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Preprojectives and preinjectives for
Euclidean quivers



Preprojectives and preinjectives—reminder

• If Q is a finite acyclic quiver of Euclidean type, then the
defect of x ∈ Z|Q0| is defined as

∂x := 〈δ, x〉 = −〈x , δ〉.

Theorem ([Kra, Theorem 5.3.1])
The assignment M 7→ dimM induces a bijections between

1. the isomorphism classes of indecomposable preprojective
representations of Q and the positive roots of Q with negative
defect; and

2. the isomorphism classes of indecomposable preinjective
representations of Q and the positive roots of Q with positive
defect.

These form 2n countably infinite series C−rP(i) and C r I (i), r ≥ 0,
i ∈ Q0 of pairwise non-isomorphic representations.
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Reminder of the proof

Proof.
• If x ∈ ∆ has non-zero defect, then c r (x) < 0 for some r ∈ Z.

• Then x = dimM for M indecomposable preprojective (if
r > 0) or preinjective (if r < 0).

• Finally, C r (P(i)) is non-injective (so non-zero) for each r ≤ 0,
since ∂C r (P(i)) = ∂P(i) < 0. Hence the preprojectives form
n countably infinite series of pairwise non-isomorphic
representations.

• Similarly for preinjectives.
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Direction of morphisms for
hereditary path algebras



Reflection functors and morphisms

Lemma (a baby version of [Kra, Lemma 7.3.1])
Let Q be any finite acyclic quiver with a sink i , and let
M,N ∈ repK(Q) be indecomposable representations
non-isomorphic to S(i). Then S+

i induces an isomorphism
Hom(M,N)

∼→ Hom(S+
i M, S+

i N).
Proof.
• For each f : M → N and for each g : S+

i M → S−i N, we have
commutative diagrams with isomorphisms in rows:

S−i S+
i M

ιM
∼
//

S−
i S+

i f
��

M

f

��

S+
i M

π
S+
i
M

∼
//

g

��

S+
i S−i S+

i M

S+
i S−

i g
��

S−i S+
i N

ιN
∼
// N, S+

i N
π
S+
i
N

∼
// S+

i S−i S+
i N.

• Hence, the map from the statement is injective
(S+

i f1 = S+
i f2 =⇒ S−i S+

i f1 = S−i S+
i f2 =⇒ f1 = f2) and

surjective (given g , the map ιN ◦S−i g ◦ ι−1M is a preimage).
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Direction of morphisms

Lemma ([Kra, Lemma 9.1.1])
Let Q be a finite acyclic quiver and M, N indecomposable
representations.

1. If N is preprojective and M is not, then Hom(M,N) = 0.

2. If M is preinjective and N is not, then Hom(M,N) = 0.

Proof.
• We prove part 1., the other is dual.

• Suppose we have 0 6= f : M → N.
Then S+

i−1 · · · S
+
1 C

r (N) ∼= S(i) = P(i) ∈ repK(σi−1 · · ·σ1Q)

for some 1 ≤ i ≤ n and r ≥ 0, and

0 6= g := S+
i−1 · · · S

+
1 C

r (f ) : S+
i−1 · · · S

+
1 C

r (M)→ S(i).

• Then g is a split epimorphism, and so is
f = C−rS−1 · · · S

−
i−1(g),  !
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Direction of morphisms—summary

repK(Q) : (Q connected finite acyclic quiver, not Dynkin)

preprojective
regular

preinjective

no 6= 0 morphisms! no 6= 0 morphisms!

C+ C− C−C+

• Remark: The same argument shows that
Hom(C−rP(i),C−sP(j)) = 0 if s < r or s = r and there is no
path j  i . A dual observation holds for preinjectives. 6



Closure properties of regular representations

Definition
A representation M ∈ repK(Q) is preprojective/preinjective/regular
if each indecomposable summand of M is such.

Lemma ([Kra, Lemma 9.1.3])
Let f : M → N be a morphism of regular representations of Q.

1. Im(f ) is regular.

2. If Q is of Euclidean type, then Ker(f ),Coker(f ) are regular.

Proof.
1. If L is an indecomposable summand of Im(f ), there is a

non-zero morphism M → L and L→ N.

2. We have ∂M = ∂ Ker(f ) + ∂ Im(f ), so ∂ Ker(f ) = 0 by part
1. If K is an indecomposable summand of Ker(f ), then K is
not preinjective, so ∂K ≤ 0. It follows that ∂K = 0 and K is
regular for each K .
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Representations of the Kronecker
quiver



The polynomial ring

• Here, let K be algebraically closed.
• We first consider finite dimensional representations of • xbb

(Euclidean type Ã0).
• Well known from linear algebra (Jordan normal form):

Each such indecomposable representation is of the form

Kn
J(n,λ)cc

where n ≥ 1, λ ∈ K and

J(n, λ) =


λ 1

λ 1
. . .

. . .
λ 1

λ


(if we identify KQ with K [x ], the representation corresponds
to the K [x ]-module K [x ]/

(
(x − λ)n

)
.)
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Jordan representations of the Kronecker quiver [Kra, §9.3]

• The Kronecker quiver: • ////• (Euclidean type Ã1).
• Let λ0, λ1 ∈ K and n ≥ 1. We define representations

Rn,(λ0:1) : Kn
J(n,λ0)//
1Kn

//Kn , Rn,(1:λ1) : Kn
1Kn //

J(n,λ1)
//Kn .

• Note that Rn,(1:λ1)
∼= Rn,(λ−11 :1) if λ1 6= 0. Indeed, Rn,(1:λ1) is

isomorphic to

Rn,(λ0:1) : Kn
J(n,λ1)−1//
1Kn

//Kn ,

and the matrices J(n, λ1)
−1 and J(n, λ−11 ) are similar (both

induce indec. K [x ]-modules and have the same eigenvalue).
• Upshot: If λ = (λ0 : λ1) ∈ P1K and n ≥ 1, we have an

indecomposable regular representation Rn,λ.

9



The classification

Theorem (Kronecker, [Kra, Theorem 9.3.1])
Let K be algebraically closed. The following is a complete list of
pairwise non-isomorphic indecomposable representations of
• ////• :

1. Pn : Kn

(
I
0

)
//(

0
I

) //Kn+1 , n ≥ 0 (preprojectives),

2. In : Kn+1
( I 0 ) //

( 0 I )
//Kn , n ≥ 0 (preinjectives),

3. Rn,λ, n ≥ 1, λ ∈ P1K (regular).
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Regulars at different points of P1K do not see each other

Lemma ([Kra, Lemma 9.3.2(2)])
If m, n ≥ 1 and λ 6= µ ∈ P1K , then

Hom(Rn,λ,Rm,µ) = 0 = Ext1(Rn,λ,Rm,µ).

Proof.
• Note that for each 0 < ` < n, we have a short exact sequence

0→ R`,λ → Rn,λ → Rn−`,λ → 0.

• Using the long exact sequence of Hom’s and Ext’s, it suffices
to prove the lemma for n = 1, and by symmetry also for
m = 1.

• It is a straightforward computation that

Hom(R1,λ,R1,µ) = 0 = Ext1(R1,λ,R1,µ).
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Each regular representation contains some R1,λ

Lemma ([Kra, Lemma 9.3.3])
Any indecomposable regular representation M contains a
subrepresentation isomorphic to R1,λ for some λ ∈ P1K .

Proof.

• M is of the form (V
f //
g
//W ) with

0 = ∂M = dimV − dimW .

• If g is an isomorphism, then M ∼= Rn,(λ0:1) for some λ0 ∈ K

and we are done.

• Note also that Ker(f ) ∩ Ker(g) = 0, or else M would have a
simple injective subrepresentation (so a summand) isomorphic
to K // //0.

• So if g is not an isomorphism, then ∃x ∈ Ker g \Ker f , and M

has a subrepresentation K
1 //
0
//K , which is Rn,(1:0). 12



Classification of indecomposable regular representations

Proposition ([Kra, Proposition 9.3.4])
The indecomposable regular representations M are up to
isomorphism precisely Rn,λ, where n ≥ 1 and λ ∈ P1K .

Proof.
• Again M ∼= (V

f //
g
//W ) with n := dimV = dimW .

• We prove the proposition by induction on n; n = 1 is clear.

• If n > 1, we have a monomorphism ι : R1,λ� M (the
previous lemma) and Coker ι is regular.

• By inductive hypothesis, we have a short exact sequence

0→ R1,λ → M →
⊕s

i=1
Rni ,λi → 0.

• We must have λi = λ for all i (or else Ext1(Rni ,λi ,Rλ) = 0
and M � Rni ,λi would split).

• Thus, f or g is an isomorphism and we use linear algebra.
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