Domácí úlohy na Binární systémy 2018/19

Ke splnění části zkoušky týkající se pologrup je potřeba alespoň 22 bodů. Úlohy odevzdávejte přednášejícímu v libovolné formě.

- 1. (8 bodů) Determine the $\mathcal{L}, \mathcal{R}, \mathcal{D}, \mathcal{J}$ relations in (a) the matrix semigroup $M_n(F)$, (b) the symmetric inverse semigroup I_X .
- 2. (4 body) Show that in the matrix semigroup

$$\{ \begin{pmatrix} a & 0 \\ b & 1 \end{pmatrix} : a, b \in \mathbb{R}, a, b > 0 \}$$

we have $id = \mathcal{D} \neq \mathcal{J}$.

- **3.** (4 body) Show that a semigroup is a group if and only if it contains no proper left ideals and no proper right ideals (proper means strictly smaller than S). Hint: use Green's theorem.
- **4.** (6 bodů) Show that the following are equivalent for a regular semigroup:
 - (1) it has exactly one idempotent;
 - (2) it is cancellative (i.e., xu = xv implies u = v, and ux = vx implies u = v);
 - (3) it is a group.
- **5.** (6 bodů) Determine whether a) PT_X (partial transformations), b) B_X (binary relations), c) $M_n(F)$ ($n \times n$ matrices over F) are regular or inverse semigroups.
- **6.** (4 body) Consider a \mathcal{D} -block D in an inverse semigroup. Show that the number of \mathcal{L} -blocks in D equals the number of \mathcal{R} -blocks in D. Hint: $L_a \to R_{a'}$ is a bijection.
- 7. (4 body) Show that $(S,\cdot,')$ is an inverse semigroup iff for every $x,y,z\in S$

$$x(yz) = (xy)z, \ xx'x = x, \ x'xx' = x', \ xx'yy' = yy'xx'.$$

We did (\Rightarrow) at the lecture. For (\Leftarrow) , the hint is to prove that e = ee' for every e idempotent.

8. (6 bodů) [for students also attending Universal Algebra II] Show that t(x, y, z, u, v) = xy'zu'v is a Taylor term for the variety of inverse semigroups. Show that semigroups are not congruence modular (hint: find a semilattice violating the property) and not meet-semidistributive (hint: find a group violating the property). Show that inverse semigroups have a weak difference term.