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Outline

1. From knots to quandles
2. Algebraically connected quandles

3. From connected to general

. with emphasis on structure and enumeration
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Knots

knot = embedding of a circle into R3

K1, K> equivalent = there is an ambient isotopy f of R3
such that f(K1) = Ko

tame knot = equivalent to a finitely polygonal knot (or a smooth knot)

All knots in this talk are tame and oriented.
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Knots

knot = embedding of a circle into R3

K1, K> equivalent = there is an ambient isotopy f of R3
such that f(K1) = Ko

tame knot = equivalent to a finitely polygonal knot (or a smooth knot)

All knots in this talk are tame and oriented.

Fundamental Problem

Given Ki, Ky, are they equivalent? Given K, is K ~ () ?
e Haken (1961): ~ (O is decidable (in EXP-time)
@ Haas-Lagarias-Pippinger (1999): ~ (O is in NP

e Agol (2002, not published): ¢ () is in NP assuming GRH
e Kuperberg (2011): ¢ (O is in NP assuming GRH
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Reidemester moves

Knots are usually displayed by a regular projection into a plane.

Theorem (Reidemeister 1926, Alexander-Brigs 1927)

K1 ~ Ky if and only if they are related by a finite sequence of Reidemeister
moves:

| twist/untwist a loop;
Il. move a string over/under another;

[Il. move a string over/under a crossing.
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Reidemester moves

Knots are usually displayed by a regular projection into a plane.

Theorem (Reidemeister 1926, Alexander-Brigs 1927)

K1 ~ Ky if and only if they are related by a finite sequence of Reidemeister
moves:

| twist/untwist a loop;
Il. move a string over/under another;

[Il. move a string over/under a crossing.

How many moves one needs?

K ~ (O iff related by a sequence of at most f(cross(K)) Reidemeister
moves, where:

@ Haas-Lagarias (2001): f exponential
o Lackenby (2013): f polynomial, (231n)!!

Bad news: cross(K) may increase, Good news (Lackenby): not too much
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Invariants

= mappings f assigning a value to every knot in a way that
Kl ~ K2 implies f(Kl) == f(Kg)

e mincross(K) = the minimal number of crossings

@ col(K) = the number of colorings of arcs by three colors such that no
crossing has two colors

e the knot group G(K) = m1(R3 \ K)

o Alexander-Conway polynomial (1923/1969)

(O)=1,  F(Ly)—F(L) = xF(Lo)
e Jones polynomial (1984)
(O =1 x ML) = xF(L) = (2 = x Y2)r(Lo)
@ etc.

@ etc.

http://www.indiana.edu/“knotinfo
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Coloring (oriented) knots

Fix a ternary relation T on a set X (colors).

coloring of K = a mapping c : arcs — colors s.t. (c(a),c(B),c(y)) € T
for every crossing where « is the overpass, (3 is right, 7 is left

Col7(K) = the number of colorings of K by T
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Coloring (oriented) knots

Fix a ternary relation T on a set X (colors).

coloring of K = a mapping c : arcs — colors s.t. (c(«),c(8),c(y)) € T
for every crossing where « is the overpass, [ is right, ~ is left

Col7(K) = the number of colorings of K by T

Fact (implicitly Joyce, Matveev ('82), explicitly Fenn-Rourke ('92))

Colt(K) is an invariant if and only if for every x,y,z € X
I (x,x,x)e T
Il. there are unique u,v such that (x,y,u) € T and (x,v,y) € T
in particular, T is a graph of an operation, let x x y be the u

I x*(y*z) = (x*y)=*(x*2z)

Algebras (X, x) satisfying I, Il., lll. are called quandles.
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Quandles

Quandle is an algebra Q = (Q, %) such that for every x,y,z € Q
@ x x x = x (idempotent)
@ there is a unique u such that x x u = y (unique left division)
o xx(yxz)=(xxy)x(xxz) (selfdistributivity)

Examples:
@ group conjugation x x y = y* = xyx~
e conjugation in 7 (R3 — K) ~ the knot quandle
o Kuperberg's algorithm: color by conjugation quandles over SL(p)
e affine quandles x x y = (1 — r)x + ry over any module, r invertible
o coloring by affine quandles = (essentially) the Alexander invariant

1

Motivation:
@ coloring knots, braids
@ Hopf algebras, discrete solutions to the Yang-Baxter equation

@ combinatorial algebra: a natural generalization of selfdistributive
quasigroups (since 1923!)
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PARATROOPER

by
Greg HKHuperheng

FRESE "I FOR IHSTRUCTIONE
PRE:S space bay FOR KEYBOARD FPLAY
OR Joystick button FOR JOYETICK FPLAY
OR ctrl—-J FOR JOYSETICK addustment

(CY1982 ORION SOFTHARE, INC.
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Enumerating small groups

11071 1 1 2 1 2 1 5 2
11.2001 5 1 2 1 14 1 5 1
21.30(2 2 1 15 2 2 5 4 1
3.0 1 511 2 1 14 1 2 2
41.50|1 6 1 4 2 2 1 52 2
51.60| 1 5 1 15 2 13 2 2 1
61.70 1 2 4 267 1 4 1 5 1
71.8011 50 1 2 3 4 1 6 1
81.90(15 2 1 15 1 2 1 12 1

911001 1 4 2 2 1 231 1 5 2

(Besche, Eick, O'Brien around 2000: a table up to 2047)
@ size p: Zp
o size p*: Zy, 73
@ size 2p: Zop, Doy

Methods: deep structure theory and efficient programming
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Enumerating small quasigroups
quasigroup = latin square
loop = quasigroup with a unit

loops quasigroups
1 1 1
2 1 1
3 1 5
4 2 35
5 6 1411
6 109 1130531
7 23746 12198455835
8 106228849 2697818331680661
9 9365022303540 15224734061438247321497
10 | 20890436195945769617 | 2750892211809150446995735533513

(McKay, Meynert, Myrvold 2007)

Methods: smart combinatorics and efficient programming
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Enumerating quandles: an elementary approach

1..9|1 1 3 7 22 73 298 1581 11079

@ exhaustive search over all tables: SAT-solver up to size 7
@ exhaustive search over all permutations: Ho, Nelson up to size 8

@ smarter elementary approach: McCarron up to size 9
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Enumerating quandles: an elementary approach

1..9‘1 1 3 7 22 73 298 1581 11079

@ exhaustive search over all tables: SAT-solver up to size 7
@ exhaustive search over all permutations: Ho, Nelson up to size 8

@ smarter elementary approach: McCarron up to size 9

Our idea:
@ think about the orbit decomposition of @
@ find a representation theorem

@ count the configurations

Our results: two special cases
® algebraically connected quandles = with a single orbit, up to size 47

e medial quandles (in a sense the abelian case), up to size 13
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Translations (aka inner mappings)

In a quandle Q:
e translations Ly(y) = x = y are permutations

e multiplication group LMIt(Q) = (Lx : x € Q) is a permutation group

Quandles = idempotent binary algebras with LMIt(Q) < Aut(Q).
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Translations (aka inner mappings)

In a quandle Q:
e translations Ly(y) = x = y are permutations

e multiplication group LMIt(Q) = (L : x € Q) is a permutation group

Quandles = idempotent binary algebras with LMIt(Q) < Aut(Q).
Displacement group (aka transvection group):
Dis(Q) = (LcL, ' : x,y € Q) < LMIt(Q)
e LMIt(Q) and Dis(Q) tell a lot about Q

@ things usually work nicer for Dis(Q), than for LMIt(Q)

@ but | realized this too late, so our connected quandles project is based
on LMIt(Q) (it has other advantages)
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Connected quandles

= LMIt(Q) is transitive on Q

Galkin quandles: Gal(G, H, ) = (G/H,*), xH x yH = xp(x 1) (y)H,
e G is a group, H its subgroup
e v € Aut(G), |y =id

Canonical representation: @ ~ Gal(LMIt(Q), LMIt(Q)e, —%¢)
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Connected quandles

= LMIt(Q) is transitive on Q

Galkin quandles: Gal(G,H, ) = (G/H,*), xH * yH = xp(x H)p(y)H,
e G is a group, H its subgroup
o v c Aut(G), |y =id

Canonical representation: @ ~ Gal(LMIt(Q), LMIt(Q)e, —L¢)

quandle envelope = (G, () such that
o G a transitive group,

o ( € Z(Ge) such that (C®) =G

There is 1-1 correspondence connected quandles < quandle envelopes
@ quandles to envelopes: Q — (LMIt(Q), L)
o envelopes to quandles: (G,¢) — Gal(G, Ge, —¢)
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Enumerating connected quandles

Important trick: we have an efficient Isomorphism Theorem for envelopes:
(G,({) ~ (K,&) iff there is ¢ : G ~ K such that ¥(G.) = Ke and 9({) = &.

11001 0 1 1 3 2 5 3 8 1
11.20{ 9 10 11 0 7 9 15 12 17 10
21.301 9 0 21 42 34 0 65 13 27 24
31.40 |29 17 11 0 15 73 35 0 13 33
41.47 139 26 41 9 45 0 45

(Vedramin 2012 / HSV independently)

We count all quandle envelopes, using the full list of transitive groups of
degree n < 47 (Holt 2014).

Using theory of transitive groups:
@ size p: only affine, p — 2 (Etingof, Soloviev, Guralnick 2001)
e size p?: only affine, 2p> — 3p — 1 (Grafia 2004)
e size p3: ... (Bianco)
@ size 2p: none for p > 5 (McCarron / HSV)
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Connected quandles, prime size

Theorem (Etingof-Soloviev-Guralnik)

Connected quandles of prime size are affine.

Proof using envelopes.

LMIt(Q) is a transitive group acting on a prime number of elements,
hence LMIt(Q) is primitive.

A theorem of Kazarin says that if G is a group, a € G, |aG| is a prime
power, then (a®) is solvable. In our case |LI;M1t(Q)| = | Q| is prime, hence
LMIt(Q) = (LS) is solvable.

A theorem attributed to Galois says that primitive solvable groups are
affine, hence LMIt(Q) is affine, and so is Q.
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From connected to general

1. Describe connected (we just did it)
2. Describe orbits (similar approach works, they are homogeneous)

3. How orbits are assembled to obtain a quandle?

. we will show for medial quandles
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Medial quandles
... Dis(Q) = (LcL;' : x,y € Q) is an abelian group

(xxy)x(uxv)=(xxu)x(y=*v) for every x,y, u, v

Affine quandles: Aff(G, @) = (G, ) with x x y = (1 — p)(x) + ©(y),
where G is an abelian group, ¢ € Aut(G)

A connected quandle is medial iff affine. I

Connected quandles of prime size: Aff(Zp, k) with k =2,...,p— 1.
(Classification of affine quandles up to p* by Hou 2011.)
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Medial quandles
... Dis(Q) = (LcL;' : x,y € Q) is an abelian group

(xxy)x(uxv)=(xxu)x(y=*v) for every x,y, u, v

Affine quandles: Aff(G, @) = (G, ) with x x y = (1 — p)(x) + ©(y),
where G is an abelian group, ¢ € Aut(G)

A connected quandle is medial iff affine. l

Connected quandles of prime size: Aff(Zp, k) with k =2,...,p— 1.
(Classification of affine quandles up to p* by Hou 2011.)

Orbits in medial quandles are affine quandles,

Qe = Aff(Dis(Q)/Dis(Q)e, —"¢).
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The structure of medial quandles
affine mesh = triple ((A;)ier, (wij)ijers (Gij)ijer) indexed by | where
@ A; are abelian groups
@ p;j: A — A; homomorphisms
@ ¢;; € Aj constants
such that for every i,/,// k€|
@ 1 — ;i is an automorphism of A;
0 c;=0
® ©jkpij = j kpij (they commute naturally)
° vjk(cij) = rk(Cik = k)
o A= (cj+Im(pij):iel)

Theorem (JPSZ)

There is 1-1 correspondence medial quandles < affine meshes
@ meshes to quandles: ax b= cij+ pjj(a) + (1 — ¢j;)(b)
@ quandles to meshes: Ae = Dis(Q)/Dis(Q)e, wer(x) = xf — ef, cer = ef
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Enumerating medial quandles

medial quandles | quandles
1 1 1
2 1 1
3 3 3
4 6 7
5 18 22
6 58 73
7 251 298
8 1410 1581
9 10311 11079
10 98577
11 1246488
12 20837439
13 466087635
14 | 13943042777
15 | 563753074951

 David Stanovsky (Prague/Almaty) ~ Quandles 20/ 24



The combinatorics behind

Again, we have an efficient Isomorphism Theorem for meshes:

(Ai s Cig) = (Al cl) iff 3me S 3y A AL 3 di e Al
@ ... (you don’t want to know) ...
@ ... (you don't want to know) ...

Reformulation: groups B;, each occurs nj-times

Isomorphism classes are precisely the orbits under an action of
G =[] (B » Aut(B))) 2 S,

Using Burnside's orbit counting lemma, we have

# orbits = ‘é’ Z lg/~| - fix(g

gER

where ~ is a subconjugacy equivalence and R a set of class representatives
 David Stanovsky (Prague/Almaty) ~ Quandles
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Reductive medial quandles

Surprizingly, there is an important special case:

@i j =0 for every i,
Call them 2-reductive. Then:
o we can simplify G =[] Aut(B;) ¢ Sp,
e we know a formula for fix(g) (complicated)
Burnside works awesome.

1 1 2 5 15 55 246 1398 10301 98532 1246479 20837171
466087624 13943041873 563753074915 30784745506212
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0 01 13 35 12 10 45 9 278 11 7 36
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Reductive medial quandles
Surprizingly, there is an important special case:
@i j =0 for every i,
Call them 2-reductive. Then:
o we can simplify G =[] Aut(B;) ¢ Sp,

@ we know a formula for fix(g) (complicated)
Burnside works awesome.

1 1 2 5 15 55 246 1398 10301 98532 1246479 20837171
466087624 13943041873 563753074915 30784745506212

There are very few other medial quandles!
0 01 13 35 12 10 45 9 278 11 7 36

Conjecture (:-0)

There are more 2-reductive than non-2-reductive, for every size.
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Reductive medial quandles Il

A medial quandle is called m-reductive if following equivalent cond’s hold:
@ all compositions of right translations Ry, ...R,, are constant

o the orbits are ¢! = 0.

Fact: 2-reductive iff ¢; ; = 0 Vi iff p;; =0 Vi,j
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Reductive medial quandles Il

A medial quandle is called m-reductive if following equivalent cond’s hold:

@ all compositions of right translations Ry, ...R,, are constant

o the orbits are ¢! = 0.

Fact: 2-reductive iff ¢; ; = 0 Vi iff p;; =0 Vi,j

Fact: all o;; permutations iff all orbits latin quandles

nil 2 3 45 6 7 8 9 10 11 12 13 14 15
non2-red. |0 O 1 1 3 3 5 12 10 45 9 268 11 36
red, not2-red. |10 0O 0O O 0 2 0 9 0 42 0 260 O 12
non-red. |0 0O 1 1 3 1 5 3 10 3 9 8 11 5 24
latinorbits |0 0 1 1 3 1 5 3 9 3 9 3 11 5 7
latin {1 0 1 1 3 0 5 2 8 0 9 1 11 0 3
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Conclusion

o few groups, many quasigroups
o few connected quandles, many quandles

o few non-2-reductive medial quandles, many 2-reductive medial
quandles

WHY?7?
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