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Gabriel’s structure theorem for finite
dimensional algebras



The quiver of a finite dimensional algebra

Definition ([ASS, Definition II.3.1])
Let A be a finite dimensional algebra over K with a complete set
of primitive orthogonal idempotents {e1, e2, . . . , en}. Suppose that
A/ rad(A) ∼= K × K × · · · × K (n copies of K , this happens e.g. if
K is algebraically closed and A is basic). Then the quiver QA of A,
is defined as follows:

vertices: (QA)0 = {1, 2, . . . , n},
arrows: The arrows i → j are chosen to form a basis

{α1, . . . , αmij} of
ei (rad(A)/ rad

2(A))ej ∼= ei rad(A)ej/ei rad
2(A)ej .
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The quiver of a finite dimensional algebra, continued

Lemma ([ASS, Lemma II.3.2])
The quiver QA does not depend on the choice of the complete set
of primitive orthogonal idempotents.

Proof.
• Recall that eiAej ∼= HomA(ejA, eiA) via a 7→ a · −.

• The latter bijection restricts to bijections
ei rad(A)ej ∼= HomA(ejA, ei rad(A)),

ei rad
2(A)ej ∼= HomA(ejA, ei rad

2(A)),

hence
ei rad(A)ej/ei rad

2(A)ej ∼= HomA(ejA, ei rad(A)/ei rad
2(A)).

Lemma ([ASS, Lemma II.3.6], exercise)
Let K be a field, Q a finite quiver, I ≤ KQ an admissible ideal and
A = KQ/I . Then Q ∼= QA (an isomorphism of quivers).
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Comparing A and KQA

• Recall: If we have a complete set of primitive orthogonal
idempotents {e1, e2, . . . , en} in A, then QA is as follows:

vertices: (QA)0 = {1, 2, . . . , n},
arrows: The arrows i → j are chosen to form a basis

{α1, . . . , αmij} of ei rad(A)ej/ei rad2(A)ej .
• We can lift {α1, . . . , αmij} to elements {a1, . . . , amij} in

ei rad(A)ej .
• This allows us to define and algebra homomorphism (cf. [ASS,

Theorem II.1.8])

ϕA : KQA → A,

ei 7→ ei ,

(α` : i → j) 7→ a` ∈ ei rad(A)ej .
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A as a factor algebra of KQA

Lemma (essentially [ASS, Lemma II.3.3])
The algebra homomorphism ϕA : KQA → A is surjective.

Proof.
• We will prove by induction on m ≥ 2 that

RQA
→ rad(A)/ radm(A) is surjective.

• For m = 2, this follows from the fact that
RQA

/R2QA

∼→ rad(A)/ rad2(A) by the construction.

• Suppose now m ≥ 2 and a ∈ A. By inductive hypothesis,
a = ϕA(q) + c for some q ∈ RQA

and c ∈ radm(A).

• Therefore, c =
∑

i aibi for some ai ∈ rad(A) and
bi ∈ radm−1(A). Again induction, ai = ϕA(qi ) + ci and
bi = ϕA(ri ) + di , where qi , ri ∈ RQA

and ci , di ∈ radm(A).

• a = ϕ(q)+
∑

i aibi = ϕ(q)+
∑

i

(
ϕA(qi )+ ci

)(
ϕA(ri )+ di

)
=

ϕA

(
q +

∑
i qi ri

)
+ . . . with omitted terms in radm+1(A).
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Gabriel’s theorem

Theorem (Gabriel, [ASS, Theorem II.3.7])
Let A be a finite dimensional algebra over K such that A/rad(A) ∼=
K ×K × · · · ×K . Then A ∼= KQA/I , where I is an admissible ideal.

Proof.
• Consider the surjective homomorphism ϕA : KQA → A (last

slide) and put I = KerϕA.

• Then KQA/I ∼= A; we must show that I is admissible.

• Since ϕA induces KQA/R
2
QA

∼→ A/ rad2(A), we have I ≤ R2QA
.

• On the other hand, ϕA(R
m
QA

) ≤ radm(A) for each m ≥ 0, so
Rm
QA
≤ I if we choose m� 2 so that radm(A) = 0.

Corollary
Any finite dimensional algebra over an algebraically closed field is
Morita equivalent to KQ/I , where Q is a finite quiver and an
admissible ideal I ≤ KQ. 6



Crash course in homological algebra



Resolutions

• Let A be a ring and MA a right module.
• Then we can construct a so-called projective resolution of M,

i.e. an exact sequence

· · · d3→ P2
d2→ P1

d1→ P0
π→ M → 0

with P0,P1,P2, . . . projective.
• This is in general not unique (unless we take projective covers

at all steps), but it is unique (when formulated rigorously) up
to adding or splitting off sequences

· · · → 0→ P
1P→ P → 0→ · · · .

• Dual considerations apply to an injective coresolution of NA,

0→ N
ι→ E 0

d1→ E 1
d2→ E 2

d3→ · · ·
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Ext groups

• If 0→ N1 → N2 → N3 → 0 is an exact sequence, then only

0→ HomA(M,N1)→ HomA(M,N2)→ HomA(M,N3)

is exact, the last map need not be surjective.
• There is a natural way to complete the left exact sequence to

a long exact sequence

0→ HomA(M,N1)→ HomA(M,N2)→ HomA(M,N3)→
→ Ext1A(M,N1)→ Ext1A(M,N2)→ Ext1A(M,N3)→
→ Ext2A(M,N1)→ Ext2A(M,N2)→ Ext2A(M,N3)→ · · ·

• If · · · d3→ P2
d2→ P1

d1→ P0
π→ M → 0 is a projective resolution of

M, we get a complex

· · ·
d∗
3← HomA(P2,N)

d∗
2← HomA(P1,N)

d∗
1← HomA(P0,N)

d∗
0← 0

and put Extn(M,N) = H i
(
HomA(P•,N)

)
= Ker d∗n+1/ Im d∗n . 8



Properties of Ext groups

• If 0→ N
ι→ E 0

d1→ E 1
d2→ E 2

d3→ · · · is an injective
coresolution, we obtain ExtnA(M,N) also as the comohology of
the complex

0
d0∗→ HomA(M,E 0)

d1∗→ HomA(M,E 1)
d2∗→ HomA(M,E 2)

d3∗→ · · ·

and for each exact 0→ M1 → M2 → M3 → 0 we have exact

0→ HomA(M3,N)→ HomA(M2,N)→ HomA(M1,N)→
→ Ext1A(M3,N)→ Ext1A(M2,N)→ Ext1A(M1,N)→
→ Ext2A(M3,N)→ Ext2A(M2,N)→ Ext2A(M1,N)→ · · ·

• The construction is functorial, we have functors

ExtnA(−,−) : (Mod-A)op ×Mod-A→ Ab.

• There is a natural equivalence Ext0A(−,−) ∼= HomA(−,−). 9



Ext groups and extensions

• Let E(M,N) = {ε : 0→ N → E → M → 0} be the class of all
short exact sequences with N and M.

• Equivalence relation on E(M,N): ε1 ∼ ε2 if

ε1 : 0 // N
ι1 // E1

π1 //

∃
��

M // 0

ε2 : 0 // N
ι2 // E2

π2 // M // 0.

• There are constructive bijections Ext1A(M,N) ∼= E(M,N)/ ∼.

• The zero element of Ext1A(M,N) corresponds to the
equivalence class of

0→ N
⊕
� N ⊕M

⊕
� M → 0.
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