Representation theory of finite dimensional algebras (NMAG 442)

Notes for the streamed lecture

Jan Štovíček

April 2, 2020

Department of Algebra, Charles University, Prague

Table of contents

Gabriel's structure theorem for finite dimensional algebras

Crash course in homological algebra

Gabriel's structure theorem for finite dimensional algebras

The quiver of a finite dimensional algebra

Definition ([ASS, Definition II.3.1])

Let A be a finite dimensional algebra over K with a complete set of primitive orthogonal idempotents $\left\{e_{1}, e_{2}, \ldots, e_{n}\right\}$. Suppose that $A / \operatorname{rad}(A) \cong K \times K \times \cdots \times K$ (n copies of K, this happens e.g. if K is algebraically closed and A is basic). Then the quiver Q_{A} of A, is defined as follows:
vertices: $\left(Q_{A}\right)_{0}=\{1,2, \ldots, n\}$,

$$
\begin{aligned}
\text { arrows: } & \text { The arrows } i \rightarrow j \text { are chosen to form a basis } \\
& \left\{\alpha_{1}, \ldots, \alpha_{m_{i j}}\right\} \text { of } \\
& e_{i}\left(\operatorname{rad}(A) / \operatorname{rad}^{2}(A)\right) e_{j} \cong e_{i} \operatorname{rad}(A) e_{j} / e_{i} \operatorname{rad}^{2}(A) e_{j} .
\end{aligned}
$$

The quiver of a finite dimensional algebra, continued

Lemma ([ASS, Lemma II.3.2])

The quiver Q_{A} does not depend on the choice of the complete set of primitive orthogonal idempotents.

Proof.

- Recall that $e_{i} A e_{j} \cong \operatorname{Hom}_{A}\left(e_{j} A, e_{i} A\right)$ via $a \mapsto a \cdot-$.
- The latter bijection restricts to bijections

$$
\begin{aligned}
e_{i} \operatorname{rad}(A) e_{j} & \cong \operatorname{Hom}_{A}\left(e_{j} A, e_{i} \operatorname{rad}(A)\right), \\
e_{i} \operatorname{rad}^{2}(A) e_{j} & \cong \operatorname{Hom}_{A}\left(e_{j} A, e_{i} \operatorname{rad}^{2}(A)\right),
\end{aligned}
$$

hence

$$
e_{i} \operatorname{rad}(A) e_{j} / e_{i} \operatorname{rad}^{2}(A) e_{j} \cong \operatorname{Hom}_{A}\left(e_{j} A, e_{i} \operatorname{rad}(A) / e_{i} \operatorname{rad}^{2}(A)\right)
$$

Lemma ([ASS, Lemma II.3.6], exercise)
Let K be a field, Q a finite quiver, $I \leq K Q$ an admissible ideal and $A=K Q / I$. Then $Q \cong Q_{A}$ (an isomorphism of quivers).

Comparing A and $K Q_{A}$

- Recall: If we have a complete set of primitive orthogonal idempotents $\left\{e_{1}, e_{2}, \ldots, e_{n}\right\}$ in A, then Q_{A} is as follows:
vertices: $\left(Q_{A}\right)_{0}=\{1,2, \ldots, n\}$,
arrows: The arrows $i \rightarrow j$ are chosen to form a basis

$$
\left\{\alpha_{1}, \ldots, \alpha_{m_{i j}}\right\} \text { of } e_{i} \operatorname{rad}(A) e_{j} / e_{i} \operatorname{rad}^{2}(A) e_{j}
$$

- We can lift $\left\{\alpha_{1}, \ldots, \alpha_{m_{i j}}\right\}$ to elements $\left\{a_{1}, \ldots, a_{m_{i j}}\right\}$ in $e_{i} \operatorname{rad}(A) e_{j}$.
- This allows us to define and algebra homomorphism (cf. [ASS, Theorem II.1.8])

$$
\begin{aligned}
\varphi_{A}: K Q_{A} & \rightarrow A, \\
e_{i} & \mapsto e_{i}, \\
\left(\alpha_{\ell}: i \rightarrow j\right) & \mapsto a_{\ell} \in e_{i} \operatorname{rad}(A) e_{j} .
\end{aligned}
$$

A as a factor algebra of $K Q_{A}$

Lemma (essentially [ASS, Lemma II.3.3])

The algebra homomorphism $\varphi_{A}: K Q_{A} \rightarrow A$ is surjective.

Proof.

- We will prove by induction on $m \geq 2$ that $R_{Q_{A}} \rightarrow \operatorname{rad}(A) / \operatorname{rad}^{m}(A)$ is surjective.
- For $m=2$, this follows from the fact that $R_{Q_{A}} / R_{Q_{A}}^{2} \xrightarrow{\sim} \operatorname{rad}(A) / \operatorname{rad}^{2}(A)$ by the construction.
- Suppose now $m \geq 2$ and $a \in A$. By inductive hypothesis, $a=\varphi_{A}(q)+c$ for some $q \in R_{Q_{A}}$ and $c \in \operatorname{rad}^{m}(A)$.
- Therefore, $c=\sum_{i} a_{i} b_{i}$ for some $a_{i} \in \operatorname{rad}(A)$ and $b_{i} \in \operatorname{rad}^{m-1}(A)$. Again induction, $a_{i}=\varphi_{A}\left(q_{i}\right)+c_{i}$ and $b_{i}=\varphi_{A}\left(r_{i}\right)+d_{i}$, where $q_{i}, r_{i} \in R_{Q_{A}}$ and $c_{i}, d_{i} \in \operatorname{rad}^{m}(A)$.
- $a=\varphi(q)+\sum_{i} a_{i} b_{i}=\varphi(q)+\sum_{i}\left(\varphi_{A}\left(q_{i}\right)+c_{i}\right)\left(\varphi_{A}\left(r_{i}\right)+d_{i}\right)=$ $\varphi_{A}\left(q+\sum_{i} q_{i} r_{i}\right)+\ldots$ with omitted terms in $\operatorname{rad}^{m+1}(A) . \quad \square$

Gabriel's theorem

Theorem (Gabriel, [ASS, Theorem II.3.7])
Let A be a finite dimensional algebra over K such that $A / \operatorname{rad}(A) \cong$ $K \times K \times \cdots \times K$. Then $A \cong K Q_{A} / I$, where I is an admissible ideal.

Proof.

- Consider the surjective homomorphism $\varphi_{A}: K Q_{A} \rightarrow A$ (last slide) and put $I=\operatorname{Ker} \varphi_{A}$.
- Then $K Q_{A} / I \cong A$; we must show that I is admissible.
- Since φ_{A} induces $K Q_{A} / R_{Q_{A}}^{2} \xrightarrow{\sim} A / \operatorname{rad}^{2}(A)$, we have $I \leq R_{Q_{A}}^{2}$.
- On the other hand, $\varphi_{A}\left(R_{Q_{A}}^{m}\right) \leq \operatorname{rad}^{m}(A)$ for each $m \geq 0$, so $R_{Q_{A}}^{m} \leq l$ if we choose $m \gg 2$ so that $\operatorname{rad}^{m}(A)=0$.

Corollary

Any finite dimensional algebra over an algebraically closed field is Morita equivalent to $K Q / I$, where Q is a finite quiver and an admissible ideal $I \leq K Q$.

Crash course in homological algebra

Resolutions

- Let A be a ring and M_{A} a right module.
- Then we can construct a so-called projective resolution of M, i.e. an exact sequence

$$
\cdots \xrightarrow{d_{3}} P_{2} \xrightarrow{d_{2}} P_{1} \xrightarrow{d_{1}} P_{0} \xrightarrow{\pi} M \rightarrow 0
$$

with $P_{0}, P_{1}, P_{2}, \ldots$ projective.

- This is in general not unique (unless we take projective covers at all steps), but it is unique (when formulated rigorously) up to adding or splitting off sequences

$$
\cdots \rightarrow 0 \rightarrow P \xrightarrow{1_{P}} P \rightarrow 0 \rightarrow \cdots
$$

- Dual considerations apply to an injective coresolution of N_{A},

$$
0 \rightarrow N \xrightarrow{\iota} E^{0} \xrightarrow{d^{1}} E^{1} \xrightarrow{d^{2}} E^{2} \xrightarrow{d^{3}} \cdots
$$

Ext groups

- If $0 \rightarrow N_{1} \rightarrow N_{2} \rightarrow N_{3} \rightarrow 0$ is an exact sequence, then only

$$
0 \rightarrow \operatorname{Hom}_{A}\left(M, N_{1}\right) \rightarrow \operatorname{Hom}_{A}\left(M, N_{2}\right) \rightarrow \operatorname{Hom}_{A}\left(M, N_{3}\right)
$$

is exact, the last map need not be surjective.

- There is a natural way to complete the left exact sequence to a long exact sequence
$0 \rightarrow \operatorname{Hom}_{A}\left(M, N_{1}\right) \rightarrow \operatorname{Hom}_{A}\left(M, N_{2}\right) \rightarrow \operatorname{Hom}_{A}\left(M, N_{3}\right) \rightarrow$ $\rightarrow \operatorname{Ext}_{A}^{1}\left(M, N_{1}\right) \rightarrow \operatorname{Ext}_{A}^{1}\left(M, N_{2}\right) \rightarrow \operatorname{Ext}_{A}^{1}\left(M, N_{3}\right) \rightarrow$ $\rightarrow \operatorname{Ext}_{A}^{2}\left(M, N_{1}\right) \rightarrow \operatorname{Ext}_{A}^{2}\left(M, N_{2}\right) \rightarrow \operatorname{Ext}_{A}^{2}\left(M, N_{3}\right) \rightarrow \cdots$
- If $\ldots \xrightarrow{d_{3}} P_{2} \xrightarrow{d_{2}} P_{1} \xrightarrow{d_{1}} P_{0} \xrightarrow{\pi} M \rightarrow 0$ is a projective resolution of M, we get a complex
$\cdots \stackrel{d_{3}^{*}}{\leftarrow} \operatorname{Hom}_{A}\left(P_{2}, N\right) \stackrel{d_{2}^{*}}{\leftarrow} \operatorname{Hom}_{A}\left(P_{1}, N\right) \stackrel{d_{1}^{*}}{\leftarrow} \operatorname{Hom}_{A}\left(P_{0}, N\right) \stackrel{d_{0}^{*}}{\leftarrow} 0$ and put $\operatorname{Ext}^{n}(M, N)=H^{i}\left(\operatorname{Hom}_{A}\left(P_{0}, N\right)\right)=\operatorname{Ker}_{n+1}^{*} / \operatorname{Im} d_{n}^{*}$.

Properties of Ext groups

- If $0 \rightarrow N \xrightarrow{\iota} E^{0} \xrightarrow{d^{1}} E^{1} \xrightarrow{d^{2}} E^{2} \xrightarrow{d^{3}} \cdots$ is an injective coresolution, we obtain $\operatorname{Ext}_{A}^{n}(M, N)$ also as the comohology of the complex
$0 \xrightarrow{d_{*}^{0}} \operatorname{Hom}_{A}\left(M, E^{0}\right) \xrightarrow{d_{x}^{1}} \operatorname{Hom}_{A}\left(M, E^{1}\right) \xrightarrow{d_{x}^{2}} \operatorname{Hom}_{A}\left(M, E^{2}\right) \xrightarrow{d_{*}^{3}} \cdots$ and for each exact $0 \rightarrow M_{1} \rightarrow M_{2} \rightarrow M_{3} \rightarrow 0$ we have exact

$$
\begin{aligned}
0 & \rightarrow \operatorname{Hom}_{A}\left(M_{3}, N\right) \rightarrow \operatorname{Hom}_{A}\left(M_{2}, N\right) \rightarrow \operatorname{Hom}_{A}\left(M_{1}, N\right) \rightarrow \\
& \rightarrow \operatorname{Ext}_{A}^{1}\left(M_{3}, N\right) \rightarrow \operatorname{Ext}_{A}^{1}\left(M_{2}, N\right) \rightarrow \operatorname{Ext}_{A}^{1}\left(M_{1}, N\right) \rightarrow \\
& \rightarrow \operatorname{Ext}_{A}^{2}\left(M_{3}, N\right) \rightarrow \operatorname{Ext}_{A}^{2}\left(M_{2}, N\right) \rightarrow \operatorname{Ext}_{A}^{2}\left(M_{1}, N\right) \rightarrow \cdots
\end{aligned}
$$

- The construction is functorial, we have functors

$$
\mathrm{Ext}_{A}^{n}(-,-):(\operatorname{Mod}-A)^{\mathrm{op}} \times \operatorname{Mod}-A \rightarrow \mathrm{Ab}
$$

- There is a natural equivalence $\operatorname{Ext}_{A}^{0}(-,-) \cong \operatorname{Hom}_{A}(-,-)$.

Ext groups and extensions

- Let $\mathcal{E}(M, N)=\{\varepsilon: 0 \rightarrow N \rightarrow E \rightarrow M \rightarrow 0\}$ be the class of all short exact sequences with N and M.
- Equivalence relation on $\mathcal{E}(M, N): \varepsilon_{1} \sim \varepsilon_{2}$ if

- There are constructive bijections $\operatorname{Ext}_{A}^{1}(M, N) \cong \mathcal{E}(M, N) / \sim$.
- The zero element of $\operatorname{Ext}_{A}^{1}(M, N)$ corresponds to the equivalence class of

$$
0 \rightarrow N \stackrel{\oplus}{\mapsto} N \oplus M \stackrel{\oplus}{\rightarrow} M \rightarrow 0
$$

