Representation theory of finite dimensional algebras (NMAG 442)

Notes for the streamed lecture

Jan Štovíček

April 2, 2020

Department of Algebra, Charles University, Prague

Table of contents

Injective envelopes

Basic algebras and Morita equivalence

Injective envelopes

The socle of a module is essential

Definition

Let A be a ring. A submodule $L \leq M$ is essential if

$$
(\forall N \leq M)(L \cap N=0 \Longrightarrow N=0)
$$

Lemma

If A is a finite-dimensional algebra and M_{A} a module, then $\operatorname{soc}(M)$ is essential in M.

Proof.

- Suppose that $0 \neq N \leq M$. Then N has a non-zero finite-dimensional $0 \neq N^{\prime} \leq N$.
- Since N^{\prime} is finite-dimensional, it has a simple submodule $S \leq N^{\prime}(\leq N)$.
- Hence $\operatorname{soc}(N) \cap N \neq 0$.

Injective envelopes of simples

Lemma

Let A be a finite-dimension algebra and $e \in A$ a primitive idempotent. Then

$$
\iota: \operatorname{soc} D(A e) \longmapsto D(A e)
$$

is an injective envelope

Proof.

- Use the equivalence $D:(A \text {-mod })^{\text {op }} \xrightarrow{\sim} \bmod -A$.
- ι is up to isomorphism the dual of $\pi: A e \rightarrow A e / \operatorname{rad}(A e)$, which is a projective cover by [ASS, Prop. I.4.5(c)].
- As explained last time, D sends projective covers to injective envelopes (use the Baer lemma).

Existence of injective envelopes

Theorem

If A is a finite dimensional algebra, then each $M \in \operatorname{Mod}-A$ has an injective envelope.

Proof.

- $\bigoplus_{i \in I} \operatorname{soc} D\left(A e_{i}\right)$ is injective (non-trivial, use the Baer lemma and the fact that A is right noetherian),
- the right vertical arrow is an essential submodule (it is an embedding of the socle),
- ι is an embedding (if $\operatorname{Ker} \iota \neq 0$, then $\left.\operatorname{Ker} \iota\right|_{\operatorname{soc}(M)} \neq 0$, a contradiction) and easily ι is essential.

Structure of injective modules

Corollary

Let A be a finite dimensional algebra and $E \in \operatorname{Mod}-A$ be injective. Then

$$
E \cong \bigoplus_{i \in I} D\left(A e_{i}\right)
$$

Proof.

- E has an injective envelope of the form

$$
\iota: E \rightarrow \bigoplus_{i \in I} D\left(A e_{i}\right)
$$

- Since E is injective, ι is an isomorphism (uniqueness of injective envelopes).

Basic algebras and Morita equivalence

Basic algebras

Definition

Let A be a finite dimensional algebra and $\left\{e_{1}, e_{2}, \ldots, e_{n}\right\}$ a
complete set of primitive orthogonal idempotents (so
$\left.A_{A} \cong \bigoplus_{i=1}^{n} e_{i} A\right)$. Then A is basic if $e_{i} A \not \approx e_{j} A$ for $i \neq j$.

Lemma

A is basic if and only if $B:=A / \operatorname{rad}(A)$ is basic.

Proof.

- Suppose that $\left\{e_{1}, e_{2}, \ldots, e_{n}\right\}$ is a complete set of primitive orthogonal idempotents.
- Then $\pi_{i}: e_{i} A \rightarrow e_{i} B$ is a projective cover.
- By the uniqueness of projective covers [ASS, Theorem I.5.8(b)], $e_{i} B \cong e_{j} B$ if and only if $e_{i} A \cong e_{j} A$.

Remark

For the Wedderburn-Artin theorem, $B=A / \operatorname{rad}(A)$ is basic if and only if $B \cong D_{1} \times D_{2} \times \cdots \times D_{n}$, where all the D_{i} are division rings.

Division ring extensions of algebraically closed fields

Lemma ([ASS, Corollary I.3.2])

Let K be an algebraically closed field and D a finite-dimensional division ring over K. Then $D=K$.

Proof.

- Let $0 \neq d \in D$. Since $D \cong K^{m}$ as K-vector spaces and $K=\bar{K}$, the K-linear endomorphism

$$
d \cdot-: D \rightarrow D
$$

has an eigenvector $v \in D$ associated with an eigenvalue $\lambda \in k$. I.e. $d \cdot v=\lambda \cdot v$.

- Since D is a division ring, we have $d=\lambda \in K$.

Basic algebras over algebraically closed fields

Proposition ([ASS, Proposition I.6.2])
Let A be a finite dimensional algebra over an algebraically closed field. Then A is basic if and only if $A / \operatorname{rad}(A) \cong K \times K \times \cdots \times K$ as K-algebras.

In this case, all simple A-modules are one-dimensional over K.
Proof.
Just combine the Remark and the Lemma from the last 2 slides.

Corollary

Let Q be a finite quiver and $I \leq K Q$ an admissible ideal. Then $A=K Q / I$ is a basic algebra.

A basic algebra associated to A

Definition

Assume that A is a finite dimensional algebra with a complete set of primitive orthogonal idempotents $\left\{e_{1}, \ldots, e_{n}\right\}$. A basic algebra associated to A is defined as

$$
A^{b}=e A e,
$$

where $e=e_{i_{1}}+\cdots+e_{i_{k}}$, and $e_{i_{1}}, \ldots, e_{i_{k}}$ are chosen so that

1. $e_{i_{k}} A \not \neq e_{i_{\ell}} A$ whenever $k \neq \ell$ and
2. each $e_{i} A$ is isomorphic to one of $e_{i_{1}} A, \ldots, e_{i_{k}} A$.

Lemma ([ASS, Lemma I.6.5])

Up to isomorphism of K-algebras, A^{b} does not depend on any choices made above.

Proof.

- We have $e A e \cong \operatorname{End}(e A)$ via $a \mapsto a \cdot-$.
- Then use the Krull-Schmidt theorem.

Intermezzo-tensor products

- Let A be a ring and M_{A} and ${ }_{A} N$ modules.
- Then $M \otimes_{A} N$ is an abelian group generated by symbols $m \otimes n$ (elementary tensors) with $m \in M$ and $n \in N$ subject to relations

$$
\begin{aligned}
& \text { 1. }\left(m_{1}+m_{2}\right) \otimes n=m_{1} \otimes n+m_{2} \otimes n, \\
& \text { 2. } m \otimes\left(n_{1}+n_{2}\right)=m \otimes n_{1}+m \otimes n_{2}
\end{aligned}
$$

$$
\text { 3. } m \cdot a \otimes n=m \otimes a \cdot n \text {. }
$$

- We in fact have a functor $\otimes_{A}: \operatorname{Mod}-A \times A-\operatorname{Mod} \rightarrow \mathrm{Ab}$.
- Computational rules:

1. Coker $\left(M \otimes_{A} f\right) \cong M \otimes_{A}$ Coker f for each $f: N_{1} \rightarrow N_{2}$ and similarly if we swap the coordinates.
2. $\left(\bigoplus_{i \in I} M_{i}\right) \otimes_{A}\left(\bigoplus_{j \in J} N_{j}\right) \cong \bigoplus_{i \in I, j \in J}\left(M_{i} \otimes_{A} N_{j}\right)$.
3. $A \otimes_{A} N \cong N$ via $a \otimes n \mapsto a \cdot n$ and $M \otimes_{A} A \cong M$ via $m \otimes a \mapsto m \cdot a$.

Intermezzo-tensor products, continued

- If B is another ring and ${ }_{B} M_{A}$ is a bimodule (i.e.
$(b \cdot m) \cdot a=b \cdot(m \cdot a))$, then $M \otimes_{A} N$ is a left B-module via

$$
b \cdot(m \otimes n):=(b \cdot m) \otimes_{A} n
$$

and we obtain a functor \otimes_{A} : B-Mod- $A \times A$-Mod $\rightarrow B$-Mod.

- If K is a commutative ring, then we can view any $M \in \operatorname{Mod}-K$ as an K - K-bimodule and so we have

$$
\otimes_{K}: \text { Mod-K } \times \text { Mod-K } \rightarrow \text { Mod-K. }
$$

- If K is a field and V, W vector spaces, then $V \otimes_{K} W$ is a basis-free way to construct a vector space with dimension $\operatorname{dim}_{K} V \cdot \operatorname{dim}_{K} W$.

Morita equivalence

Theorem (Morita, see also [ASS, §I.6])
Let A be a ring, P_{A} a finitely generated projective module which is a generator (i.e. A_{A} is a summand in some P_{A}^{n}), and $B=\operatorname{End}\left(P_{A}\right)$ (so ${ }_{B} P_{A}$ is a B - A-bimodule).

Then we have inverse equivalences

$$
\operatorname{Hom}_{A}(P,-): \operatorname{Mod}-A<\operatorname{Mod}-B:-\otimes_{B} P .
$$

Moreover, each equivalence between module categories arises in this way up to natural equivalence.

Example
If $P_{A}=A_{A}^{n}$, then $B \cong M_{n}(A)$ and $\operatorname{Mod}-A \simeq \operatorname{Mod}-M_{n}(A)$.

Associated basic algebra is indeed basic

Proposition ([ASS, Corollary I.6.10])

Let A be a finite dimensional algebra and $A^{b}=e A e$ the associated basic algebra to A. Then A^{b} is a basic algebra and we have an equivalence

$$
\begin{aligned}
F: M o d-A & \rightarrow \text { Mod- } A^{b}, \\
M & \mapsto M e .
\end{aligned}
$$

Proof.

- We just use the Morita equivalence for $P=e A$, so that $\operatorname{End}\left(P_{A}\right) \cong e A e=A^{b}$.
- Note also that $\operatorname{Hom}_{A}(e A, M) \cong M e$ via $f \mapsto f(e)=f(e \cdot e)=f(e) \cdot e \in M e$.
- Finally, $F(e A)=A^{b}$. Since $e A$ decomposes to pairwise non-iso summands in Mod- A, the same property holds for A^{b} in $\operatorname{Mod}-A^{b}$, so A^{b} is basic.

