Computer Algebra

David Stanovský

Charles University in Prague Czech Republic

 $stanovsk@karlin.mff.cuni.cz\\ http://www.karlin.mff.cuni.cz/~stanovsk$

Warszawa, April 2009

Computer Algebra

- = computing in various algebraic domains
 - polynomials
 - linear algebra
 - groups
 - commutative algebra (fields)
 - calculus (derivatives, primitive functions, etc.)
 - etc.

numerical mathematics = approximative computing computer algebra = precise computing

Software:

- Mathematica, Maple, Magma, ..., Sage, Singular, ...
- C++ libraries: GMP, NTL, ...

Polynomial Computer Algebra

My course in Prague: polynomials

- fast arithmetic: multiplication, divison, GCD, factorization
- more advanced problems & applications:
 - Gröbner bases
 - lattices and LLL

Domains: $\mathbb{Z}[x]$, $\mathbb{Q}[x]$, $\mathbb{Z}_p[x]$, multivariate polynomials

Arithmetic in \mathbb{Z}

 $n, m = \text{length of arguments}, n \ge m$

土	school	$\mathcal{O}(n)$	
	school	$\mathcal{O}(mn)$	
	Karacuba	$\mathcal{O}(n^{\log_2 3}) = \mathcal{O}(n^{1.585})$	
	Toom-3	$\mathcal{O}(n^{\log_3 5}) = \mathcal{O}(n^{1.465})$	
	Toom- <i>k</i>	$\mathcal{O}(n^{1+f(k)}), f(k) \to 0$	
	Schönhage-Strassen	$\mathcal{O}(n \log n \log \log n)$	
	Fürer	$n \log n 2^{\mathcal{O}(\log^* n)}$	
div, mod	school	$\mathcal{O}(m(n-m+1))$	
	Newton's method	M(n)	
GCD	Eukleid's algorithm	$\mathcal{O}(mn)$	

Slow: school methods *Faster:* divide & conquer

Fast (very slow): FFT arithmetic

Arithmetic in \mathbb{Z}

 $n, m = \text{length of arguments}, n \ge m$

school	$\mathcal{O}(mn)$
Karacuba	$\mathcal{O}(n^{\log_2 3}) = \mathcal{O}(n^{1.585})$
Toom-3	$\mathcal{O}(n^{\log_3 5}) = \mathcal{O}(n^{1.465})$
Toom-k	$\mathcal{O}(n^{1+f(k)}), f(k) \to 0$
Schönhage-Strassen	$\mathcal{O}(n \log n \log \log n)$
Fürer	$n \log n 2^{\mathcal{O}(\log^* n)}$

Applicability (GMP, 32-bit digits):

school		Karacuba		Toom-3		SS
	10		30-100		300-1000	

Karacuba's multiplication

Divide & conquer. Let

$$a = rB^{n/2} + s$$
 and $b = tB^{n/2} + u$.

Then

$$a \cdot b = (rB^{n/2} + s)(tB^{n/2} + u) = rtB^n + (ru + st)B^{n/2} + su,$$

and we get $T(n) = 4T(n/2) + \mathcal{O}(n)$, i.e. $T(n) = O(n^2)$.

Karacuba's multiplication

Divide & conquer. Let

$$a = rB^{n/2} + s$$
 and $b = tB^{n/2} + u$.

Then

$$a \cdot b = (rB^{n/2} + s)(tB^{n/2} + u) = rtB^n + (ru + st)B^{n/2} + su,$$

and we get
$$T(n) = 4T(n/2) + \mathcal{O}(n)$$
, i.e. $T(n) = O(n^2)$.

But also

$$a \cdot b = rtB^{n} + (rt + su + (r - s)(u - t))B^{n/2} + su$$

and we get T(n) = 3T(n/2) + O(n), i.e. $T(n) = O(n^{\log_2 3})$.

Arithmetic in $\mathbf{R}[x]$

n, m =degree of arguments, $n \ge m$

±	school	$\mathcal{O}(m)$	
	school	$\mathcal{O}(mn)$	
	Karacuba	$\mathcal{O}(n^{\log_2 3}) = \mathcal{O}(n^{1.585})$	
	FFT	$\mathcal{O}(n \log n)$	
div, mod	school	$\mathcal{O}(m(n-m+1))$	
	FFT + Newton's method	$\mathcal{O}(n \log n)$	

Slow: school methods

Fast (really): Fast Fourier transform

(GCD: quadratic in $\mathbb{Z}_p[x]$, much worse in $\mathbb{Z}[x]$ — see later)

Modular representation

= an epimorphism $\mathbf{R} \to \mathbf{R}/M_1 \times \ldots \times \mathbf{R}/M_n$. Hence

$$\mathbf{R}/\bigcap M_i \simeq \mathbf{R}/M_1 \times \ldots \times \mathbf{R}/M_n$$
.

lacktriangle (Chinese Remainder Theorem) for pairwise coprime m_i 's

$$\mathbb{Z}/m_1\cdots m_n\simeq \mathbb{Z}/m_1\times\ldots\times \mathbb{Z}/m_n,\quad x\mapsto (...,x \bmod m_i,...)$$

② (Interpolation Theorem) for pairwise distinct α_i 's

$$\mathbf{F}[x]/(x-\alpha_1)\cdots(x-\alpha_n)\simeq \mathbf{F}[x]/(x-\alpha_1)\times\ldots\times\mathbf{F}[x]/(x-\alpha_n)\simeq\mathbf{F}^n$$

$$f\mapsto(\ldots,f(\alpha_i),\ldots)$$

Modular representation

= an epimorphism
$$\mathbf{R} \to \mathbf{R}/M_1 \times \ldots \times \mathbf{R}/M_n$$
. Hence $\mathbf{R}/\bigcap M_i \simeq \mathbf{R}/M_1 \times \ldots \times \mathbf{R}/M_n$.

lacktriangle (Chinese Remainder Theorem) for pairwise coprime m_i 's

$$\mathbb{Z}/m_1\cdots m_n\simeq \mathbb{Z}/m_1\times\ldots\times \mathbb{Z}/m_n,\quad x\mapsto (...,x \bmod m_i,...)$$

② (Interpolation Theorem) for pairwise distinct α_i 's

$$\mathbf{F}[x]/(x-\alpha_1)\cdots(x-\alpha_n)\simeq \mathbf{F}[x]/(x-\alpha_1)\times\ldots\times\mathbf{F}[x]/(x-\alpha_n)\simeq\mathbf{F}^n$$

$$f\mapsto(\ldots,f(\alpha_i),\ldots)$$

1-1: $m_i \mid x - y$, hence $m = m_1 \cdots m_n \mid x - y$

Onto: given (u_1, \ldots, u_n) , put

$$f = \sum u_i \cdot \prod_{j \neq i} \frac{x - \alpha_j}{\alpha_i - \alpha_j}$$

$$x = \sum u_i \cdot n_i r_i,$$
 where $n_i = \prod_{j \neq i} m_j$ and $r_i = n_i^{-1} \pmod{m_i}$

Fast multiplication

Recall with
$$m = (x - \alpha_1) \cdots (x - \alpha_n)$$

$$\varphi: \mathbf{F}[x]/m \simeq \mathbf{F}^n, \quad f \mapsto (..., f(\alpha_i), ...)$$

Idea: If $n > \deg f + \deg g$, then

$$\varphi(f \cdot g) = \varphi(f \cdot g \mod m) = \varphi(f) \cdot \varphi(g).$$

Algorithm:

- choose $\alpha_1, \ldots, \alpha_n$
- \mathbf{o} $\bar{c} = \bar{a} \cdot \bar{b}$
- find h such that $(h(\alpha_1), \ldots, h(\alpha_n)) = \bar{c}$

Step 3. has complexity $\mathcal{O}(n)$!!!

So, how to choose $\alpha_1, \ldots, \alpha_n$ so that the rest is also subquadratic?

Fast Fourier transform

Choose $\alpha_i = \omega^i$, where ω is a primitive *n*-th root of 1.

Then

- interpolation = $\frac{1}{n}$ enumeration in ω^{-1}
- enumeration is fast: if $g = \sum a_{2i}x^i$ (even terms) and $h = \sum a_{2i+1}x^i$ (odd terms), then $f(\omega^i) = g(\omega^{2i}) + \omega^i h(\omega^{2i})$. Moreover, $\omega^{i+n/2} = -\omega^i$, hence enumeration of f in $\omega^0, \omega^1, \ldots, \omega^{n-1}$ can be recovered from enumeration of halfsize g, h in half points $\omega^0, \omega^2, \omega^{n-2}$. So

$$T(n) = 2T(n/2) + \mathcal{O}(n)$$
, i.e. $T(n) = \mathcal{O}(n \log n)$.

Fast division

= 2 multiplication & 1 inverse formal power series

With $h^* = x^{\deg h} h(x^{-1})$, the reciprocal,

$$f = gq + r \iff f(x^{-1}) = g(x^{-1})q(x^{-1}) + r(x^{-1})$$

$$\Leftrightarrow f^* = g^*q^* + x^{n-\deg r}r^*$$

$$\Leftrightarrow q^* = f^* \cdot (g^*)^{-1} - x^{n-\deg r} \cdot r^* \cdot (g^*)^{-1}$$

Hence we need u= first n-m+1 terms of the power series $(g^*)^{-1}$ and

$$q^*=f^*\cdot u.$$

Newton's method

Example: compute $\frac{1}{2x+1}$, i.e. $\sum a_i x^i$ such that

$$(\sum a_i x^i) \cdot (2x+1) = 1 + 0x + 0x^2 + \dots$$

So $a_0 = 1$, $2a_0 + a_1 = 0$, $2a_1 + a_2 = 0$, ... and so

$$h=\sum a_ix^i=\sum (-\frac{1}{2})^ix^i.$$

Newton's method: $1 \text{ step} = \frac{\text{double}}{\text{double}}$ the number of terms

$$gh = 1 + x^{n} \cdot s$$

$$gh - 1 = x^{n} \cdot s$$

$$(gh - 1)^{2} = x^{2n} \cdot s^{2}$$

$$g \cdot (h(2 - gh)) = 1 + x^{2n} \cdot s^{2}$$

Newton's method

Example: compute $\frac{1}{2x+1}$, i.e. $\sum a_i x^i$ such that

$$(\sum a_i x^i) \cdot (2x+1) = 1 + 0x + 0x^2 + \dots$$

So $a_0 = 1$, $2a_0 + a_1 = 0$, $2a_1 + a_2 = 0$, ... and so

$$h=\sum a_ix^i=\sum (-\frac{1}{2})^ix^i.$$

Newton's method: 1 step = double the number of terms

$$gh = 1 + x^{n} \cdot s$$

$$gh - 1 = x^{n} \cdot s$$

$$(gh - 1)^{2} = x^{2n} \cdot s^{2}$$

$$g \cdot (h(2 - gh)) = 1 + x^{2n} \cdot s^{2}$$

The same works for computing high precision $\frac{1}{a}$: put

$$x = 1/a + 10^{-n}s$$
, i.e. $xa = 1 + 10^{-n}sa$

Using CRT: Factoring polynomials

... effective in $\mathbb{Z}_p[x]$, difficult in $\mathbb{Z}[x]$

Algorithm:

- **1** factorize in $\mathbb{Z}_p[x]$ for a small p
- ② use Hensel lifting to get factorization in $\mathbb{Z}_{p^k}[x]$ for a sufficiently big p^k
- recover the result

Possible issue:

- $f = x^3 2$ irreducible in $\mathbb{Z}[x]$
- $f \mod 3 = (x+1)^3 \text{ in } \mathbb{Z}_3[x]$

Using CRT: GCD of polynomials

Issue: in Euclid's algorithm, coefficients grow exponentially fast:

$$x^{8} + x^{6} - 3x^{4} - 3x^{3} + 8x^{2} + 2x - 5$$

$$3x^{6} + 5x^{4} - 4x^{2} - 9x + 21$$

$$-5/9x^{4} + 1/9x^{2} - 1/3$$

$$-117/25x^{2} - 9x + 441/25$$

$$233150/19773x - 102500/6591$$

$$-1288744821/543589225$$

Cure: in $\mathbb{Z}_p[x]$, no growth over p

Algorithm: compute mod several p's, recover result with CRT

It follows from theory of resultants, that only few p's give a wrong result.

Using CRT: Fast Fourier transform

Issue: \mathbb{Z} has no primitive roots of 1!!!

Solution: compute mod *p* such that

- $lackbox{1}{} \mathbb{Z}_p$ contains the FFT roots of 1
- 2 p > the max. coefficient of $f \cdot g$

(or, compute mod several small p's, and use CRT to recover)

Summary

- non-trivial mathematical results to solve "trivial problems" (by fast algorithms)
- Modular method for
 - polynomials (interpolation) fast multiplication
 - coefficients (Chinese Remainder Theorem) keep arithmetic fast (GCD), let it work (factorization, FFT)
- Divide & Conquer a general tool for design of fast algorithms
- formal power series aren't just an algebra teacher's toy :-)