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Two problems by Tomáš Kepka

1. Homomorphic images of subdirectly irreducible algebras

Problem: classify A ∈ V such that A ' B/µ for a B ∈ VSI

(Kepka 1981) an obvious necessary condition

the condition is sufficient for

(S.; Ježek–Kepka 2000) V = algebras of rich signature
(Bulman-Fleming–Hotzel–Wang 2004) V = semigroups
(McKenzie–S. 2004) V = quasigroups, loops, groups
(Ježek–Marković–S. 2004) V = finite unary algebras (µ not necessarilly
monolithic)

2. Left distributive left quasigroups

= groupoids where all left translations are automorphisms

x ∗ (y ∗ z) = (x ∗ y) ∗ (x ∗ z)
a ∗ x = b has a unique solution for all a, b

Problem: understand their structure
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Left distributive left quasigroups

= groupoids where all left translations are automorphisms

x ∗ (y ∗ z) = (x ∗ y) ∗ (x ∗ z)

a ∗ x = b has a unique solution for all a, b

Idempotent LDLQs:

Group conjugation: on a group (or a conjugacy class), put

x ∗ y = xyx−1.

Linear groupoids: on a module over a commutative ring, put

x ∗ y = (1− k)x + ky .

Knot quandles: a classifying invariant of knot equivalence

Non-idempotent LDLQs:

no natural examples

combinatorial objects over idempotent ones
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Non-idempotent LDLQs: the ip congruence

Circle of length n = 1, 2, . . . ,∞: x ∗ y = y + 1 mod n

Fact

Let ip be the smallest congruence such that G/ip is idempotent. Then

ip = Equiv({(a, aa) : a ∈ G})
ip = {(a, b) ∈ G × G : am = bn for some m, n}
every block of ip is a circle

Hence, in a sense, non-idempotent LDLQs result form idempotent LDLQs
by replacing elements for circles.

Consequences:

description of free groupoids, normal forms in some varieties

description of the subvariety lattice

description of subdirectly irreducibles

All up to the idempotent case.
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Non-idempotent LDLQs: free groupoids, varieties

Exponent n means the variety satisfies xn+1 = x .
FV(X ) denotes the free algebra over X in V.
I denotes the variety of idempotent algebras.

Theorem

Let V be a variety of LD left quasigroups of exponent n.

FV(X ) ' Cn × FV∩I(X ), where Cn is the circle of length n

The lattice of subvarieties of V is isomorphic to the lattice

(L× {1}) ∪ (K × (N r {1})) ⊆ L× N,

where L is the lattice of subvarieties of V ∩ I, K its sublattice of
varieties containing right zero bands and N the lattice of positive
integer divisors of n.
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Non-idempotent LDLQs: subdirectly irreducibles

Simple: either idempotent, or isomorphic to a circle of prime length

SI:

Theorem

Let G be a non-idempotent subdirectly irreducible LDLQ.

all ip-blocks are of size 1 or pk

term-definable left division ⇒ the monolith is the smallest congruence
such that G/µ has exponent pk−1

G embeds into K ∪Aut(K ), where K = {a : aa 6= a} and the
operation is defined by

∗ v ψ

u uv Luψ(Lu)−1

ϕ ϕ(v) ϕψϕ−1
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Idempotent LDLQs: equational theory

Idempotent LDLQs are closely related to groups, via conjugation.

Fact (Drápal, Kepka, Muśılek)

The following varieties of groupoids coincide:

the variety generated by idempotent LDLQs

the variety generated by conjugation groupoids of groups

Equational basis: open problem!!!
The simplest equation that doesn’t follow from LD,I:

((xy)y)(xz) = (xy)((yx)z)

Fact (Joyce)

In signature {·, \}, the equational basis is just

xx = x , x(yz) = (xy)(xz), x\(xy) = x(x\y) = y
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Idempotent LDLQs: left multiplication group

Left translation: La : x 7→ ax
Left multiplication group: LMlt(G ) = 〈La : a ∈ G 〉

Observation

a 7→ La is a homomorphism from G into the conjugation groupoid of
LMlt(G ). Proof: LD says La∗bLa = LaLb.

Consequence: many properties translate into/from groups.
E.g., simple quandles relate to simple groups:

Theorem (Joyce)

Every finite simple idempotent LDLQ is isomorphic to Q〈G ,C ,m〉, where
G is a finite simple group, C a conjugacy class in Aut(G ) and m ≥ 1 (all
uniquely determined). Here Q〈G ,C ,m〉 denotes the conjugation groupoid
of a conjugacy class in [...a group constructed using G ,C ,m...]
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The knot quandle

Joyce/Matveev (1980’s):

an oriented tame knot
↓

a regular projection to 2D
↓

the knot quandle = 〈 arcs: relations 〉

Relations:

xy = z for every underpass, where “x coming under y becomes z”
and y is going over x in the left-right direction

x\y = z dtto with right-left direction

Theorem (Joyce/Matveev)

Two tame knots are equivalent, iff their knot quandles are isomorphic.
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The knot quandle: examples

Q = 〈 arcs : relations “x coming under y becomes z” 〉

a

�
b c

The trefoil quandle is

〈a, b, c : ab = c , bc = a, ca = b〉 ' Core(Z3)

Here Core(G ) = (G , 2x − y).
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The knot quandle: examples

Q = 〈 arcs : relations “x coming under y becomes z” 〉

c

�a d b

The the figure-eight quandle is

〈a, b, c , d : ab = d , b\c = a, cd = b, d\a = c〉 ' Core(Z5)
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The knot quandle: inspiration for further research

Several papers by knot theorists on idempotent LDLQs appeared recently.
They seem to be interested in

computing in LDLQs

classifying small LDLQs

Mutual cooperation is desirable.
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