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Hereditary algebras



e If Ais aring, and M, N € Mod-A modules, we have
constructed groups Ext/y(M, N), i > 0, using either a
projective resolution of M or an injective coresolution of N.

e The construction is functorial, we have functors
Exta(—, —): (Mod-A)°® x Mod-A — Ab,

and Ext(—, —) = Homa(—, —).
o Exti(M,N)= {0 - N — E — M — 0} /~ and the zero

element is

0N NeMS M0l



Homological dimensions

Definition
The projective dimension of M € Mod-A is the smallest integer n

such that M has a projective resolution
0—-Py—--—Pp—M—=0,
or the projective dimension is infinite if a finite projective resolution

does not exist.

Dually, the injective dimension of N is the smallest n such that
0-N—-E > ... 5 E" >0,

or infinite if a finite injective coresolution does not exist.



Ext-groups and homological dimensions

Proposition
The following are equivalent:

1. The projective dimension of M is at most n;
2. Extiy(M,—) =0 for all i > n;
3. Ext3T(M, ) =0.

Proposition
The following are equivalent for N € Mod-A:

1. The injective dimension of M is at most n;

2. Extiy(—, N) =0 forall i > n;

3. Exti(—,N) =0;

4. Exti™(A/I,N) = 0 for each I4 < A (Baer lemma);
If Ais a finite dimensional algebra, these are equivalent to

5. Eth\H(S, N) = 0 for each S4 simple.



Homological characterization of semisimple rings

Theorem
Let A be a ring. Then the following are equivalent:

1. The ring is semisimple.

2. Each short exact sequence of A-modules
0—-N—E—M— 0 splits.

3. Exty(—,-)=0.

4. Each A-module is projective.

5. Each A-module is injective.



The global dimension

Definition
The right global dimension of a ring A is defined as

gldim(A) = sup{proj.dim. M | M € Mod-A}.

Remark

1. gldim(A) < n if and only if Ext}™(—, —) = 0.

2. Ais semisimple if and only if gldim(A) = 0.

3. gldim(A) = sup{proj.dim. A/l | Ix < A} (Baer lemma).

4. If Ais a finite dimensional algebra, then even
gldim(A) = sup{proj.dim. S | Sa simple}.

5. One can define a left global dimension. If A is left and right
noetherian, then the dimensions agree (non-trivial!).



Hereditary rings ([ASS, §VII.1])

Definition
A ring A is (right) hereditary if it satisfies the equivalent conditions

in the

Theorem ([ASS, Theorem VII.1.4])
The following are equivalent for a ring A:

. gldim(A) <1,
. proj.dim.(A/l) <1 for each Ix < A,

1

2

3. each right ideal |5 < A is projective,

4. each submodule of a projective right module is projective,
5

. each factor of an injective right module is injective.
If A is a finite-dimensional algebra, these are further equivalent to

6. proj.dim.(S) <1 for each Sp simple.



Examples of hereditary rings

Example
Most well-known: Z!

Lemma $[ASS, Theorem VII.1.7(a)])
If K is a tield and Q is a finite acyclic quiver, then KQ is hereditary.

Proof.
o Spsimple = S = (ejA)/(ejrad(A)) for i € Qp.
e So we have 0 — ¢jrad(A) — A — S — 0.
e Now eirad(A) = D(q: imj) QA = Do jj)€A is
projective. 0l

Remark
KQ is hereditary even if @ has oriented cycles (only need:

|Qo| < 00). The proof is much harder, uses non-commutative
Grobner bases.



Characterization of hereditary finite dimensional algebras

Theorem (LASS, Theorem VII.1.7(b)])
Let A be a hereditary finite dimensional algebra over K such that

A/rad(A) = K x K x --- x K (e.g. if K is alg. closed and A is
basic). Then A~ KQa, so Qa is acyclic.

Corollary

Any hereditary finite dimensional algebra over an algebraically
closed field is Morita equivalent to KQ, where Q is a finite acyclic
quiver.



Proof of the characterization

Lemma (EASS, Corollary VII.1.5(a)])

Let A be hereditary and f: Q — P a map between indecomposable
projectives. If f is non-zero, then it is a monomorphism.
Proof.

e Imf < P is projective, so @ = Kerf & Imf.
o If f £0, then Imf = Q and, hence Kerf = 0. O

Corollary
Suppose that A is hereditary and A/rad(A) = K x K x --- x K.

Then Q4 is acyclic.

Proof.
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Proof of the characterization—continued

Theorem (LASS, Theorem VII1.1.7(b)])
Let A be a hereditary finite dimensional algebra over K such that

Afrad(A) = K x K x .-+ x K. Then A~ KQa, so Qa is acyclic.

Proof.
e WLOG A = KQa/I with Q4 acyclic and / admissible.

e By [ARS, Lemma Ill.1.11]: / # 0 = A not hereditary.

To this end, we have an exact sequence of A-modules

0— / — Ro ﬁ>&—>0.
Rqo -1 Ro -1 /

As Rq is projective over KQ, then Rg/Rg! is proj. over A.
Further, 0 # I/Rgl < Ré/RQI =rad(Rq/Rg!).

So p is a projective cover in mod-A and rad(A)a = R/ is
non-projective A-module. O
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