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The ways I use AR tools

I Produce a solution, translate the result (Ježek-Kepka problem)

I Produce a solution, look at hints, find a better proof by hand
(Biquandles, Complex Condition)

I Exhaustive search for a solution (Linear theories)

I Checking conjectures on small models (very very often)
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Ježek-Kepka problem

In groupoids, the identities

x ∗ yz = xy ∗ xz , xy ∗ z = xz ∗ yz

imply the identities

(xy ∗ zu) ∗ ((xy ∗ zu) ∗ (xz ∗ yu)) = xz ∗ yu

(xy ∗ zu) ∗ (xz ∗ yu) = (xz ∗ yu) ∗ (xy ∗ zu)

I first shown by J. Ježek and T. Kepka using infinite
mathematics in early 1980’s

I they immediately asked, to find an elementary proof
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Using automated reasoning in universal algebra



Introduction Purely 1st order problems More interesting problem Most interesting problem Conclusions

Ježek-Kepka problem

Use of AR:

I in fall 2005 solved by people around Otter

I being unaware of it, I obtained and translated another proof
with Prover9 in fall 2006.

Proof found using Prover9 in the autonomous mode.

axioms ⇒ (2): 30 hours, length 152, level 24, max. clause wt. 45
axioms ⇒ (1): 5 minutes, length 26, level 12, max. clause wt. 41
ax., (1) ⇒ (2): 5 seconds, length 25, level 11, max. clause wt. 47

The proof of (1) was translated almost literally.
The rest was divided into several lemmas, thus made it quite
readable.
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Biquandles

... one of the ”simplify axioms” tasks

A birack is an algebra (A, ◦, ∗, \◦, \∗) satisfying

x ◦ (y ◦ z) = (x ◦ y) ◦ ((y ∗ x) ◦ z)

x ∗ (y ∗ z) = (x ∗ y) ∗ ((y ◦ x) ∗ z)

((x ∗ y) ◦ z) ∗ (y ◦ x) = ((x ◦ z) ∗ y) ◦ (z ∗ x)

x ◦ (x\◦y) = y , x\◦(x ◦ y) = y

x ∗ (x\∗y) = y , x\∗(x ∗ y) = y

In every birack,

(x\◦x)\∗(x\◦x) = x ⇔ (x\∗x)\◦(x\∗x) = x .
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Biquandles

Use of AR:

Otter in the autonomous mode found a proof within a minute.

Looking at the proof, I started to understand the identities and
produced a different (shorter, perhaps more natural) proof.

David Stanovský
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Complex condition vs. mediality

I omit the semantical meaning ...
... the syntactical problem is as follows:

In an idempotent groupoid with terms t, s such that

(x ∗ y) ∗ (u ∗ v) = t(x , u) ∗ s(y , v),

is it true that

(x ∗ y) ∗ (u ∗ v) = (x ∗ u) ∗ (y ∗ v) ?

(Does not hold for non-idempotent groupoids.)
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Complex condition vs. mediality

(x ∗ y) ∗ (u ∗ v) = t(x , u) ∗ s(y , v)

⇓ ?

(x ∗ y) ∗ (u ∗ v) = (x ∗ u) ∗ (y ∗ v)

Use of AR:

I testing various particular cases, like t = x (or y , xy , yx , ...)
and few term properties for s

I getting insight enough to prove the following: If t or s is
linear, then the conclusion holds.
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Linear theories of groupoids

Problem. Describe *-linear theories = equational theories where
every term is equivalent to a unique linear term.

Linear term = each variable at most once

I 1 variable: x

I 2 variables: x , y , xy , yx

I 3 variables: x , y , z , xy , yx , xz , zx , yz , zy , x(yz), (xy)z , . . .

Auxilliary problem. Describe n-linear theories = every term in
≤ n variables is equivalent to a unique linear term.

Determined by its n-generated free groupoid.
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Linear theories of groupoids

In search for *-linear theories, we did the following:

1. Found all 2-linear and 3-linear theories.

2. Proved that only 3 of them can be extended to a 4-linear one.

3. *-linear theory is generated by its 4-generated free groupoid.

4. Each of the remaining three 3-linear theories extends to at
most one *-linear theory.

5. Explicit construction of the three *-linear theories.

Use of AR:

Steps 1. and 2. can be done automatically.
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Linear theories of groupoids

Facts:

I Sizes of free groupoids: 1, 4, 21, 184.

I About 1/(# of vars.) of the multiplication table determines
the free groupoid.

I n-generated = extension of (n − 1)-generated.

Solution:

I A Perl script prepares all possible completions of the
multiplication table.

I For each of them, Otter checks whether the corresponding
theory collapses different linear terms.
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Linear theories

Results:

I 2-generated free groupoids appeared earlier in literature.

I It took about one minute to compute them.

I It took several days to one of my coauthors to find the free
3-generated groupoids by hand.

I It took about two hours to compute them.

I It wasn’t difficult to prove by hand that 4 out of 7 free
3-generated groupoids don’t have 4-linear extension.

I It took several weeks to compute this fact.
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Conclusions

... too early to make any conclusions

When AR tools can outperform mathematician’s brain:

I “unnatural conditions”
I out of classical algebra
I operators
I not-really-well-understood equations

I find complicated syntactic proofs

I quickly find small models, without their real understanding
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