Universal Algebra 1 - Homework 4

Deadline 20.12.2018, 10:40

1. (6 points) Let $\mathcal V$ be the variety of algebras (A,\cdot,l,r) of type (2,1,1) that satisfy the identities

$$l(x \cdot y) \approx x$$
, $r(x \cdot y) \approx y$, $l(x) \cdot r(x) \approx x$.

- (a) Show that every non-trivial member of \mathcal{V} is infinite.
- (b) Prove that, if $\mathbf{A} \in \mathcal{V}$ is generated by $\{a_1, a_2, \dots, a_n\}$, then it is already generated by $\{(a_1 \cdot a_2), a_3, \dots a_n\}$
- (c) Prove that $\mathbf{F}_{\mathcal{V}}(n) = \mathbf{F}_{\mathcal{V}}(m)$ for all positive integers n, m.
- 2. (6 points) Let **A** be the algebra given by the following multiplication table:

$$\begin{array}{c|ccccc} \cdot & 0 & 1 & 2 \\ \hline 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 1 \\ 2 & 0 & 1 & 2 \\ \end{array}$$

Prove that the variety generated by **A** is exactly the variety of commutative semigroups satisfying $x^2 \approx x^3$.

3. (8 points) Let \mathcal{V} the variety of algebras (A,\cdot) satisfying the identities

$$x \cdot x \approx x$$
 and $(x \cdot y) \cdot z \approx (z \cdot y) \cdot x$.

(a) Show that every member of \mathcal{V} also satisfies the identities

$$(x \cdot y) \cdot (z \cdot w) \approx (x \cdot z) \cdot (y \cdot w)$$
$$x \cdot (y \cdot z) \approx (x \cdot y) \cdot (x \cdot z)$$
$$(y \cdot z) \cdot x \approx (y \cdot x) \cdot (z \cdot x)$$
$$y \cdot (x \cdot y) \approx (y \cdot x) \cdot y$$
$$(y \cdot x) \cdot x \approx x \cdot y$$

(b) Let \mathcal{W} be the subvariety of \mathcal{W} defined by the additional identity $y \cdot (x \cdot y) \approx x$. Determine $\mathbf{F}_{\mathcal{W}}(x,y)$ (multiplication table).

1