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Motivation

Definition
A term t is called linear, if every variable in t occurs (at most)
once.

Observation

In vector spaces, in the language (+,—,0, («-)), every term is
equivalent to a linear term ) ; ojx;. The term is unique up to
commutativity and associativity and adding zeros.
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Motivation

Definition
A term t is called linear, if every variable in t occurs (at most)
once.

Observation

In vector spaces, in the language (+,—,0, («-)), every term is
equivalent to a linear term ) ; ojx;. The term is unique up to
commutativity and associativity and adding zeros.

Are there equational theories in the language of groupoids (+) such
that every term is equivalent to a unique linear term?
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2-linear theories of groupoids

We know equational theories of groupoids such that every binary
term is equivalent to a unique linear term. In other words such
that the free 2-generated groupoid consists of terms x, y, xy, yx.
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2-linear theories of groupoids

We know equational theories of groupoids such that every binary
term is equivalent to a unique linear term. In other words such
that the free 2-generated groupoid consists of terms x, y, xy, yx.
Example

» graph algebras, equivalence algebras, order algebras (also for
ternary terms!)
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2-linear theories of groupoids

We know equational theories of groupoids such that every binary
term is equivalent to a unique linear term. In other words such
that the free 2-generated groupoid consists of terms x, y, xy, yx.
Example

» graph algebras, equivalence algebras, order algebras (also for
ternary terms!)

» the equational theory of the groupoid
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2-linear theories of groupoids

We know equational theories of groupoids such that every binary
term is equivalent to a unique linear term. In other words such
that the free 2-generated groupoid consists of terms x, y, xy, yx.
Example

» graph algebras, equivalence algebras, order algebras (also for
ternary terms!)

» the equational theory of the groupoid

» Jerzy Dudek (1998) characterized all varieties of groupoids
where the free 2-generated groupoid has at most 4 elements.
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Definition of a *-linear theory

Definition
We say that an equational theory E is x-linear, if every term t is
equivalent to a wnique linear term t* in E.
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Definition of a *-linear theory

Definition
We say that an equational theory E is x-linear, if every term t is
equivalent to a wnique linear term t* in E.

Observation
x-linear = var(t*) C var(t).

Proof. If x € var(t*)~ var(t), then a non-linear identity
t*(x,z1,...,zn) = t(z1,. -y Zny ... ) =t (Y, 21, -, 2Z0)

holds in there.
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Definition of a *-linear theory

Definition
We say that an equational theory E is x-linear, if every term t is
equivalent to a wnique linear term t* in E.

Observation
x-linear = var(t*) C var(t).

Proof. If x € var(t*)~ var(t), then a non-linear identity
t*(x,z1,...,zn) = t(z1,. -y Zny ... ) =t (Y, 21, -, 2Z0)
holds in there.

Particularly, x-linear = idempotent.
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Main theorem

Theorem
There are precisely six x-linear theories of groupoids.

Proof. Investigate possible free groupoids.




Main theorem

Theorem
There are precisely six x-linear theories of groupoids.

Proof. Investigate possible free groupoids.
1. Find all possible 2-generated and 3-generated free groupoids
by filling the multiplication table.

2. Prove that most of them cannot be extended to
more-generated free groupoids.

3. x-linear theories are generated by their 4-generated free
groupoid.

4. Each of the remaining possible 3-generated groupoids is free
for at most one *-linear theory.

5. Construct a *-linear theory for each of them.
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A couple of technical definitions

» n-linear theory = every term in at most n variables is
equivalent to a unique linear term

» sharply n-linear theory = n-linear and based by its at most
n-variable equations

Clearly, sharply n-linear theory is determined by its n-generated
free groupoid.
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A couple of technical definitions

» n-linear theory = every term in at most n variables is
equivalent to a unique linear term

» sharply n-linear theory = n-linear and based by its at most
n-variable equations

Clearly, sharply n-linear theory is determined by its n-generated
free groupoid.

» extension of a groupoid G = an equational theory which has
G as a free groupoid
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2-generated groupoids

Lemma (J. Dudek)

There are precisely twelve sharply 2-linear equational theories.

Their 2-generated free groupoids are the following groupoids and

their duals.

Gg X y xy  yx

x x xy  oyx y

Y yx y x xy

Xy y yx oxy x

yx Xy x y yx
Gy X y Xy yx Gy X y Xy yx G3 X y Xy yx
x x xy  xy x x x xy  xy  yx X x xy  xy  yx
Y yx Y y yx y yx y xy yx Y x y xy yx
xy x xy  xy x Xy x y xy x xy x y xy  oyx
yx yx y y yx yx x y y yx yx x y xy yx
Gy X y Xy  yx Gg x y xy  yx Gg x y xy  yx
x x Xy x Xy x x Xy x % x x Xy  xy xy
y yx y yx Y y yx y yx y y yx y yx yx
Xy xy x Xy x Xy Xy xy Xy o xy Xy Xy xy xy xy
yx Y yx Y yx yx yx yx yx yx yx yx yx yx yx
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3-generated groupoids

Lemma

» Gg, G1, Gy, G3, G4 have no 3-linear extension.
» Gs has nine sharply 3-linear extensions.
» Gg has seven sharply 3-linear extensions.
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3-generated groupoids

Lemma
» Gg, G1, Gy, G3, G4 have no 3-linear extension.
» Gs has nine sharply 3-linear extensions.
» Gg has seven sharply 3-linear extensions.

Proof for G1. Let E extend Gi. Since all identities in x, y have the
same first and last variables on both sides, so does any identity in
E. Hence x - yz = (xz - z)(y(z - xz)) = xz, which is a linear
identity, a contradiction.

G; ‘ X y Xxy yx

X | x Xxy xy x

y (yx 'y y yx

Xy | x Xxy Xxy x

yx|\yx y 'y yx
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3-generated groupoids

Lemma

» Gg, G1, Gy, G3, G4 have no 3-linear extension.
» Gs has nine sharply 3-linear extensions.
» Gg has seven sharply 3-linear extensions.

Lemma

» Gs has no 4-linear extension.
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3-generated groupoids

Lemma

» Gg, G1, Gy, G3, G4 have no 3-linear extension.
» Gs has nine sharply 3-linear extensions.
» Gg has seven sharply 3-linear extensions.

Lemma
» Gs has no 4-linear extension.
Proof. Try all 21 possibilities for the normal form of the term

(x - yz)(wz) and obtain by substitution either a contradiction with
the table of Gs, or a linear identity in E.
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3-generated groupoids

Lemma

» Gg, G1, Gy, G3, G4 have no 3-linear extension.
» Gs has nine sharply 3-linear extensions.
» Gg has seven sharply 3-linear extensions.

Lemma
» Gs has no 4-linear extension.

The only remaining possible 2-generated free groupoid is
Go | x y xy yx
X | x xy xy xy
y | yx y yx yx
Xy | xy xy xy xy
yx|yx yx yx yx
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4-generated groupoids

Lemma

1. They are regular and so is any 4-linear extension.

2. They are left or right non-permutational and so is any 4-linear
extension.

3. Only Q1, Q2 and Q4 can have a 4-linear extension.

Regular identity has the same variables on both sides.
Left non-permutational identity has the same order of the first
ocurences of variables on both sides.
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4-generated groupoids

Lemma

1. They are regular and so is any 4-linear extension.

2. They are left or right non-permutational and so is any 4-linear
extension.

3. Only Q1, Q2 and Q4 can have a 4-linear extension.

Regular identity has the same variables on both sides.
Left non-permutational identity has the same order of the first
ocurences of variables on both sides.

UP TO THIS POINT, EVERYTHING COULD
HAVE BEEN COMPUTED BY A COMPUTER.
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Key steps

Lemma
Every x-linear equational theory is generated by its 4-generated

free groupoid.
Proof. Take the shortest equation that holds in F(4) and not in E
and derive a shorter one.
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Key steps

Lemma
Every x-linear equational theory is generated by its 4-generated
free groupoid.

Proof. Take the shortest equation that holds in F(4) and not in E
and derive a shorter one.

Lemma
Each of Q1, Q> and Q4 has at most one 4-linear extension.

Proof for Q2, Q4. Let E1, E» be two different equational theories
extending Q;. There is a term t in 4 variables such that t* = /¢ in
E; and t* = /5 in Ep. Since Eq, E; have the same 3-variable
equations, #1 = f» in Q; in any 3-variable substitution. Try all
possibilities for /1, {5, find a contradiction in each case.
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Key steps

Lemma
Every x-linear equational theory is generated by its 4-generated
free groupoid.

Proof. Take the shortest equation that holds in F(4) and not in E
and derive a shorter one.

Lemma
Each of Q1, Q> and Q4 has at most one 4-linear extension.

Proof for Q2, Q4. Let E1, E» be two different equational theories
extending Q;. There is a term t in 4 variables such that t* = /¢ in
E; and t* = /5 in Ep. Since Eq, E; have the same 3-variable
equations, #1 = f» in Q; in any 3-variable substitution. Try all
possibilities for /1, {5, find a contradiction in each case.

So it only remains to construct the extensions.
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x-linear theory extending Q;

» Normal form: “delete all but the first occurence of every
variable”
» Example:
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x-linear theory extending Q;

» Normal form: “delete all but the first occurence of every
variable”
» Example:

t t*
x(yx - 2) | x(yz)
x(xy - 2) | x(y2)
» Base: xx=x, x(yx)=xy, x(xy-z)=x(yz)
» Generator:

a b c d e
ala b d d a
b|b b ¢ c b
clc ¢ ¢ ¢ c
dld d d d d
ela b c d e
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x-linear theory extending Q»

» Normal form: see blackboard
» Example:

t t*
x(yx - z) | x(yz)
x(xy - z) | (xy)z
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x-linear theory extending Q»

» Normal form: see blackboard
» Example:

t t*
x(yx - z) | x(yz)
x(xy - z) | (xy)z
» Base: xx=x, x(yx)=xy, x(yx-z)=

x(yz),  (xy)(yz-u) = (xy-2)u
» Generator:

D Q0 T QT
D Q 0 T Q|

® Q 0 T o

D Q 0 T Lo
D 0 0 o 00
D 0O 0O ® oo
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x-linear theory extending Q4

» Normal form: see blackboard

» Example:

t t*
x(yx - z) | (xy)z
x(xy - z) | x(yz)
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x-linear theory extending Q4

» Normal form: see blackboard
» Example:

t t*
x(yx - z) | (xy)z
x(xy - z) | x(yz)

» Base: inherently non-finitely based!
» Generator:

Q0 0 vy
Q 0 T 0T
Q. 0 0 0|0
Q 0 Q Q|Q

a
b
c
d
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x-linear theories of semigroups

The intersection of the equational theory of semigroups and any of
the three x-linear theories of groupoids yields the following
equational theory of semigroups:
» Normal form: ‘delete all but the first occurence of every
variable”
» Base: xx=x, x(yz)=(xy)z, xyx=xy
» Generator:

It is easy to prove from the above results that this theory and its
dual are the only equational theories of semigroups such that every
word is equivalent to a unique linear word.
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July 27, 2005

Thank you for your attention.
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