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This is just (Z7,%) with x %y = 2x + 4y

TV
reduct of an abelian group (linear representation)
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Subreducts of modules

@ A is called a reduct of B, if all operations of A are terms of B.

@ A is called a subreduct of B, if it is a subalgebra of a reduct of B.
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Subreducts of modules

@ A is called a reduct of B, if all operations of A are terms of B.

@ A is called a subreduct of B, if it is a subalgebra of a reduct of B.

Let B=(B,+,—,0,a : @ € R) be an R-module:
Terms of B = expressions
t(x1, X2, ..., Xn) = Q1x1 + QX2 + -+ - + QpXp

for some a1, ,...,ap, € R.
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Have we seen this talk a year ago?!

David Stanovsky (Prague) Embedding algebras into modules 4 /11



Have we seen this talk a year ago?!

NO!!! It was about semimodules.

Theorem (J. JeZek)

Every algebra is a subreduct of a semimodule.

Theorem (M. Stronkowski / DS)

An idempotent algebra is a subreduct of a semimodule over a
commutative semiring < it is a Szendrei mode.

Theorem (M. Stronkowski)

An entropic algebra satisfying Szendrei identities with onto operations is a
subreduct of a semimodule over a commutative semiring.
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Quasi-linear vs. quasi-affine

Linear representation = module term

f(x1,%2,...,Xn) = c1x1 + aaxa + -+ - + apXp

Affine representation = module polynomial

f(x1,%2,...,Xn) = 1x1 + aaxa + -+ + apxp + C

Quasi-linear algebras = subreducts of a modules
Quasi-affine algebras = polynomial subreducts of a modules
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Quasi-linear = quasi-affine!

Theorem (Stronkowski, DS)

Quasi-affine algebras are quasi-linear.

Proof:
@ use Jezek's embedding of A into a semimodule M

@ take the smallest congruence o of M such that the factor is
+-cancellative (thus M/« is a subreduct of a module)

@ derive quasiidentities describing that ov N A? is trivial
@ check that quasi-affine algebras satisfy them
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Which algebras are quasi-affine?

@ They are abelian

o diagonal is a congruence block on A x A
o for every term t and 3,b,c,d € A

t(3,c) =t(a,d) = t(b,c)=t(hd)
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Which algebras are quasi-affine?

@ They are abelian

o diagonal is a congruence block on A x A
o for every term t and 3, b,c,d € A

t(3,c) =t(a,d) = t(b,c)=t(hd)

o (Quackenbush) Not all abelian algebras are quasi-affine:
an infinite scheme of quasiidentities
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Which algebras are quasi-affine?

@ They are abelian

o diagonal is a congruence block on A x A
o for every term t and 3, b,c,d € A

t(3,c) =t(a,d) = t(b,c)=t(hd)

o (Quackenbush) Not all abelian algebras are quasi-affine:
an infinite scheme of quasiidentities

@ Abelian algebras are quasi-affine, if
o (Kearnes, Szendrei) non-trivial idempotent Mal'tsev condition

@ (Herrman) congruence modular = affine
o (Kearnes, Szendrei) non-trivial congruence lattice identity = affine

o (Kearnes) idempotent simple
o (TCT) finite simple
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Subreducts of modules over commutative rings

Problem

Determine subreducts of modules over commutative rings.

—

Entropy ( = all operations commute each other)

f(g(xl:h L )Xln)7 L 7g(Xm17 LRI 7an)) —
g(f(x11y - s Xm1)s-«s F(Xtny -y Xmn))

Szendrei identities ( = replace just one pair)

f(f(x11,---sxtn)s -y F(Xn1s -y Xnn)) =
f(f(xw(ll)’ s 7X7r(1n))’ B f(XTr(nl)a s 7X7r(nn)))

where 7 : ij < ji for a single fixed ij.
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Abelian entropic algebras satisfy Szendrei identities

f(f(Xl,XZ,XS)af(}/h)’27}/3) (21722523))
f(f(x1, y1,21), f(x2, y2, 22), f(x3, ¥3, 23))

f(f(x1,x2,x3), f(y1,¥2,¥3), f(21, 22, 23)) =
f(f(X1,Y1,X3)7 f(X25y27.y3)7 f(21,22,23))
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Abelian entropic algebras satisfy Szendrei identities

f(f(XLXZ,XS)af(}/h)’27}/3) (21722523))
f(f(x1, y1,21), f(x2, y2, 22), f(x3, ¥3, 23))

|l substitute xy =x3 =y =---=2z3 =x

f(f(X7X25X)a f(y1,X7X), f(X,X,X)) =
f(f(x,y1,x), f(x,x,x), f(x,x,x))

| abelianess

f(f(x1,x2,x3), f(y1,¥2,¥3), f(21, 22, 23)) =
f(f(X1,Y1,X3)7 f(X25y27.y3)7 f(Zl,Z2,Z3))
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Subreducts of modules over commutative rings

Reminder: they are abelian and entropic

Embeddable:
@ (Stronkowski) cancellative entropic

o (easy) quasi-affine idempotent entropic
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Subreducts of modules over commutative rings

Reminder: they are abelian and entropic

Embeddable:
o (Stronkowski) cancellative entropic

o (easy) quasi-affine idempotent entropic

Future plan:

for entropic:
. T 1
abelian = quasi-affine = embeddable

for idempotent entropic:
abelian & quasi-affine = embeddable
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