Computer Algebra

David Stanovsky

Charles University in Prague
Czech Republic

stanovsk@karlin.mff.cuni.cz
http://www.karlin.mff.cuni.cz/~stanovsk

Warszawa, April 2009

David Stanovsky (Prague) Computer Algebra 1/16

Computer Algebra

= computing in various algebraic domains

polynomials

linear algebra

groups

commutative algebra (fields)

calculus (derivatives, primitive functions, etc.)

etc.
numerical mathematics = approximative computing
computer algebra = precise computing

Software:
@ Mathematica, Maple, Magma, ..., Sage, Singular, ...
@ C++ libraries: GMP, NTL, ...

David Stanovsky (Prague) Computer Algebra 2 /16

Polynomial Computer Algebra

My course in Prague: polynomials

@ fast arithmetic: multiplication, divison, GCD, factorization
@ more advanced problems & applications:

o Grobner bases
o lattices and LLL

Domains: Z[x], Q[x], Zp[x], multivariate polynomials

David Stanovsky (Prague) Computer Algebra 3/16

n, m = length of arguments, n > m

+ school O(n)
school O(mn)
Karacuba O(n'°823) = O(n1-5%)
Toom-3 O(n|°g35) — (1‘465)
Toom-k O(n* (k) f(k) — 0
Schonhage-Strassen O(nlog nloglog n)
Flrer nlog n2¢(leg”)
div, mod school O(m(n— m+1))
Newton's method M(n)
GCD Eukleid’s algorithm O(mn)

Slow: school methods
Faster: divide & conquer
Fast (very slow): FFT arithmetic

David Stanovsky (Prague) Computer Algebra 4 /16

n, m = length of arguments, n > m

school
Karacuba
Toom-3
Toom-k

Schonhage-Strassen

Furer

O(n
O(n
O(n

log, g(mn)(1.585)
logs 5): (1.465)
1+f(k)) (k) -0

O(nlog nloglog n)

nlog n20(leg™ n)

Applicability (GMP, 32-bit digits):

school
10

Karacuba

30-100

Toom-3

300-1000

SS

David Stanovsky (Prague)

Computer Algebra

5/ 16

Karacuba's multiplication

Divide & conquer. Let

a=rB"?+s and b=tB"?+u.
Then

a-b=(rB"? +5)(tB"? + u) = rtB" + (ru + st)B"? + su,
and we get T(n) =4T(n/2) + O(n), i.e. T(n) = O(n?).

David Stanovsky (Prague) Computer Algebra [}

Karacuba's multiplication

Divide & conquer. Let

a=rB"?+s and b=tB"?+u.
Then

a-b=(rB"? +5)(tB"? + u) = rtB" + (ru + st)B"? + su,
and we get T(n) =4T(n/2) + O(n), i.e. T(n) = O(n?).

But also

a-b=rtB"+ (rt +su+(r—s)(u—t))B"? +su
and we get T(n) =3T(n/2) + O(n), i.e. T(n)= O(n'23).

David Stanovsky (Prague) Computer Algebra 6 /16

Arithmetic in R[x]

n, m = degree of arguments, n > m

+ school O(m)
school O(mn)
Karacuba O(n'°e23) = O(n'-58)
FFT O(nlogn)
div, mod school O(m(n— m+1))
FFT + Newton's method O(nlog n)

Slow: school methods
Fast (really): Fast Fourier transform

(GCD: quadratic in Zp[x], much worse in Z[x] — see later)

David Stanovsky (Prague) Computer Algebra 7 /16

Modular representation

= an epimorphism R — R/Mj x ... x R/M,. Hence
R/(\Mi~R/Myx...xR/M,.

© (Chinese Remainder Theorem) for pairwise coprime m;'s
Z/my---mp~7Z/myx...xZ/mp x+ (...,x mod m;,...)
@ (Interpolation Theorem) for pairwise distinct «;'s
F[x]/(x —a1) - (x — ap) ~F[x]/(x —a1) x...xF[x]/(x —ap)~ F"
f (o, Flag),...)

David Stanovsky (Prague) Computer Algebra 8 /16

Modular representation

= an epimorphism R — R/Mj x ... x R/M,. Hence
R/(\Mi~R/Myx...xR/M,.

© (Chinese Remainder Theorem) for pairwise coprime m;'s
Z/my---mp~7Z/myx...xZ/mp x+ (...,x mod m;,...)
@ (Interpolation Theorem) for pairwise distinct «;'s
F[x]/(x —a1) - (x — ap) ~F[x]/(x —a1) x...xF[x]/(x —ap)~ F"
f (o, Flag),...)

I-1: mj | x—y, hencem=my---m, | x—y

Onto: given (u1,...,u,), put
X—«
f= . J
2w 11 o—4
J#i
X = Z uj - nir;, where n; = H mj and r; = ”i_l (mod m;)

David Stanovsky (Prague) Computer Algebra 8 /16

Fast multiplication

Recall with m = (x — a1) -+ (x —)
o :F[x]/m~F" (.., f(a),...)
Idea: If n > deg f + deg g, then

o(f -g) =¢(f-g mod m)=o(f) - p(g).

Algorithm:
@ choose ag,...,qa,
@ 3= (f(ar),. .., (). b= (g(ar),. .., g(an)
@c=3b

© find h such that (h(aq),...,h(an)) =¢
Step 3. has complexity O(n) !l

So, how to choose a1, ..., a, so that the rest is also subquadratic?

David Stanovsky (Prague) Computer Algebra 9 /16

Fast Fourier transform

Choose o; = w', where w is a primitive n-th root of 1.

Then

e interpolation = 1

n

enumeration in w1

o enumeration is fast: if g = 3 axix’ (even terms) and h =" apjy1x’
(odd terms), then f(w') = g(w?) + w'h(w?). Moreover,
w2 = _ i hence enumeration of f in w® w!,...,w" ! can be
recovered from enumeration of halfsize g, h in half points

W w? w2 So

T(n)=2T(n/2) + O(n), i.e. T(n)= O(nlogn).

David Stanovsky (Prague) Computer Algebra 10 / 16

= 2 multiplication & 1 inverse formal power series
With h* = x4¢8h(x~1), the reciprocal,

f=gqg+r < f(x_l) = g(x_l)q(x_l) + r(x_l)
o ff = g*q* + andeg %
= q* — f*. (g*)—l o Xn—degr . (g*)—l

Hence we need u = first n — m + 1 terms of the power series (g*)*1 and

g =f"-u.

David Stanovsky (Prague) Computer Algebra 11 /16

Newton's method

Example: compute Tl-i-l i.e. > aix’ such that

(Za,-x")-(2x+l):1+0x+0x2+....
Soag=1,2a+a1=0,2a;+a =0, ... and so

. 1. .

h= Za,-x’ = Z (—5)’X’.
Newton's method: 1 step = double the number of terms

gh=1+x"-s
gh—1=x"-5s
(gh—1)2 = x?". s2
g (h(2—gh) =1+x>" -2
—

David Stanovsky (Prague) Computer Algebra 12 /16

Newton's method

Example: compute Tl-i-l i.e. > aix’ such that

(Za,-x")-(2x+l):1+0x+0x2+....
Soag=1,2a+a1=0,2a;+a =0, ... and so

. 1. .

h= Za,-x’ = Z (—5)’X’.
Newton's method: 1 step = double the number of terms

gh=1+x"-s
gh—1=x"-5s
(gh—1)2 = x?". s2
g (h(2—gh) =1+x>" -2
—

The same works for computing high precision %: put

x=1/a+107"s, ie xa=1+10 "sa

David Stanovsky (Prague) Computer Algebra 12 /16

Using CRT: Factoring polynomials

. effective in Zp[x], difficult in Z[x]

Algorithm:
@ factorize in Zp[x] for a small p
© use Hensel lifting to get factorization in Z«[x] for a sufficiently big pX

© recover the result

Possible issue:
o f = x3 — 2 irreducible in Z[x]
o f mod 3 = (x+1)%in Z3[x]

David Stanovsky (Prague) Computer Algebra 13 / 16

Using CRT: GCD of polynomials

Issue: in Euclid’s algorithm, coefficients grow exponentially fast:
x84+ x%—3x* —3x3+8x>+2x—5
3x% 4+ 5x* — 4x% —9x + 21
—5/9x* +1/9x* — 1/3
—117/25x% — Ox + 441/25

233150/19773x — 102500/6591
—1288744821/543589225

Cure: in Zp[x], no growth over p
Algorithm: compute mod several p's, recover result with CRT

It follows from theory of resultants, that only few p's give a wrong result.

David Stanovsky (Prague) Computer Algebra 14 / 16

Using CRT: Fast Fourier transform

Issue: 7 has no primitive roots of 1 !l

Solution: compute mod p such that
© Z, contains the FFT roots of 1
@ p > the max. coefficient of f - g

(or, compute mod several small p's, and use CRT to recover)

David Stanovsky (Prague) Computer Algebra 15 / 16

@ non-trivial mathematical results to solve "trivial problems” (by fast
algorithms)
e Modular method for

@ polynomials (interpolation) — fast multiplication
@ coefficients (Chinese Remainder Theorem) — keep arithmetic fast
(GCD), let it work (factorization, FFT)

o Divide & Conquer — a general tool for design of fast algorithms

e formal power series aren't just an algebra teacher’s toy :-)

David Stanovsky (Prague) Computer Algebra 16 / 16

