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David Stanovský (Prague / Almaty) Self-distributive quasigroups 2 / 36



1a. Historical motivation
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Self-distributivity

Let (A, ∗) be a binary algebraic structure.

Left translations are mappings La : A→ A, x 7→ a ∗ x .

(A, ∗) is left self-distributive if all La’s are endomorphisms.

a ∗ (x ∗ y) = (a ∗ x) ∗ (a ∗ y)

”I think that there is a philosophical difference between an associative world and
a distributive world. The associative world is a geometric world; a world in which
space and time are important and fundamental concepts. The distributive world
seems different to me. I think that it is a quantum world without space and time,
in which only information exists.”

Dan Moskovich
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Self-distributivity

Let (A, ∗) be a binary algebraic structure.

Left translations are mappings La : A→ A, x 7→ a ∗ x .

(A, ∗) is left self-distributive if all La’s are endomorphisms.

a ∗ (x ∗ y) = (a ∗ x) ∗ (a ∗ y)

Self-distributivity appears naturally in

low dimensional topology (knot and braid invariants)

set theory (Laver’s groupoids of elementary embeddings)

Loos’s symmetric spaces

etc.
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Self-distributive quasigroups

(Q, ∗) is a quasigroup if a ∗ x = b, y ∗ a = b have unique solutions ∀a, b

I.e., all left and right translations are permutations

In combinatorics: latin squares = (finite) quasigroups

Early studies on self-distributive quasigroups:

Burstin, Mayer: Distributive Gruppen von endlicher Ordnung (1929)

Anton Sushkevich: Lagrange’s theorem under weaker assumptions

Toyoda, Murdoch, Bruck: medial quasigroups are affine (1940s)

Orin Frink: abstract definition of mean value (1950s)

Sherman Stein (1950s)

Soviet school: V. D. Belousov, V. M. Galkin, V. I. Onoi (1960-70s)
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Spaces with reflection

In a space X (euclidean or wherever it makes sense), let

a ∗ b = the reflection of b over a.

Then (X , ∗) is

left distributive

idempotent

a ∗ x = b always has a unique solution, x = a ∗ b

(usually not a quasigroup, e.g. on a sphere)

Nowadays we say (X , ∗) is an involutory quandle.

observed by Takasaki (1942)

elaborated by Loos (1960s): symmetric spaces
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Conjugation in groups

In a group G , let a ∗ b = aba−1.

Then (G , ∗) is

left distributive

idempotent

a ∗ x = b always has a unique solution, x = a−1ba

Nowadays we say (G , ∗) is a quandle.

Observation: Left distributive quasigroups are quandles.

Stein (1959): left distributive quasigroups embed into conjugation
quandles (quandles do not, in general)

Conway and Wraithe (1960s): wrack of a group

Joyce and Matveev (1982): quandles as knot invariants
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Knot coloring: 3-coloring

To every arc, assign one of three colors in a way that

every crossing has one or three colors.

Invariant: count non-trivial (non-monochromatic) colorings.
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Knot coloring: Fox n-coloring

To every arc, assign one of n colors, 0, ..., n − 1, in a way that

at every crossing, 2· bridge = left + right, modulo n

Invariant: count non-trivial colorings.
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Quandle coloring

Fix a set C of colors, and a ternary relation T on C .

To every arc, assign one of the colors in a way that

(c(α), c(β), c(γ)) ∈ T

Invariant: count non-trivial colorings. Really?

Fact (implicitly Joyce, Matveev (1982))

Coloring by (C ,T ) is an invariant if and only if T is a graph of a quandle.
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Quandle coloring

Fact (implicitly Joyce, Matveev (1982))

Coloring by (C ,T ) is an invariant if and only if T is a graph of a quandle.

a ∗ a = a unique left division

a ∗ (b ∗ c) = (a ∗ b) ∗ (a ∗ c)
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2a. Linear and affine
representation of quasigroups
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Quasigroups and loops

If I say “quasigroup (Q, ∗)”, I often implicitly mean (Q, ∗, \, /).

If I say “loop (Q, ·)”, I often implicitly mean (Q, ·, \, /, 1).

(For universal algebraic considerations, you need \, / as basic operations.)
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Term / polynomial equivalence
term operation = any composition of basic operations

polynomial operation = term op. with some var’s substituted by constants

two algebras are term equivalent if they have the same term operations

two algebras are poly. equivalent if they have the same poly. operations

... “the two algebras are essentially the same algebraic object”

Examples:

term equivalent: group (G , ·,−1 , 1) and the corresponding associative
loop (G , ·, /, \, 1)

term equivalent: Boolean algebra and the corresponding Boolean ring

polynomially equivalent: the quasigroup (Q, arithmetic mean) and
the module Z[1/2]-module Q.

Observation:

term equivalent algebras have identical subalgebras

polynomially equivalent algebras have identical congruences
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Loop isotopes

isotope = shuffle rows and columns, rename elements in the table

Fact

Given a quasigroup (Q, ∗), the only loop isotopes (up to isomorphism) are

(Q, ·) with a · b = (a/e1) ∗ (e2\b), with e1, e2 ∈ Q arbitrary.

Note: The loop operation · is polynomial over (Q, ∗).

We can recover the quasigroup operation as a ∗ b = Re1(a) · Le2(b).

this is rarely a polynomial operation over (Q, ·)
the best case: ∗ is a linear / affine form over (Q, ·)
i.e. Re1 , Le2 are linear / affine mappings over (Q, ·)
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Linear / affine quasigroups
A permutation ϕ of Q is affine over (Q, ·) if

ϕ(x) = ϕ̃(x) · u or ϕ(x) = u · ϕ̃(x)

where ϕ̃ is an automorphism of (Q, ·) and u ∈ Q.

Affine quasigroup over a loop (Q, ·) is (Q, ∗) with

a ∗ b = ϕ(a) · ψ(b)

for some affine mappings ϕ,ψ over (Q, ·) such that ϕ̃ψ̃ = ψ̃ϕ̃.

Linear quasigroups over a loop (Q, ·): ϕ,ψ are automorphisms, i.e.
u = v = 1.

Example:

the quasigroup (Q, arithmetic mean) is linear over the group (Q,+)

the quasigroup (O, ∗) with x ∗ y = ix · jy is affine over the octonion
loop (O, ·)
quasigroups affine over abelian groups are medial (see blackboard)
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Module-theoretical point of view

How to turn an affine representation into a polynomial equivalence?

(remember: the loop isotope is always polynomial over the quasigroup)

Consider wlog ϕ(x) = u · ϕ̃(x), ψ(x) = v · ψ̃(x).

Then x ∗ y = ϕ(x) ·ψ(y) = (u · ϕ̃(x)) · (v · ψ̃(y)) is a polynomial operation
over the algebra (Q, ·, ϕ̃, ψ̃).

Conversely, ·, ϕ̃, ψ̃ are polynomial operations over (Q, ∗),

e.g. ϕ̃(x) = (x ∗ e1)/·(1 ∗ e1)

Hence, (Q, ∗) and (Q, ·, ϕ̃, ψ̃) are polynomially equivalent.
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Module-theoretical point of view

(Q, ∗) and (Q, ·, ϕ̃, ψ̃) are polynomially equivalent.

What is (Q, ·, ϕ̃, ψ̃), a loop expanded by commuting automorphisms?

The classical case: the loop is an abelian group, (Q,+).

Then (Q,+, ϕ̃, ψ̃) is term equivalent to a module over Laurent
polynomials Z[s, s−1, t, t−1]:

the additive structure is (Q,+)

the action of s, t is that of ϕ̃, ψ̃, respectively

The corresponding quasigroup operation can be written as an affine form:

x ∗ y = sx + ty + c .

General case: The same idea works, forget associativity of (Q,+).

Loops expanded by automorphisms = “non-associative modules”

(things work particularly nicely e.g. for diassociative loops)
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An outline of the representation theorems
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2b. Medial, trimedial and
distributive quasigroups

(Belousov, Soublin, Kepka, 1960s-70s)

David Stanovský (Prague / Almaty) Self-distributive quasigroups 21 / 36



Medial quasigroups are affine over abelian groups

mediality = the identity (x ∗ y) ∗ (u ∗ v) = (x ∗ u) ∗ (y ∗ v)

Note: medial idempotent quasigroups are left and right distributive

Theorem (Toyoda-Murdoch-Bruck, 1940’s)

The following are equivalent for a quasigroup (Q, ∗):

1 it is medial,

2 it is affine over an abelian group.

Moreover, for an idempotent quasigroup, TFAE:

1 it is medial idempotent,

2 it is linear over an abelian group and ϕ = 1− ψ, i.e.

x ∗ y = (1− ψ)(x) + ψ(y) = x − ψ(x) + ψ(y).
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Medial quasigroups are affine over abelian groups

Theorem (Toyoda-Murdoch-Bruck, 1940’s)

The following are equivalent for a quasigroup (Q, ∗):

1 it is medial;

2 it is affine over an abelian group.

(2)⇒ (1) is straightforward.

(1)⇒ (2): Pick arbitrary e1, e2 ∈ Q, define a · b = (a/e1) ∗ (e2\b). Prove
that

(Q, ·) is a medial loop, hence an abelian group

the mappings ϕ(x) = x/e1 and ψ(x) = e2\x are affine over (Q, ·).

the mappings ϕ̃, ψ̃ commute
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Medial quasigroups are affine over abelian groups

Let (Q, ∗) be a medial quasigroup.
We prove that (Q, ·) with a · b = (a/e1) ∗ (e2\b) is a medial loop.

First, prove that (Q, ◦) with a ◦ b = (a/e1) ∗ b is medial.

(a ◦ b) ◦ (c ◦ d) = (((a/e1) ∗ b)/e1) ∗ ((c/e1) ∗ d)

= (((a/e1) ∗ b)/((e1/e1) ∗ e1)) ∗ ((c/e1) ∗ d)

= (((a/e1)/(e1/e1)) ∗ (b/e1)) ∗ ((c/e1) ∗ d)

Now, interchange b/e1 and c/e1 and get equality to (a ◦ c) ◦ (b ◦ d).

Proving that (Q, ·) is medial is a dual argument over (Q, ◦).
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Trimedial quasigroups are affine over c. Moufang loops
trimediality = every 3-generated subquasigroup is medial

= mediality holds upon any substitution in 3 variables

Theorem (Kepka, 1976)

The following are equivalent for a quasigroup (Q, ∗):

1 it is trimedial;

2 whenever (a ∗ b) ∗ (c ∗ d) = (a ∗ c) ∗ (b ∗ d), the subquasigroup
〈a, b, c , d〉 is medial,

3 it satisfies, for every a, b, c ∈ Q, the identities

(c ∗ b) ∗ (a ∗ a) = (c ∗ a) ∗ (b ∗ a),

(a ∗ (a ∗ a)) ∗ (b ∗ c) = (a ∗ b) ∗ ((a ∗ a) ∗ c),

4 it is 1-nuclear affine over a commutative Moufang loop.

1-nuclear = xϕ(x) ∈ N, xψ(x) ∈ N for every x ∈ Q
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Distributive quasigroups are linear over c. Moufang loops

distributive = both left and right distributive

Corollary (Belousov-Soublin, around 1970)

The following are equivalent for an idempotent quasigroup (Q, ∗):

1 it is trimedial,

2 whenever (a ∗ b) ∗ (c ∗ d) = (a ∗ c) ∗ (b ∗ d), the subquasigroup
〈a, b, c , d〉 is medial,

3 it is distributive,

4 it is 1-nuclear linear over a commutative Moufang loop.

1-nuclear = xϕ(x) ∈ N, xψ(x) ∈ N for every x ∈ Q
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Distributive quasigroups are linear over c. Moufang loops

Commutative Moufang loops of order 81 (Kepka-Němec 1981):

consider the groups G1 = (Z3)4 and G2 = (Z3)2 × Z9

let e1, e2, e3(, e4) be the canonical generators

let t1 be the triaditive mapping over G1 satisfying

t1(e2, e3, e4) = e1, t1(e3, e2, e4) = −e1, t1(ei , ej , ek) = 0 otherwise.

let t2 be the triaditive mapping over G2 satisfying

t2(e1, e2, e3) = 3e3, t2(e2, e1, e3) = −3e3, t2(ei , ej , ek) = 0 otherwise.

consider the loops Qi = (Gi , ·) with

x · y = x + y + ti (x , y , x − y)

Sample 1-nuclear automorphisms: x 7→ x−1, x 7→ x2
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Distributive quasigroups are linear over c. Moufang loops

Distributive quasigroups of order 81 (Kepka-Němec 1981):

1 (G1, ∗) with x ∗ y = x−1 · y−1

2 (G1, ∗) with x ∗ y = ϕ(x) · ψ(y) where
ϕ(x) = (x2 − x1)e1 − x2e2 − x3e3 − x4e4 and ψ = 1− ϕ

3 (G2, ∗) with x ∗ y =
√

x · √y

4 (G2, ∗) with x ∗ y = x−1 · y 2

5 (G2, ∗) with x ∗ y = x2 · y−1

6 (G2, ∗) with x ∗ y = ϕ(x) · ψ(y) where
ϕ(x) = −x1e1 − x2e2 − (3x1 + x3)e3 and ψ = 1− ϕ

Recall:

G1 = (Z3)4 and G2 = (Z3)2 × Z9

Qi = (Gi , ·) with x · y = x + y + ti (x , y , x − y)
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Theorem (Kepka, 1976)

The following are equivalent for a quasigroup (Q, ∗):

1 it is trimedial,

2 whenever (a ∗ b) ∗ (c ∗ d) = (a ∗ c) ∗ (b ∗ d), the subquasigroup
〈a, b, c , d〉 is medial,

3 it satisfies the identities .....,

4 it is 1-nuclear affine over a commutative Moufang loop.

(2)⇒ (1): (b ∗ a) ∗ (a ∗ c) = (b ∗ a) ∗ (a ∗ c), hence 〈a, b, c〉 medial.

(1)⇒ (3) is obvious.

(3)⇒ (4). Pick an arbitrary square e ∈ Q and define the loop operation
on Q by a · b = (a/e) ∗ (e\b). Use a neat theorem of Pflugfelder to prove
that this a commutative Moufang loop (plus the other facts).

(4)⇒ (2). Find a subloop Q ′ of (Q, ·) that contains all four elements
a, b, c , d and is generated by three elements u, v ,w that associate. Then,
by Moufang’s theorem, Q ′ is an abelian group, hence 〈a, b, c, d〉 medial.
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Pflugfelder’s characterization of c. Moufang loops

Theorem (Bruck 1⇔2⇔3, Pflugfelder ⇔4)

The following are equivalent for a commutative loop (Q, ·):

1 it is diassociative and automorphic,

2 it is Moufang,

3 the identity xx · yz = xy · xz holds,

4 the identity f (x)x · yz = f (x)y · xz holds for some f : Q → Q.

Moreover, if (Q, ·) is a commutative Moufang loop, than the identity
f (x)x · yz = f (x)y · xz holds if and only if f is a (−1)-nuclear mapping.

(−1)-nuclear = x−1ϕ(x) ∈ N, x−1ψ(x) ∈ N for every x ∈ Q
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2c. The structure of distributive
quasigroups
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Recap

Distributive quasigroups are essentially the same objects as

commutative Moufang loops with a 1-nuclear automorphism

“1-nuclear commutative Moufang modules” over the ring of Laurent
polynomials Z[t, t−1]

Idea: use known properties of commutative Moufang loops to reason
about distributive quasigroups
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Decomposition theorem

Theorem (Fischer-Smith)

Let Q be a finite distributive quasigroup of order pk1
1 · . . . · pkn

n . Then

Q ' Q1 × . . .× Qk

where |Qi | = pki
i . Moreover, if Qi is not medial, then pi = 3 and ki ≥ 4.

... an analogy holds for commutative Moufang loops
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Enumeration

MI (n) = the number of medial idempotent quasigroups of order n up to
isomorphism

D(n) = the number of distributive quasigroups of order n up to
isomorphism

Fisher-Smith says: with pi 6= 3 pairwise different,

D(3k · pk1
1 · . . . · p

kn
n ) = D(3k) ·MI (pk1

1 ) · . . . ·MI (pkn
n )

Moreover, D(3k) = MI (3k) for k < 4.
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Enumeration

Let Q(Q, ψ) denote the quasigroup (Q, ∗) with x ∗ y = (1−ψ)(x) +ψ(y).

Observe:

Q(Q, ψ) is medial iff (Q, ·) is an abelian group

Q(Q, ψ) is distributive iff (Q, ·) is a commutative Moufang loop and
ψ is 1-nuclear

Lemma (Kepka-Němec)

Let (Q1, ·), (Q2, ·) be commutative Moufang loops, ψ1, ψ2 their 1-nuclear
automorphisms. TFAE:

Q(Q1, ψ1) ' Q(Q2, ψ2)

there is a loop isomorphism ρ : Q1 ' Q2 such that ψ2 = ρψ1ρ
−1
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Enumeration

Theorem (Hou 2012)

MI (p) = p − 2

MI (p2) = 2p2 − 3p − 1

MI (p3) = 3p3 − 6p2 + p

MI (p4) = 5p4 − 9p3 + p2 − 2p + 1

n 3 32 33 34 35 36

CML∗(n) 0 0 0 2 6 ≥ 8

3M∗(n) 0 0 0 35
D∗(n) 0 0 0 6

DS∗(n) 0 0 0 1 1 3

MI (n) 1 8 30 166

Here X ∗(n) = X (n)−MI (n).
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