Representation theory of finite dimensional algebras (NMAG 442)

Notes for the streamed lecture

Jan Šťovíček April 2, 2020

Department of Algebra, Charles University, Prague

Gabriel's structure theorem for finite dimensional algebras

Crash course in homological algebra

Gabriel's structure theorem for finite dimensional algebras

Definition ([ASS, Definition II.3.1])

Let A be a finite dimensional algebra over K with a complete set of primitive orthogonal idempotents $\{e_1, e_2, \ldots, e_n\}$. Suppose that $A/\operatorname{rad}(A) \cong K \times K \times \cdots \times K$ (n copies of K, this happens e.g. if K is algebraically closed and A is basic). Then the quiver Q_A of A, is defined as follows:

vertices: $(Q_A)_0 = \{1, 2, ..., n\}$, arrows: The arrows $i \rightarrow j$ are chosen to form a basis $\{\alpha_1, ..., \alpha_{m_{ij}}\}$ of $e_i(\operatorname{rad}(A)/\operatorname{rad}^2(A))e_j \cong e_i\operatorname{rad}(A)e_j/e_i\operatorname{rad}^2(A)e_j$.

The quiver of a finite dimensional algebra, continued

Lemma ([ASS, Lemma II.3.2])

The quiver Q_A does not depend on the choice of the complete set of primitive orthogonal idempotents.

Proof.

- Recall that $e_iAe_j \cong \operatorname{Hom}_A(e_jA, e_iA)$ via $a \mapsto a \cdot -$.
- The latter bijection restricts to bijections

$$e_i \operatorname{rad}(A)e_j \cong \operatorname{Hom}_A(e_jA, e_i \operatorname{rad}(A)),$$

 $e_i \operatorname{rad}^2(A)e_j \cong \operatorname{Hom}_A(e_jA, e_i \operatorname{rad}^2(A)),$

hence

 $e_i \operatorname{rad}(A) e_j / e_i \operatorname{rad}^2(A) e_j \cong \operatorname{Hom}_A(e_j A, e_i \operatorname{rad}(A) / e_i \operatorname{rad}^2(A)).$

Lemma ([ASS, Lemma II.3.6], exercise) Let K be a field, Q a finite quiver, $I \le KQ$ an admissible ideal and A = KQ/I. Then $Q \cong Q_A$ (an isomorphism of quivers).

Comparing A and KQ_A

- Recall: If we have a complete set of primitive orthogonal idempotents {e₁, e₂,..., e_n} in A, then Q_A is as follows:
 vertices: (Q_A)₀ = {1, 2, ..., n},
 arrows: The arrows i → j are chosen to form a basis {α₁,..., α_{m_{ij}}} of e_i rad(A)e_j/e_i rad²(A)e_j.
- We can lift $\{\alpha_1, \ldots, \alpha_{m_{ij}}\}$ to elements $\{a_1, \ldots, a_{m_{ij}}\}$ in $e_i \operatorname{rad}(A)e_j$.
- This allows us to define and algebra homomorphism (cf. [ASS, Theorem II.1.8])

$$arphi_A \colon \mathsf{K} Q_A o A,$$

 $e_i \mapsto e_i,$
 $(lpha_\ell \colon i \to j) \mapsto a_\ell \in e_i \operatorname{rad}(A) e_j.$

Lemma (essentially [ASS, Lemma II.3.3]) The algebra homomorphism $\varphi_A \colon KQ_A \to A$ is surjective.

Proof.

- We will prove by induction on $m \ge 2$ that $R_{Q_A} \to \operatorname{rad}(A)/\operatorname{rad}^m(A)$ is surjective.
- For m = 2, this follows from the fact that $R_{Q_A}/R_{Q_A}^2 \xrightarrow{\sim} rad(A)/rad^2(A)$ by the construction.
- Suppose now $m \ge 2$ and $a \in A$. By inductive hypothesis, $a = \varphi_A(q) + c$ for some $q \in R_{Q_A}$ and $c \in \operatorname{rad}^m(A)$.
- Therefore, $c = \sum_{i} a_{i}b_{i}$ for some $a_{i} \in \operatorname{rad}(A)$ and $b_{i} \in \operatorname{rad}^{m-1}(A)$. Again induction, $a_{i} = \varphi_{A}(q_{i}) + c_{i}$ and $b_{i} = \varphi_{A}(r_{i}) + d_{i}$, where $q_{i}, r_{i} \in R_{Q_{A}}$ and $c_{i}, d_{i} \in \operatorname{rad}^{m}(A)$.
- $a = \varphi(q) + \sum_i a_i b_i = \varphi(q) + \sum_i (\varphi_A(q_i) + c_i) (\varphi_A(r_i) + d_i) = \varphi_A(q + \sum_i q_i r_i) + \dots$ with omitted terms in $\operatorname{rad}^{m+1}(A)$. \Box

Gabriel's theorem

Theorem (Gabriel, [ASS, Theorem II.3.7]) Let A be a finite dimensional algebra over K such that $A/rad(A) \cong K \times K \times \cdots \times K$. Then $A \cong KQ_A/I$, where I is an admissible ideal.

Proof.

- Consider the surjective homomorphism φ_A: KQ_A → A (last slide) and put I = Ker φ_A.
- Then $KQ_A/I \cong A$; we must show that I is admissible.
- Since φ_A induces $KQ_A/R^2_{Q_A} \xrightarrow{\sim} A/\operatorname{rad}^2(A)$, we have $I \leq R^2_{Q_A}$.
- On the other hand, $\varphi_A(R^m_{Q_A}) \leq \operatorname{rad}^m(A)$ for each $m \geq 0$, so $R^m_{Q_A} \leq I$ if we choose $m \gg 2$ so that $\operatorname{rad}^m(A) = 0$.

Corollary

Any finite dimensional algebra over an algebraically closed field is Morita equivalent to KQ/I, where Q is a finite quiver and an admissible ideal $I \leq KQ$.

Crash course in homological algebra

Resolutions

- Let A be a ring and M_A a right module.
- Then we can construct a so-called projective resolution of *M*, i.e. an exact sequence

$$\cdots \xrightarrow{d_3} P_2 \xrightarrow{d_2} P_1 \xrightarrow{d_1} P_0 \xrightarrow{\pi} M \to 0$$

with P_0, P_1, P_2, \ldots projective.

 This is in general not unique (unless we take projective covers at all steps), but it is unique (when formulated rigorously) up to adding or splitting off sequences

$$\cdots \rightarrow 0 \rightarrow P \xrightarrow{\mathbf{1}_P} P \rightarrow 0 \rightarrow \cdots$$

• Dual considerations apply to an injective coresolution of N_A , $0 \rightarrow N \xrightarrow{\iota} E^0 \xrightarrow{d^1} E^1 \xrightarrow{d^2} E^2 \xrightarrow{d^3} \cdots$

Ext groups

• If $0 \to N_1 \to N_2 \to N_3 \to 0$ is an exact sequence, then only $0 \to \operatorname{Hom}_4(M, N_1) \to \operatorname{Hom}_4(M, N_2) \to \operatorname{Hom}_4(M, N_3)$

is exact, the last map need not be surjective.

• There is a natural way to complete the left exact sequence to a long exact sequence

 $0 \to \operatorname{Hom}_{A}(M, N_{1}) \to \operatorname{Hom}_{A}(M, N_{2}) \to \operatorname{Hom}_{A}(M, N_{3}) \to$ $\to \operatorname{Ext}_{A}^{1}(M, N_{1}) \to \operatorname{Ext}_{A}^{1}(M, N_{2}) \to \operatorname{Ext}_{A}^{1}(M, N_{3}) \to$ $\to \operatorname{Ext}_{A}^{2}(M, N_{1}) \to \operatorname{Ext}_{A}^{2}(M, N_{2}) \to \operatorname{Ext}_{A}^{2}(M, N_{3}) \to \cdots$

• If $\cdots \xrightarrow{d_3} P_2 \xrightarrow{d_2} P_1 \xrightarrow{d_1} P_0 \xrightarrow{\pi} M \to 0$ is a projective resolution of M, we get a complex

 $\cdots \stackrel{d_3^*}{\leftarrow} \operatorname{Hom}_A(P_2, N) \stackrel{d_2^*}{\leftarrow} \operatorname{Hom}_A(P_1, N) \stackrel{d_1^*}{\leftarrow} \operatorname{Hom}_A(P_0, N) \stackrel{d_0^*}{\leftarrow} 0$ and put $\operatorname{Ext}^n(M, N) = H^i(\operatorname{Hom}_A(P_{\bullet}, N)) = \operatorname{Ker} d_{n+1}^* / \operatorname{Im} d_n^*.$

Properties of Ext groups

If 0 → N ^ι→ E⁰ ^{d¹}→ E¹ ^{d²}→ E² ^{d³}→ · · · is an injective coresolution, we obtain Extⁿ_A(M, N) also as the comohology of the complex

$$0 \xrightarrow{d_{\ast}^{0}} \operatorname{Hom}_{A}(M, E^{0}) \xrightarrow{d_{\ast}^{1}} \operatorname{Hom}_{A}(M, E^{1}) \xrightarrow{d_{\ast}^{2}} \operatorname{Hom}_{A}(M, E^{2}) \xrightarrow{d_{\ast}^{3}} \cdots$$

and for each exact $0 \to M_{1} \to M_{2} \to M_{3} \to 0$ we have exact

$$0 \to \operatorname{Hom}_{A}(M_{3}, N) \to \operatorname{Hom}_{A}(M_{2}, N) \to \operatorname{Hom}_{A}(M_{1}, N) \to$$

$$\to \operatorname{Ext}_{A}^{1}(M_{3}, N) \to \operatorname{Ext}_{A}^{1}(M_{2}, N) \to \operatorname{Ext}_{A}^{1}(M_{1}, N) \to$$

$$\to \operatorname{Ext}_{A}^{2}(M_{3}, N) \to \operatorname{Ext}_{A}^{2}(M_{2}, N) \to \operatorname{Ext}_{A}^{2}(M_{1}, N) \to \cdots$$

• The construction is functorial, we have functors

$$\operatorname{Ext}_{A}^{n}(-,-)$$
: $(\operatorname{Mod} - A)^{\operatorname{op}} \times \operatorname{Mod} - A \to \operatorname{Ab}$.

• There is a natural equivalence $Ext^0_A(-,-) \cong Hom_A(-,-)$.

Ext groups and extensions

Let *E*(*M*, *N*) = {ε: 0 → *N* → *E* → *M* → 0} be the class of all short exact sequences with *N* and *M*.

• Equivalence relation on $\mathcal{E}(M, N)$: $\varepsilon_1 \sim \varepsilon_2$ if

$$\begin{aligned} \varepsilon_1: & 0 \longrightarrow N \xrightarrow{\iota_1} E_1 \xrightarrow{\pi_1} M \longrightarrow 0 \\ & \| & \|_{\forall} \\ \varepsilon_2: & 0 \longrightarrow N \xrightarrow{\iota_2} E_2 \xrightarrow{\pi_2} M \longrightarrow 0. \end{aligned}$$

- There are constructive bijections $\operatorname{Ext}^1_A(M,N) \cong \mathcal{E}(M,N)/\sim$.
- The zero element of $\operatorname{Ext}^1_A(M, N)$ corresponds to the equivalence class of

$$0 \to N \xrightarrow{\oplus} N \oplus M \xrightarrow{\oplus} M \to 0.$$