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Motivation

Definition
A term t is called linear, if every variable in t occurs (at most)
once.

Observation
In vector spaces, in the language (+,−, 0, (α·)), every term is
equivalent to a linear term

∑
i αixi . The term is unique up to

commutativity and associativity and adding zeros.

Are there equational theories in the language of groupoids (·) such
that every term is equivalent to a unique linear term?
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2-linear theories of groupoids

We know equational theories of groupoids such that every binary
term is equivalent to a unique linear term. In other words such
that the free 2-generated groupoid consists of terms x , y , xy , yx .

Example

I graph algebras, equivalence algebras, order algebras (also for
ternary terms!)

I the equational theory of the groupoid

a b c

a a c c
b c b c
c a b c

I Jerzy Dudek (1998) characterized all varieties of groupoids
where the free 2-generated groupoid has at most 4 elements.
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Definition of a ∗-linear theory

Definition
We say that an equational theory E is ∗-linear, if every term t is
equivalent to a unique linear term t∗ in E .

Observation
∗-linear =⇒ var(t∗) ⊆ var(t).

Proof. If x ∈ var(t∗)r var(t), then a non-linear identity

t∗(x , z1, . . . , zn) = t(z1, . . . , zn, . . . ) = t∗(y , z1, . . . , zn)

holds in there.

Particularly, ∗-linear =⇒ idempotent.
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∗-linear theories of groupoids



July 27, 2005

Definition of a ∗-linear theory

Definition
We say that an equational theory E is ∗-linear, if every term t is
equivalent to a unique linear term t∗ in E .

Observation
∗-linear =⇒ var(t∗) ⊆ var(t).

Proof. If x ∈ var(t∗)r var(t), then a non-linear identity

t∗(x , z1, . . . , zn) = t(z1, . . . , zn, . . . ) = t∗(y , z1, . . . , zn)

holds in there.

Particularly, ∗-linear =⇒ idempotent.
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Main theorem

Theorem
There are precisely six ∗-linear theories of groupoids.

Proof. Investigate possible free groupoids.

1. Find all possible 2-generated and 3-generated free groupoids
by filling the multiplication table.

2. Prove that most of them cannot be extended to
more-generated free groupoids.

3. ∗-linear theories are generated by their 4-generated free
groupoid.

4. Each of the remaining possible 3-generated groupoids is free
for at most one ∗-linear theory.

5. Construct a ∗-linear theory for each of them.
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A couple of technical definitions

I n-linear theory = every term in at most n variables is
equivalent to a unique linear term

I sharply n-linear theory = n-linear and based by its at most
n-variable equations

Clearly, sharply n-linear theory is determined by its n-generated
free groupoid.

I extension of a groupoid G = an equational theory which has
G as a free groupoid
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2-generated groupoids

Lemma (J. Dudek)
There are precisely twelve sharply 2-linear equational theories.

Their 2-generated free groupoids are the following groupoids and
their duals.

G0 x y xy yx

x x xy yx y
y yx y x xy
xy y yx xy x
yx xy x y yx

G1 x y xy yx

x x xy xy x
y yx y y yx
xy x xy xy x
yx yx y y yx

G2 x y xy yx

x x xy xy yx
y yx y xy yx
xy x y xy x
yx x y y yx

G3 x y xy yx

x x xy xy yx
y yx y xy yx
xy x y xy yx
yx x y xy yx

G4 x y xy yx

x x xy x xy
y yx y yx y
xy xy x xy x
yx y yx y yx

G5 x y xy yx

x x xy x xy
y yx y yx y
xy xy xy xy xy
yx yx yx yx yx

G6 x y xy yx

x x xy xy xy
y yx y yx yx
xy xy xy xy xy
yx yx yx yx yx
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3-generated groupoids

Lemma
I G0,G1,G2,G3,G4 have no 3-linear extension.
I G5 has nine sharply 3-linear extensions.
I G6 has seven sharply 3-linear extensions.

Lemma
I G5 has no 4-linear extension.

The only remaining possible 2-generated free groupoid is

G6 x y xy yx

x x xy xy xy
y yx y yx yx
xy xy xy xy xy
yx yx yx yx yx
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Q1 a b c d e f g h i j k l m n o p q r s t u

a a d e d e p d e q p p q q p q p q p p q q

b g b f g r f g s f r r r s s s r r r s s s

c h i c t h i u h i t u t t u u t t u u t u

d d d j d j j d j j j j j j j j j j j j j j

e e l e l e l l e l l l l l l l l l l l l l

f n f f n n f n n f n n n n n n n n n n n n

g g g k g k k g k k k k k k k k k k k k k k

h h m h m h m m h m m m m m m m m m m m m m

i o i i o o i o o i o o o o o o o o o o o o

j j j j j j j j j j j j j j j j j j j j j j

k k k k k k k k k k k k k k k k k k k k k k

l l l l l l l l l l l l l l l l l l l l l l

m m m m m m m m m m m m m m m m m m m m m m

n n n n n n n n n n n n n n n n n n n n n n

o o o o o o o o o o o o o o o o o o o o o o

p p p p p p p p p p p p p p p p p p p p p p

q q q q q q q q q q q q q q q q q q q q q q

r r r r r r r r r r r r r r r r r r r r r r

s s s s s s s s s s s s s s s s s s s s s s

t t t t t t t t t t t t t t t t t t t t t t

u u u u u u u u u u u u u u u u u u u u u u
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Q2 a b c d e f g h i j k l m n o p q r s t u
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4-generated groupoids

Lemma

1. They are regular and so is any 4-linear extension.

2. They are left or right non-permutational and so is any 4-linear
extension.

3. Only Q1, Q2 and Q4 can have a 4-linear extension.

Regular identity has the same variables on both sides.
Left non-permutational identity has the same order of the first
ocurences of variables on both sides.

UP TO THIS POINT, EVERYTHING COULD
HAVE BEEN COMPUTED BY A COMPUTER.
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Lemma

1. They are regular and so is any 4-linear extension.

2. They are left or right non-permutational and so is any 4-linear
extension.

3. Only Q1, Q2 and Q4 can have a 4-linear extension.

Regular identity has the same variables on both sides.
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Key steps

Lemma
Every ∗-linear equational theory is generated by its 4-generated
free groupoid.

Proof. Take the shortest equation that holds in F(4) and not in E
and derive a shorter one.

Lemma
Each of Q1, Q2 and Q4 has at most one 4-linear extension.

Proof for Q2,Q4. Let E1,E2 be two different equational theories
extending Qi . There is a term t in 4 variables such that t∗ = `1 in
E1 and t∗ = `2 in E2. Since E1,E2 have the same 3-variable
equations, `1 = `2 in Qi in any 3-variable substitution. Try all
possibilities for `1, `2, find a contradiction in each case.

So it only remains to construct the extensions.
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Key steps

Lemma
Every ∗-linear equational theory is generated by its 4-generated
free groupoid.

Proof. Take the shortest equation that holds in F(4) and not in E
and derive a shorter one.

Lemma
Each of Q1, Q2 and Q4 has at most one 4-linear extension.

Proof for Q2,Q4. Let E1,E2 be two different equational theories
extending Qi . There is a term t in 4 variables such that t∗ = `1 in
E1 and t∗ = `2 in E2. Since E1,E2 have the same 3-variable
equations, `1 = `2 in Qi in any 3-variable substitution. Try all
possibilities for `1, `2, find a contradiction in each case.

So it only remains to construct the extensions.
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∗-linear theory extending Q1

I Normal form: “delete all but the first occurence of every
variable”

I Example:
t t∗

x(yx · z) x(yz)
x(xy · z) x(yz)

I Base: xx = x , x(yx) = xy , x(xy · z) = x(yz)
I Generator:

a b c d e

a a b d d a
b b b c c b
c c c c c c
d d d d d d
e a b c d e
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I Normal form: “delete all but the first occurence of every
variable”
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t t∗

x(yx · z) x(yz)
x(xy · z) x(yz)

I Base: xx = x , x(yx) = xy , x(xy · z) = x(yz)
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∗-linear theory extending Q2

I Normal form: see blackboard
I Example:

t t∗

x(yx · z) x(yz)
x(xy · z) (xy)z

I Base: xx = x , x(yx) = xy , x(yx · z) =
x(yz), (xy)(yz · u) = (xy · z)u

I Generator:
a b c d e

a a d c d e
b b b e b e
c c c c c c
d d d c d c
e e e e e e
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∗-linear theory extending Q2

I Normal form: see blackboard
I Example:
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x(yz), (xy)(yz · u) = (xy · z)u

I Generator:
a b c d e

a a d c d e
b b b e b e
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d d d c d c
e e e e e e
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∗-linear theories of groupoids



July 27, 2005

∗-linear theory extending Q4

I Normal form: see blackboard

I Example:
t t∗

x(yx · z) (xy)z
x(xy · z) x(yz)

I Base: inherently non-finitely based!

I Generator:
a b c d

a a c c d
b c b c d
c c c c c
d d d d d
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∗-linear theory extending Q4

I Normal form: see blackboard

I Example:
t t∗

x(yx · z) (xy)z
x(xy · z) x(yz)

I Base: inherently non-finitely based!

I Generator:
a b c d

a a c c d
b c b c d
c c c c c
d d d d d
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∗-linear theories of semigroups

The intersection of the equational theory of semigroups and any of
the three ∗-linear theories of groupoids yields the following
equational theory of semigroups:

I Normal form: “delete all but the first occurence of every
variable”

I Base: xx = x , x(yz) = (xy)z , xyx = xy
I Generator:

a b c

a a b c
b b b b
c c c c

It is easy to prove from the above results that this theory and its
dual are the only equational theories of semigroups such that every
word is equivalent to a unique linear word.
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Thank you for your attention.
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