Embedding algebras into modules

David Stanovský

Charles University in Prague Czech Republic

stanovsk@karlin.mff.cuni.cz http://www.karlin.mff.cuni.cz/~stanovsk

Summer School on Algebra and Ordered Sets Tále 2007

What is it all about?

	а	b	С	d	e	f	g
а	а	e	b	f	С	g	d
b	с	g	d	a	c e g b	b	f
С	e	b	f	С	g	d	а
d	g	d	a	e	b	f	С
e	Ь	f	С	g	d	a	e
f	d	а	e	b	f	С	g
g	f	C	g	d	f a	e	b

... a mess

What is it all about?

	а	b	С	d	e	f	g
а	а	e	b	f	С	g	d
b	с	g	d	a	c e g b d f	b	f
С	e	b	f	С	g	d	a
d	g	d	a	e	b	f	С
e	b	f	С	g	d	a	e
f	d	a	e	b	f	С	g
g	f	С	g	d	a	e	b

... a mess

$$(\mathbb{Z}_7,*) \text{ with } x*y=2x+4y$$

reduct of an abelian group (linear representation)

Subreducts of modules

- A is called a *reduct* of B, if all operations of A are terms of B.
- A is called a *subreduct* of B, if it is a subalgebra of a reduct of B.

Subreducts of modules

- A is called a *reduct* of B, if all operations of A are terms of B.
- A is called a *subreduct* of B, if it is a subalgebra of a reduct of B.

Let $\mathbf{B} = (B, +, -, 0, \alpha \cdot : \alpha \in R)$ be an **R**-module:

Terms of B =expressions

$$t(x_1,x_2,\ldots,x_n)=\alpha_1x_1+\alpha_2x_2+\cdots+\alpha_nx_n$$

for some $\alpha_1, \alpha_2, \ldots, \alpha_n \in R$.

Have we seen this talk a year ago?!

Have we seen this talk a year ago?!

NO!!! It was about *semimodules*.

Theorem (J. Ježek)

Every algebra is a subreduct of a semimodule.

Theorem (M. Stronkowski / DS)

An idempotent algebra is a subreduct of a semimodule over a commutative semiring \Leftrightarrow it is a Szendrei mode.

Theorem (M. Stronkowski)

An entropic algebra satisfying Szendrei identities with onto operations is a subreduct of a semimodule over a commutative semiring.

Quasi-linear vs. quasi-affine

Linear representation = module term

$$f(x_1,x_2,\ldots,x_n)=\alpha_1x_1+\alpha_2x_2+\cdots+\alpha_nx_n$$

Affine representation = module polynomial

$$f(x_1, x_2, \dots, x_n) = \alpha_1 x_1 + \alpha_2 x_2 + \dots + \alpha_n x_n + \mathbf{c}$$

Quasi-linear algebras = subreducts of a modules Quasi-affine algebras = polynomial subreducts of a modules

Quasi-linear = quasi-affine!

Theorem (Stronkowski, DS)

Quasi-affine algebras are quasi-linear.

Proof:

- use Ježek's embedding of A into a semimodule M
- ② take the smallest congruence α of \mathbf{M} such that the factor is +-cancellative (thus \mathbf{M}/α is a subreduct of a module)
- **3** derive quasiidentities describing that $\alpha \cap A^2$ is trivial
- check that quasi-affine algebras satisfy them

Which algebras are quasi-affine?

- They are abelian
 - diagonal is a congruence block on A × A
 - for every term t and $\bar{a}, \bar{b}, \bar{c}, \bar{d} \in A$

$$t(\bar{a},\bar{c})=t(\bar{a},\bar{d}) \quad \Rightarrow \quad t(\bar{b},\bar{c})=t(\bar{b},\bar{d})$$

Which algebras are quasi-affine?

- They are abelian
 - diagonal is a congruence block on A × A
 - for every term t and $\bar{a}, \bar{b}, \bar{c}, \bar{d} \in A$

$$t(\bar{a},\bar{c})=t(\bar{a},\bar{d}) \quad \Rightarrow \quad t(\bar{b},\bar{c})=t(\bar{b},\bar{d})$$

 (Quackenbush) Not all abelian algebras are quasi-affine: an infinite scheme of quasiidentities

Which algebras are quasi-affine?

- They are abelian
 - diagonal is a congruence block on A × A
 - for every term t and $\bar{a}, \bar{b}, \bar{c}, \bar{d} \in A$

$$t(\bar{a},\bar{c})=t(\bar{a},\bar{d}) \quad \Rightarrow \quad t(\bar{b},\bar{c})=t(\bar{b},\bar{d})$$

- (Quackenbush) Not all abelian algebras are quasi-affine: an infinite scheme of quasiidentities
- Abelian algebras are quasi-affine, if
 - (Kearnes, Szendrei) non-trivial idempotent Mal'tsev condition
 - (Herrman) congruence modular ⇒ affine
 - ullet (Kearnes, Szendrei) non-trivial congruence lattice identity \Rightarrow affine
 - (Kearnes) idempotent simple
 - (TCT) finite simple

Subreducts of modules over commutative rings

Problem

Determine subreducts of modules over commutative rings.

Entropy (= all operations commute each other)

$$f(g(x_{11},...,x_{1n}),...,g(x_{m1},...,x_{mn})) = g(f(x_{11},...,x_{m1}),...,f(x_{1n},...,x_{mn}))$$

Szendrei identities (= replace just one pair)

$$f(f(x_{11},...,x_{1n}),...,f(x_{n1},...,x_{nn})) = f(f(x_{\pi(11)},...,x_{\pi(1n)}),...,f(x_{\pi(n1)},...,x_{\pi(nn)}))$$

where $\pi: ij \leftrightarrow ji$ for a single fixed ij.

Abelian entropic algebras satisfy Szendrei identities

$$f(f(x_1, x_2, x_3), f(y_1, y_2, y_3), f(z_1, z_2, z_3)) = f(f(x_1, y_1, z_1), f(x_2, y_2, z_2), f(x_3, y_3, z_3))$$

$$f(f(x_1, x_2, x_3), f(y_1, y_2, y_3), f(z_1, z_2, z_3)) = f(f(x_1, y_1, x_3), f(x_2, y_2, y_3), f(z_1, z_2, z_3))$$

Abelian entropic algebras satisfy Szendrei identities

$$f(f(x_1, x_2, x_3), f(y_1, y_2, y_3), f(z_1, z_2, z_3)) = f(f(x_1, y_1, z_1), f(x_2, y_2, z_2), f(x_3, y_3, z_3))$$

 \Downarrow substitute $x_1 = x_3 = y_2 = \cdots = z_3 = x$

$$f(f(x, \mathbf{x}_2, x), f(\mathbf{y}_1, x, x), f(x, x, x)) = f(f(x, \mathbf{y}_1, x), f(\mathbf{x}_2, x, x), f(x, x, x))$$

↓ abelianess

$$f(f(x_1, x_2, x_3), f(y_1, y_2, y_3), f(z_1, z_2, z_3)) = f(f(x_1, y_1, x_3), f(x_2, y_2, y_3), f(z_1, z_2, z_3))$$

Subreducts of modules over commutative rings

Reminder: they are abelian and entropic

Embeddable:

- (Stronkowski) cancellative entropic
- (easy) quasi-affine idempotent entropic

Subreducts of modules over commutative rings

Reminder: they are abelian and entropic

Embeddable:

- (Stronkowski) cancellative entropic
- (easy) quasi-affine idempotent entropic

Future plan:

```
for entropic:
```

abelian $\stackrel{???}{\Rightarrow}$ quasi-affine $\stackrel{???}{\Rightarrow}$ embeddable

for idempotent entropic:

abelian $\stackrel{???}{\Rightarrow}$ quasi-affine \Rightarrow embeddable

References

New results:

D. Stanovský, M. Stronkowski, Subreducts of modules, in progress.

Subreducts of modules:

- R. Quackenbush, Quasi-affine algebras, Algebra Universalis 20 (1985), 318–327.
- Á. Szendrei, *Modules in general algebra*, in: Contributions to General Algebra 10 (Proc. Klagenfurt Conf., 1997), Johannes Hevn, Klagenfurt, 1998; pp. 41–53.

All about modes:

- A. Romanowska, JDH Smith, Modes. World Scientific, 2002.
- A. Romanowska, Semi-affine modes and modals, Sci. Math. Japon. 61 (2005), 159–194.
- Á. Szendrei, Identities satisfied by convex linear forms, Alg. Universalis 12 (1981), 103–122.

Embeddings into semimodules:

- J. Ježek, Terms and semiterms, Comment. Math. Univ. Carolinae 20 (1979), 447–460.
- D. Stanovský, *Idempotent subreducts of semimodules over commutative semirings*, submitted.
- M. Stronkowski, Embeddings of entropic algebras, PhD Thesis, Warsaw U. of Tech., 2006.