QI is proj. over A.
- Further, $0 \neq I/R_Q I \leq R_Q^2/R_Q I = \operatorname{rad}(R_Q/R_Q I)$.
- So p is a projective cover in mod-A and rad(A)_A = R_Q/I is non-projective A-module.