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Reminder

• If A is a ring, and M,N ∈ Mod-A modules, we have
constructed groups ExtiA(M,N), i ≥ 0, using either a
projective resolution of M or an injective coresolution of N.

• The construction is functorial, we have functors

ExtnA(−,−) : (Mod-A)op ×Mod-A→ Ab,

and Ext0A(−,−) ∼= HomA(−,−).
• Ext1A(M,N) ∼= {0→ N → E → M → 0}/∼ and the zero

element is

[ 0→ N
⊕
� N ⊕M

⊕
� M → 0 ]∼.
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Homological dimensions

Definition
The projective dimension of M ∈ Mod-A is the smallest integer n
such that M has a projective resolution

0→ Pn → · · · → P0 → M → 0,
or the projective dimension is infinite if a finite projective resolution
does not exist.

Dually, the injective dimension of N is the smallest n such that
0→ N → E 0 → · · · → En → 0,

or infinite if a finite injective coresolution does not exist.
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Ext-groups and homological dimensions

Proposition
The following are equivalent:

1. The projective dimension of M is at most n;

2. ExtiA(M,−) ≡ 0 for all i > n;

3. Extn+1A (M,−) ≡ 0.

Proposition
The following are equivalent for N ∈ Mod-A:

1. The injective dimension of M is at most n;

2. ExtiA(−,N) ≡ 0 for all i > n;

3. Extn+1A (−,N) ≡ 0;

4. Extn+1A (A/I ,N) = 0 for each IA ≤ A (Baer lemma);

If A is a finite dimensional algebra, these are equivalent to

5. Extn+1A (S ,N) ≡ 0 for each SA simple.
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Homological characterization of semisimple rings

Theorem
Let A be a ring. Then the following are equivalent:

1. The ring is semisimple.

2. Each short exact sequence of A-modules
0→ N → E → M → 0 splits.

3. Ext1A(−,−) ≡ 0.

4. Each A-module is projective.

5. Each A-module is injective.
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The global dimension

Definition
The right global dimension of a ring A is defined as

gldim(A) = sup{proj. dim.M | M ∈ Mod-A}.

Remark

1. gldim(A) ≤ n if and only if Extn+1A (−,−) ≡ 0.

2. A is semisimple if and only if gldim(A) = 0.

3. gldim(A) = sup{proj. dim.A/I | IA ≤ A} (Baer lemma).

4. If A is a finite dimensional algebra, then even
gldim(A) = sup{proj. dim. S | SA simple}.

5. One can define a left global dimension. If A is left and right
noetherian, then the dimensions agree (non-trivial!).
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Hereditary rings ([ASS, §VII.1])

Definition
A ring A is (right) hereditary if it satisfies the equivalent conditions
in the

Theorem ([ASS, Theorem VII.1.4])
The following are equivalent for a ring A:

1. gldim(A) ≤ 1,

2. proj. dim.(A/I ) ≤ 1 for each IA ≤ A,

3. each right ideal IA ≤ A is projective,

4. each submodule of a projective right module is projective,

5. each factor of an injective right module is injective.

If A is a finite-dimensional algebra, these are further equivalent to

6. proj. dim.(S) ≤ 1 for each SA simple.
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Examples of hereditary rings

Example
Most well-known: Z!

Lemma ([ASS, Theorem VII.1.7(a)])
If K is a field and Q is a finite acyclic quiver, then KQ is hereditary.

Proof.

• SA simple =⇒ S ∼= (eiA)/(ei rad(A)) for i ∈ Q0.

• So we have 0→ ei rad(A)→ eiA→ S → 0.

• Now ei rad(A) = ⊕(α : i→j)αA ∼= ⊕(α : i→j)ejA is
projective.

Remark
KQ is hereditary even if Q has oriented cycles (only need:
|Q0| <∞). The proof is much harder, uses non-commutative
Gröbner bases.
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Characterization of hereditary finite dimensional algebras

Theorem ([ASS, Theorem VII.1.7(b)])
Let A be a hereditary finite dimensional algebra over K such that
A/rad(A) ∼= K × K × · · · × K (e.g. if K is alg. closed and A is
basic). Then A ∼= KQA, so QA is acyclic.

Corollary
Any hereditary finite dimensional algebra over an algebraically
closed field is Morita equivalent to KQ, where Q is a finite acyclic
quiver.

9



Proof of the characterization

Lemma ([ASS, Corollary VII.1.5(a)])
Let A be hereditary and f : Q → P a map between indecomposable
projectives. If f is non-zero, then it is a monomorphism.

Proof.

• Im f ≤ P is projective, so Q ∼= Ker f ⊕ Im f .

• If f 6= 0, then Im f ∼= Q and, hence Ker f = 0.

Corollary
Suppose that A is hereditary and A/rad(A) ∼= K × K × · · · × K .
Then QA is acyclic.

Proof.
1

α1 // 2 α2

��
e1A oo

α1·−oo e2A jj α2·−
^^

k − 1

αk−1 22

3 =⇒ ek−1A  
��

αk−1·− tt

e3A
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Proof of the characterization—continued

Theorem ([ASS, Theorem VII.1.7(b)])
Let A be a hereditary finite dimensional algebra over K such that
A/rad(A) ∼= K × K × · · · × K . Then A ∼= KQA, so QA is acyclic.

Proof.
• WLOG A = KQA/I with QA acyclic and I admissible.

• By [ARS, Lemma III.1.11]: I 6= 0 =⇒ A not hereditary.

• To this end, we have an exact sequence of A-modules

0→ I

RQ · I
→ RQ

RQ · I
p→ RQ

I
→ 0.

• As RQ is projective over KQ, then RQ/RQ I is proj. over A.

• Further, 0 6= I/RQ I ≤ R2Q/RQ I = rad(RQ/RQ I ).

• So p is a projective cover in mod-A and rad(A)A = RQ/I is
non-projective A-module.
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