Representation theory of finite dimensional algebras (NMAG 442)

Notes for the streamed lecture

Jan Šťovíček May 7, 2020

Department of Algebra, Charles University, Prague

Preprojectives and preinjectives for Euclidean quivers

Direction of morphisms for hereditary path algebras

Representations of the Kronecker quiver

Preprojectives and preinjectives for Euclidean quivers

Preprojectives and preinjectives—reminder

 If Q is a finite acyclic quiver of Euclidean type, then the defect of x ∈ Z^{|Q₀|} is defined as

$$\partial x := \langle \delta, x \rangle = - \langle x, \delta \rangle.$$

Theorem ([Kra, Theorem 5.3.1]) The assignment $M \mapsto \underline{\dim} M$ induces a bijections between

- the isomorphism classes of indecomposable preprojective representations of Q and the positive roots of Q with negative defect; and
- 2. the isomorphism classes of indecomposable preinjective representations of Q and the positive roots of Q with positive defect.

These form 2n countably infinite series $C^{-r}P(i)$ and $C^{r}I(i)$, $r \ge 0$, $i \in Q_0$ of pairwise non-isomorphic representations.

Reminder of the proof

- If $x \in \Delta$ has non-zero defect, then $c^r(x) < 0$ for some $r \in \mathbb{Z}$.
- Then x = dim M for M indecomposable preprojective (if r > 0) or preinjective (if r < 0).
- Finally, C^r(P(i)) is non-injective (so non-zero) for each r ≤ 0, since ∂C^r(P(i)) = ∂P(i) < 0. Hence the preprojectives form n countably infinite series of pairwise non-isomorphic representations.
- Similarly for preinjectives.

Direction of morphisms for hereditary path algebras

Reflection functors and morphisms

Lemma (a baby version of [Kra, Lemma 7.3.1]) Let Q be any finite acyclic quiver with a sink i, and let $M, N \in \operatorname{rep}_{\mathsf{K}}(Q)$ be indecomposable representations non-isomorphic to S(i). Then S_i^+ induces an isomorphism $\operatorname{Hom}(M, N) \xrightarrow{\sim} \operatorname{Hom}(S_i^+M, S_i^+N)$.

Proof.

For each f: M → N and for each g: S⁺_i M → S⁻_i N, we have commutative diagrams with isomorphisms in rows:

$$\begin{array}{ccc} S_{i}^{-}S_{i}^{+}M \xrightarrow{\iota_{M}} M & S_{i}^{+}M \xrightarrow{\pi_{S_{i}^{+}M}} S_{i}^{+}S_{i}^{-}S_{i}^{+}M \\ S_{i}^{-}S_{i}^{+}f & \downarrow & \downarrow f & g \downarrow & \downarrow S_{i}^{+}S_{i}^{-}g \\ S_{i}^{-}S_{i}^{+}N \xrightarrow{\iota_{N}} N, & S_{i}^{+}N \xrightarrow{\pi_{S_{i}^{+}N}} S_{i}^{+}S_{i}^{-}S_{i}^{+}N. \end{array}$$

• Hence, the map from the statement is injective $(S_i^+ f_1 = S_i^+ f_2 \implies S_i^- S_i^+ f_1 = S_i^- S_i^+ f_2 \implies f_1 = f_2)$ and surjective (given g, the map $\iota_N \circ S_i^- g \circ \iota_M^{-1}$ is a preimage). \Box **Lemma ([Kra, Lemma 9.1.1])** Let Q be a finite acyclic quiver and M, N indecomposable representations.

- 1. If N is preprojective and M is not, then Hom(M, N) = 0.
- 2. If M is preinjective and N is not, then Hom(M, N) = 0.

Proof.

- We prove part 1., the other is dual.
- Suppose we have $0 \neq f : M \rightarrow N$. Then $S_{i-1}^+ \cdots S_1^+ C^r(N) \cong S(i) = P(i) \in \operatorname{rep}_{\mathsf{K}}(\sigma_{i-1} \cdots \sigma_1 Q)$ for some $1 \leq i \leq n$ and $r \geq 0$, and

$$0 \neq g := S_{i-1}^+ \cdots S_1^+ C^r(f) \colon S_{i-1}^+ \cdots S_1^+ C^r(M) \to S(i).$$

• Then g is a split epimorphism, and so is $f = C^{-r}S_1^- \cdots S_{i-1}^-(g), \notin !$ $rep_{K}(Q)$: (Q connected finite acyclic quiver, not Dynkin)

 Remark: The same argument shows that Hom(C^{-r}P(i), C^{-s}P(j)) = 0 if s < r or s = r and there is no path j → i. A dual observation holds for preinjectives.

Closure properties of regular representations

Definition

A representation $M \in \operatorname{rep}_{\mathsf{K}}(Q)$ is preprojective/preinjective/regular if each indecomposable summand of M is such.

Lemma ([Kra, Lemma 9.1.3])

Let $f: M \to N$ be a morphism of regular representations of Q.

- 1. Im(f) is regular.
- 2. If Q is of Euclidean type, then Ker(f), Coker(f) are regular.

- 1. If L is an indecomposable summand of Im(f), there is a non-zero morphism $M \to L$ and $L \to N$.
- We have ∂M = ∂ Ker(f) + ∂ Im(f), so ∂ Ker(f) = 0 by part
 If K is an indecomposable summand of Ker(f), then K is not preinjective, so ∂K ≤ 0. It follows that ∂K = 0 and K is regular for each K.

Representations of the Kronecker quiver

The polynomial ring

- Here, let K be algebraically closed.
- We first consider finite dimensional representations of \times (Euclidean type \tilde{A}_0).
- Well known from linear algebra (Jordan normal form): Each such indecomposable representation is of the form

where $n \geq 1$, $\lambda \in K$ and

$$J(n,\lambda) = \begin{pmatrix} \lambda & 1 & & \\ & \lambda & 1 & & \\ & & \ddots & \ddots & \\ & & & \lambda & 1 \\ & & & & & \lambda \end{pmatrix}$$

(if we identify KQ with K[x], the representation corresponds to the K[x]-module $K[x]/((x - \lambda)^n)$.)

Jordan representations of the Kronecker quiver [Kra, §9.3]

- The Kronecker quiver: \Longrightarrow (Euclidean type \tilde{A}_1).
- Let $\lambda_0, \lambda_1 \in K$ and $n \ge 1$. We define representations

$$R_{n,(\lambda_0:1)} \colon K^n \xrightarrow{J(n,\lambda_0)} K^n, \qquad R_{n,(1:\lambda_1)} \colon K^n \xrightarrow{1_{K^n}} K^n.$$

• Note that $R_{n,(1:\lambda_1)} \cong R_{n,(\lambda_1^{-1}:1)}$ if $\lambda_1 \neq 0$. Indeed, $R_{n,(1:\lambda_1)}$ is isomorphic to

$$R_{n,(\lambda_0:1)}: K^n \xrightarrow{J(n,\lambda_1)^{-1}}_{1_{K^n}} K^n,$$

and the matrices $J(n, \lambda_1)^{-1}$ and $J(n, \lambda_1^{-1})$ are similar (both induce indec. K[x]-modules and have the same eigenvalue).

• Upshot: If $\lambda = (\lambda_0 : \lambda_1) \in \mathbb{P}^1_K$ and $n \ge 1$, we have an indecomposable regular representation $R_{n,\lambda}$.

• ______ :

Theorem (Kronecker, [Kra, Theorem 9.3.1]) Let K be algebraically closed. The following is a complete list of pairwise non-isomorphic indecomposable representations of

1. $P_n: K^n \xrightarrow{\binom{l}{0}} K^{n+1}, n \ge 0$ (preprojectives),

2.
$$I_n: K^{n+1} \xrightarrow{(I \ 0)} K^n$$
, $n \ge 0$ (preinjectives),

3. $R_{n,\lambda}$, $n \ge 1$, $\lambda \in \mathbb{P}^1_K$ (regular).

Regulars at different points of \mathbb{P}^1_K do not see each other

Lemma ([Kra, Lemma 9.3.2(2)]) If $m, n \ge 1$ and $\lambda \ne \mu \in \mathbb{P}^1_K$, then

$$\operatorname{Hom}(R_{n,\lambda},R_{m,\mu})=0=\operatorname{Ext}^1(R_{n,\lambda},R_{m,\mu}).$$

Proof.

• Note that for each $0 < \ell < n$, we have a short exact sequence

$$0 \rightarrow R_{\ell,\lambda} \rightarrow R_{n,\lambda} \rightarrow R_{n-\ell,\lambda} \rightarrow 0.$$

- Using the long exact sequence of Hom's and Ext's, it suffices to prove the lemma for n = 1, and by symmetry also for m = 1.
- It is a straightforward computation that

$$Hom(R_{1,\lambda}, R_{1,\mu}) = 0 = Ext^1(R_{1,\lambda}, R_{1,\mu}).$$

Each regular representation contains some $R_{1,\lambda}$

Lemma ([Kra, Lemma 9.3.3]) Any indecomposable regular representation M contains a subrepresentation isomorphic to $R_{1,\lambda}$ for some $\lambda \in \mathbb{P}^1_K$.

• *M* is of the form
$$\left(V \xrightarrow{r} W\right)$$
 with $0 = \partial M = \dim V - \dim W$.

- If g is an isomorphism, then M ≅ R_{n,(λ0:1)} for some λ₀ ∈ K and we are done.
- Note also that Ker(f) ∩ Ker(g) = 0, or else M would have a simple injective subrepresentation (so a summand) isomorphic to K ________0.
- So if g is not an isomorphism, then $\exists x \in \text{Ker } g \setminus \text{Ker } f$, and M has a subrepresentation $K \xrightarrow[]{0}{} K$, which is $R_{n,(1:0)}$.

Classification of indecomposable regular representations

Proposition ([Kra, Proposition 9.3.4]) The indecomposable regular representations M are up to isomorphism precisely $R_{n,\lambda}$, where $n \ge 1$ and $\lambda \in \mathbb{P}^1_{\mathcal{K}}$.

• Again
$$M \cong (V \xrightarrow{f}_{g} W)$$
 with $n := \dim V = \dim W$.

- We prove the proposition by induction on n; n = 1 is clear.
- If n > 1, we have a monomorphism ι: R_{1,λ} → M (the previous lemma) and Coker ι is regular.
- By inductive hypothesis, we have a short exact sequence

$$0\to R_{1,\lambda}\to M\to \bigoplus_{i=1}^s R_{n_i,\lambda_i}\to 0.$$

- We must have λ_i = λ for all i (or else Ext¹(R_{ni,λi}, R_λ) = 0 and M → R_{ni,λi} would split).
- Thus, f or g is an isomorphism and we use linear algebra.