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Injective envelopes



The socle of a module is essential

Definition
Let A be a ring. A submodule L ≤ M is essential if

(∀N ≤ M)(L ∩ N = 0 =⇒ N = 0).

Lemma
If A is a finite-dimensional algebra and MA a module, then soc(M)

is essential in M.

Proof.

• Suppose that 0 6= N ≤ M. Then N has a non-zero
finite-dimensional 0 6= N ′ ≤ N.

• Since N ′ is finite-dimensional, it has a simple submodule
S ≤ N ′(≤ N).

• Hence soc(N) ∩ N 6= 0.
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Injective envelopes of simples

Lemma
Let A be a finite-dimension algebra and e ∈ A a primitive
idempotent. Then

ι : socD(Ae) � D(Ae)

is an injective envelope

Proof.

• Use the equivalence D : (A-mod)op
∼→ mod-A.

• ι is up to isomorphism the dual of π : Ae � Ae/ rad(Ae),
which is a projective cover by [ASS, Prop. I.4.5(c)].

• As explained last time, D sends projective covers to injective
envelopes (use the Baer lemma).

3



Existence of injective envelopes

Theorem
If A is a finite dimensional algebra, then each M ∈ Mod-A has an
injective envelope.

Proof.
soc(M)
��

ess
��

∼ //
⊕

i∈I socD(Aei )��

ess
��

M
ι //

⊕
i∈I D(Aei ).

•
⊕

i∈I socD(Aei ) is injective (non-trivial, use the Baer lemma
and the fact that A is right noetherian),

• the right vertical arrow is an essential submodule (it is an
embedding of the socle),

• ι is an embedding (if Ker ι 6= 0, then Ker ι|soc(M) 6= 0, a
contradiction) and easily ι is essential. 4



Structure of injective modules

Corollary
Let A be a finite dimensional algebra and E ∈ Mod-A be injective.
Then

E ∼=
⊕
i∈I

D(Aei ).

Proof.

• E has an injective envelope of the form

ι : E →
⊕
i∈I

D(Aei ).

• Since E is injective, ι is an isomorphism (uniqueness of
injective envelopes).
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Basic algebras and Morita
equivalence



Basic algebras

Definition
Let A be a finite dimensional algebra and {e1, e2, . . . , en} a
complete set of primitive orthogonal idempotents (so
AA
∼=
⊕n

i=1 eiA). Then A is basic if eiA 6∼= ejA for i 6= j .

Lemma
A is basic if and only if B := A/ rad(A) is basic.

Proof.
• Suppose that {e1, e2, . . . , en} is a complete set of primitive

orthogonal idempotents.

• Then πi : eiA→ eiB is a projective cover.

• By the uniqueness of projective covers [ASS, Theorem
I.5.8(b)], eiB ∼= ejB if and only if eiA ∼= ejA.

Remark
For the Wedderburn-Artin theorem, B = A/ rad(A) is basic if and
only if B ∼= D1 ×D2 × · · · ×Dn, where all the Di are division rings. 6



Division ring extensions of algebraically closed fields

Lemma ([ASS, Corollary I.3.2])
Let K be an algebraically closed field and D a finite-dimensional
division ring over K . Then D = K .

Proof.

• Let 0 6= d ∈ D. Since D ∼= Km as K -vector spaces and
K = K , the K -linear endomorphism

d · − : D → D

has an eigenvector v ∈ D associated with an eigenvalue
λ ∈ k. I.e. d · v = λ · v .

• Since D is a division ring, we have d = λ ∈ K .
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Basic algebras over algebraically closed fields

Proposition ([ASS, Proposition I.6.2])
Let A be a finite dimensional algebra over an algebraically closed
field. Then A is basic if and only if A/ rad(A) ∼= K × K × · · · × K

as K -algebras.

In this case, all simple A-modules are one-dimensional over K .

Proof.
Just combine the Remark and the Lemma from the last 2
slides.

Corollary
Let Q be a finite quiver and I ≤ KQ an admissible ideal. Then
A = KQ/I is a basic algebra.
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A basic algebra associated to A

Definition
Assume that A is a finite dimensional algebra with a complete set
of primitive orthogonal idempotents {e1, . . . , en}. A basic algebra
associated to A is defined as

Ab = eAe,

where e = ei1 + · · ·+ eik , and ei1 , . . . , eik are chosen so that

1. eikA 6∼= ei`A whenever k 6= ` and

2. each eiA is isomorphic to one of ei1A, . . . , eikA.

Lemma ([ASS, Lemma I.6.5])
Up to isomorphism of K -algebras, Ab does not depend on any
choices made above.

Proof.
• We have eAe ∼= End(eA) via a 7→ a · −.

• Then use the Krull-Schmidt theorem. 9



Intermezzo—tensor products

• Let A be a ring and MA and AN modules.
• Then M ⊗A N is an abelian group generated by symbols
m ⊗ n (elementary tensors) with m ∈ M and n ∈ N subject to
relations

1. (m1 +m2)⊗ n = m1 ⊗ n +m2 ⊗ n,
2. m ⊗ (n1 + n2) = m ⊗ n1 +m ⊗ n2,
3. m · a⊗ n = m ⊗ a · n.

• We in fact have a functor ⊗A : Mod-A× A-Mod → Ab.
• Computational rules:

1. Coker(M ⊗A f ) ∼= M ⊗A Coker f for each f : N1 → N2 and
similarly if we swap the coordinates.

2.
(⊕

i∈I Mi

)
⊗A

(⊕
j∈J Nj

) ∼=⊕i∈I ,j∈J(Mi ⊗A Nj).
3. A⊗A N ∼= N via a⊗ n 7→ a · n and M ⊗A A ∼= M via

m ⊗ a 7→ m · a.
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Intermezzo—tensor products, continued

• If B is another ring and BMA is a bimodule (i.e.
(b ·m) · a = b · (m · a)), then M ⊗A N is a left B-module via

b · (m ⊗ n) := (b ·m)⊗A n

and we obtain a functor ⊗A : B-Mod-A× A-Mod → B-Mod .

• If K is a commutative ring, then we can view any
M ∈ Mod-K as an K -K -bimodule and so we have

⊗K : Mod-K ×Mod-K → Mod-K .

• If K is a field and V ,W vector spaces, then V ⊗K W is a
basis-free way to construct a vector space with dimension
dimK V · dimK W .
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Morita equivalence

Theorem (Morita, see also [ASS, §I.6])
Let A be a ring, PA a finitely generated projective module which is
a generator (i.e. AA is a summand in some Pn

A), and B = End(PA)

(so BPA is a B-A-bimodule).

Then we have inverse equivalences

HomA(P,−) : Mod-A
//
Mod-B :−⊗BP.oo

Moreover, each equivalence between module categories arises in
this way up to natural equivalence.

Example
If PA = An

A, then B ∼= Mn(A) and Mod-A ' Mod-Mn(A).
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Associated basic algebra is indeed basic

Proposition ([ASS, Corollary I.6.10])
Let A be a finite dimensional algebra and Ab = eAe the associated
basic algebra to A. Then Ab is a basic algebra and we have an
equivalence

F : Mod-A→ Mod-Ab,

M 7→ Me.

Proof.

• We just use the Morita equivalence for P = eA, so that
End(PA) ∼= eAe = Ab.

• Note also that HomA(eA,M) ∼= Me via
f 7→ f (e) = f (e · e) = f (e) · e ∈ Me.

• Finally, F (eA) = Ab. Since eA decomposes to pairwise non-iso
summands in Mod-A, the same property holds for Ab in
Mod-Ab, so Ab is basic. 13
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