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Abstract. We prove that a finite unary algebra with at least two op-
eration symbols is a homomorphic image of a (finite) subdirectly irre-
ducible algebra if and only if the intersection of all its subalgebras which
have at least two elements is nonempty.

We are concerned with the following natural question: Which algebras are

homomorphic images of subdirectly irreducible algebras?

A necessary condition, discovered in [3], [4] and [5], for an algebra A with
at least one at least binary operation to be a homomorphic image of some
subdirectly algebra, is that the intersection of all ideals of A is nonempty.
(By an ideal of A we mean a nonempty subset I such that f(a1, . . . , an) ∈ I
whenever f is a fundamental operation and a1, . . . , an are elements of A with
ai ∈ I for at least one i.) It was proved in [2] and independently in [8] that
the condition is also sufficient. In fact, it was proved in those two papers
that any algebra A with at least one at least binary operation and with a
smallest ideal is isomorphic to a factor of a subdirectly irreducible algebra
B through its monolith, and the construction is such that if A is finite then
also B is finite. The case that remains is that of algebras with only unary
operations. (Note that nullary operations play no role in investigation of
congruences.)

If there is just one unary operation, the characterization is simple; see e.g.
[9] or [2]. For two or more unary operations, the situation is more compli-
cated. In the present paper we are going to characterize finite algebras with
at least two unary operations that are homomorphic images of a subdirectly
irreducible algebra. We leave it as an open problem to do the same for
infinite algebras. An example found in [2] suggests that it will be probably
much harder to characterize such unary algebras that are isomorphic to a
subdirectly irreducible algebra through its monolith.
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One can ask similar questions in particular varieties of algebras. For in-
stance, the construction from [8] yields for an idempotent algebra an idem-
potent subdirectly irreducible one. (In fact, it preserves any identity of the
form t(x) ≈ x, where t is a unary term. And if the algebra contains no
proper ideal, then the construction preserves any identity in one variable.)
However, it seems that no other interesting identities are kept.

Indeed, in many varieties almost no algebras can be represented as ho-
momorphic images of subdirectly irreducibles - for instance in distributive
lattices, for an obvious reason. On the other hand, in several familiar va-
rieties the answer is known to be similar to the general case. It is proved
in [1] that a semigroup is a homomorphic image of some subdirectly irre-
ducible semigroup if and only if the intersection of all its ideals is nonempty.
However, there are finite semigroups (e.g. any right zero band) which are
not isomorphic to the factor of a finite subdirectly irreducible semigroup
over its monolith. Every quasigroup, group and every lattice (indeed, all of
them have no non-trivial ideals, in our sense) is also a homomorphic image
of a subdirectly irreducible one (quasigroup, group, lattice) and for a finite
one the s.i. can be constructed finite. For lattices, an easy construction
was found by Ralph Freese (unpublished). For quasigroups and groups, a
solution was found by R. McKenzie and D. Stanovský [7].

Throughout this paper let σ be a finite set of unary operation symbols,
|σ| ≥ 2. By a unary algebra we mean a σ-algebra. By a word we mean a
word over the alphabet σ.

For a word w = f1 . . . fn and any i = 0, . . . , n − 1 we define a word
w[i] = fi+1 . . . fnf1 . . . fi. This is a word of the same length as w. We put
wi = ww . . . w where w is repeated i times.

Let A be a unary algebra; let a ∈ A and w = f1 . . . fn be a word. For
i = 0, . . . , n we put w〈i〉(a) = fi . . . f2f1(a) (so that w〈0〉(a) = a). By an
e-pair for A we mean a pair a, w where a ∈ A, w is a word of some positive
length n, w〈n〉(a) = a and A = {w〈0〉(a), . . . , w〈n−1〉(a)}. (Informally, an
e-pair is a path through all elements of A using the operations.) An e-pair
a, w is said to start at a; w is called the e-pair’s path; the e-pair’s length is
the length of its path (clearly, the length is at least |A|).

It is easy to see that a finite unary algebra A has an e-pair if and only if
it has no proper subalgebra; and if a, w is an e-pair for A then w〈i〉(a), w[i]

is an e-pair for A for any i = 0, . . . , n − 1, where n is the length of w.
Consequently, if A has no proper subalgebra then it has an e-pair starting
at any of its elements.

An e-pair a, w for A is said to be an h-pair if |A| equals the length of w.

Lemma 1. Let a, w be an e-pair for a finite unary algebra A. Then there

exist a finite unary algebra B and an element b ∈ B such that A is a homo-

morphic image of B and b, w is an h-pair for B.
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Proof. Put w = f1 . . . fn. For i = 0, . . . , n − 1 put ai = w〈i〉(a). For every
c ∈ A denote by pc the number of occurrences of c in w〈0〉(a), . . . , w〈n−1〉(a).
Put B = {(ai, j) : 0 ≤ i < n, 0 ≤ j < pai

}. For (ai, j) ∈ B and f ∈ σ
put f(ai, j) = (f(ai), k) where k = |{m : 0 ≤ m < i, f(ai) = am}|. Then
(ai, j) 7→ ai is a homomorphism of B onto A and (a, 0), w is an h-pair
for B. ¤

A word w = f1 . . . fn is said to be irreducible if w 6= w[i] for all 1 ≤ i < n.
It is easy to see that a word is irreducible if and only if it cannot be expressed
as uj for a word u and an integer j ≥ 2. An e-pair is said to be irreducible
if its path is irreducible.

Lemma 2. Let a, w be an e-pair for a finite unary algebra A. Then there

exists a finite unary algebra B such that A is a homomorphic image of B
and B has an irreducible h-pair.

Proof. Let w = f1 . . . fn for some fi ∈ σ. Take a symbol g ∈ σ different
from f1 and put b = f1g

2n(a). Let i be such that b = w〈i〉(a) and put
h1 = fi+1, h2 = fi+2, . . . , hn = fi, . . . , hm = fn, so that a = hm . . . h1(b),
A = {b, h1(b), . . . , hm . . . h1(b)} and m < 2n. Thus a, g2nf1h1 . . . hm is an
irreducible e-pair for A. Now use Lemma 1. ¤

Lemma 3. Let a, w be an irreducible h-pair for a finite unary algebra A.

Then A is a homomorphic image of a finite subdirectly irreducible unary

algebra. Moreover, A is isomorphic to a factor of a finite subdirectly irre-

ducible unary algebra through its monolith.

Proof. Put n = |A| and w = f1 . . . fn. For every c ∈ A there is a unique
number i ∈ {0, . . . , n− 1} with c = w〈i〉(a); denote this i by I(c). Let p be a
prime number greater than 2n(n+1). Denote by +′ the addition modulo p.
Put B = A × {0, . . . , p − 1}. Define σ-operations on B by

f(c, i) =

{

(f(c), i) if f = fI(c)+1

(f(c), i +′ 1) otherwise.

Evidently, A is a homomorphic image of B under (c, i) 7→ c. We are going
to show that the kernel R of this homomorphism is the monolith of B. We
have ((c, i), (d, j)) ∈ R if and only if c = d. Let ∼ be a nontrivial congruence
of B. We need to show that R is contained in ∼.

Let c, d be two elements of A. By a path from c to d we mean a word
g1 . . . gk such that d = gk . . . g1(c). Such a path is said to be canonical
if for every i = 1, . . . , k, gi = fI(gi−1...g1(c))+1. Now for every c, d there
exists a canonical path from c to d of length at most n, and also a non-
canonical path from c to d of length at most n. For i = 0, . . . , p− 1 we have
gk . . . g1(c, i) = (d, i +′ j) where j = 0 if the path is canonical and 1 ≤ j ≤ k
otherwise.

Let us first prove that if (c, i) ∼ (c, j) for some c and some i 6= j then R
is contained in ∼. By taking a canonical path from c to a we get (a, i) ∼
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(a, j). Let g ∈ σ be different from f1. We have g(a, i) ∼ g(a, j), i.e.,
(g(a), i +′ 1) ∼ (g(a), j +′ 1). Applying a canonical path from g(a) to a
we get (a, i +′ 1) ∼ (a, j +′ 1). Since p is a prime number, it follows that
(a, k) ∼ (a, l) for all k and l. If d is any element of A then applying a
canonical path from a to d we get (d, k) ∼ (d, l).

Now let (c, i) ∼ (d, j) where c 6= d. Without loss of generality, j = i +′ l
where 0 ≤ l < p

2 . The canonical path from c to c of length n is a non-
canonical path from d to some element e1, because w is an irreducible word.
Applying this path we get (c, i) ∼ (e1, i +′ l +′ k1) for some e1, k1 with
1 ≤ k1 ≤ n. If e1 = c then (c, i) ∼ (c, i +′ l +′ k1) where i 6= i +′ l +′ k1 and
we are done by above. Otherwise, apply the same path to obtain (c, i) ∼
(e2, i +′ l +′ k1 +′ k2) for some e2, k2 with 1 ≤ k2 ≤ n. Continue in this way
n + 1 times. If it did not happen that em = c for some m, in which case we
would be finished by above, we get (c, i) ∼ (em, i +′ (l + k1 + · · · + km)) for
all m = 1, . . . , n + 1. Since p was so large, we have m ≤ l + k1 + · · ·+ km <
p
2 + mn < p and since all km 6= 0, the numbers i +′ (l + k1 + · · · + km)
are pairwise distinct. However, the elements e1, . . . , en+1 cannot be pairwise
distinct. So, we get into the previous case. ¤

Lemma 4. Let a, w be an irreducible h-pair for a finite unary algebra A.

Then there exist a finite subdirectly irreducible unary algebra C and a ho-

momorphism H of C onto A such that for every element c ∈ A there exists

an element c′ ∈ C with H(c′) = c and c′ 6= f(d) for all f ∈ σ and all d ∈ C.

Proof. Define B in the same way as in Lemma 3. Put C = A × {0, . . . , p}
and define operations on C in such a way that B is a subalgebra of C and
f(c, p) = (f(c), I(c)) (we have I(c) < n < p). Clearly, A is a homomorphic
image of C under (c, i) 7→ c. Define a congruence S of C by ((c, i), (d, j)) ∈ S
if and only if either (c, i) = (d, j) or c = d and i, j < p. In order to prove
that S is the monolith of C, it is sufficient (by the proof of Lemma 3) to
show that if (c, i) ∼ (d, p) where (c, i) 6= (d, p) then (c′, j) ∼ (d′, k) for some
(c′, j) 6= (d′, k) with j, k < p. If i = p then c 6= d, I(c) 6= I(d) and so it is
sufficient to apply any operation to (c, p) ∼ (d, p). Let i 6= p. If i 6= I(d),
apply fI(c)+1; and if i = I(d), apply any operation different from fI(c)+1. ¤

Lemma 5. Let a, w be an irreducible h-pair for a finite unary algebra A and

let N be a positive integer. Then there exist a finite subdirectly irreducible

unary algebra C and a homomorphism H of C onto A such that for every

element c ∈ A there exist at least N distinct elements c′ ∈ C with H(c′) = c
and c′ 6= f(d) for all f ∈ σ and all d ∈ C.

Proof. a, wN is an e-pair for A. With respect to this e-pair, apply Lemma 1
and Lemma 2 to obtain an algebra A′ without proper subalgebras and a
homomorphism of A′ onto A such that for every element c ∈ A there are N
elements of A′ mapped onto c. Then apply Lemma 4 to this algebra A′. ¤

Lemma 6. Let A be a finite unary algebra such that one of the following

two cases takes place:
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(1) A has a smallest subalgebra U ;

(2) A has two disjoint subalgebras U, {a} such that the partial algebra

A − {a} has a smallest subalgebra U .

Then A is a homomorphic image of a finite subdirectly irreducible algebra.

Proof. In both cases put A0 = U , so that A0 has no proper subalgebras. By
Lemma 5 there exist, for every positive integer N , a subdirectly irreducible
algebra B0 and a homomorphism H0 of B0 onto A0 such that for every
element c ∈ A0 there are at least N distinct elements c′ ∈ B0 with H0(c

′) = c
and c′ 6= f(d) for all f ∈ σ and all d ∈ B0.

Define subsets A0, A1, . . . of A by induction as follows: Ai+1 is the set
of all elements b ∈ A not belonging to A0 ∪ · · · ∪ Ai such that f(b) ∈ Ai

for some f ∈ σ. Let K be the largest integer with AK nonempty. We have
A = A0 ∪ · · · ∪ AK in case (1) and A = A0 ∪ · · · ∪ AK ∪ {a} in case (2). If
K = 0, we can use Lemma 3; assume K > 0.

Put BK = AK and let HK be the identity on BK . For every i = K −
1, . . . , 1 define a set Bi and a mapping Hi of Bi into Ai as follows: Bi

is the disjoint union of Ai with the set of ordered pairs (b, f) such that
b ∈ Bi+1, f ∈ σ and f(Hi+1(b)) ∈ Ai; put Hi(b, f) = f(Hi+1(b)), and let
the restriction of Hi to Ai be the identity. Take N so large that for every
f ∈ σ there exists an injective mapping Gf of B1 into B0 with this property:
if b ∈ B1 and f(H1(b)) ∈ A0 then H0Gf (b) = f(H1(b)) and Gf (b) is not in
the range of any fundamental operation of B0. Put B∗ = BK ∪· · ·∪B1∪B0

and H∗ = HK ∪· · ·∪H1∪H0; in case (1) put B = B∗ and H = H∗, while in
case (2) put B = B∗ ∪ {a} and let H be the extension of H∗ by H(a) = a.
We are going to define operations on B. In case (2) put f(a) = a for all
f ∈ σ. Let f ∈ σ and b ∈ Bi. If i = 0, define f(b) in B in the same way as
in B0 (so that B0 is a subalgebra of B). If i ≥ 2 and f(H(b)) ∈ Ai−1, put
f(b) = (b, f) (this is an element of Bi−1). If i ≥ 2 and f(H(b)) /∈ Ai−1 (so
that either f(H(b)) ∈ Aj for some j ≥ i or (2) takes place and f(H(b)) = a),
put f(b) = f(H(b)). If i = 1 and f(H(b)) ∈ A0, put f(b) = Gf (b). If i = 1
and f(H(b)) /∈ A0, put f(b) = f(H(b)).

One can easily check that H is a homomorphism of B onto A. We are
going to prove that the union R of the monolith of B0 with idB is the
monolith of B. Let b, c be two distinct elements of B and ∼ be a congruence
with b ∼ c. It is sufficient to prove that there exist two distinct ∼-related
elements in B0.

Consider first the case c = a. We have b ∼ a, so that f(b) ∼ f(a) = a for
all f ∈ σ. Since gk . . . g1(b) ∈ B0 for some g1, . . . , gk ∈ σ, we get d ∼ a for
some d ∈ B0. Then also f(d) ∼ a for all f ∈ σ, so that d ∼ f(d) where both
d and f(d) belong to B0; for at least one f , d 6= f(d).

It remains to consider the case when b ∈ Bi and c ∈ Bj for some i, j.
Without loss of generality, i ≤ j. If i = j = 0, we are done.
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If i = 0 and j = 1 then there exists an f ∈ σ with f(c) ∈ B0; we have
f(b) ∼ f(c) and these two elements are distinct, since f(c) is not in the
range of f restricted to B0.

If i = 0 and j ≥ 2 then there exists an f ∈ σ with f(c) ∈ Bj−1, so j can
be reduced by 1 and (after several such steps) this takes us into the previous
case.

If i = j = 1 then there are f, g ∈ σ with f(b) ∈ B0 and g(c) ∈ B0; if
f(c) ∈ B0, take g = f . If f = g then applying f to b ∼ c yields a pair of ∼-
related elements in B0; these two elements are distinct, since Gf is injective.
If f 6= g then applying f to b ∼ c yields a pair of ∼-related elements, one
of which does while the other does not belong to B0 and the previous case
applies.

If i = 1 and j ≥ 2, then an application of a suitable f to b ∼ c yields
a pair of ∼-related elements, one of which does while the other does not
belong to B0.

Finally, if i, j ≥ 2 then take an f ∈ σ with f(b) ∈ Bi−1. We have
f(b) ∼ f(c) where f(b) ∈ Bi−1, f(c) ∈ Bk for some k ≥ 1 (or f(c) = a) and
f(b) 6= f(c). ¤

Theorem 7. The following are equivalent for a finite unary algebra A:

(1) A is a homomorphic image of a subdirectly irreducible algebra;

(2) A is a homomorphic image of a finite subdirectly irreducible algebra;

(3) Either A has a smallest subalgebra or A has two disjoint subalgebras

U, {a} such that the partial algebra A − {a} has a smallest subalge-

bra U .

(4) A has a nonempty intersection of the set of all subalgebras B of A
such that |B| ≥ 2.

Proof. (3) implies (2) by Lemma 6, (2) implies (1) clearly. Next we prove
that (1) implies (4). Let h be a homomorphism of a subdirectly irreducible
algebra B onto A. Suppose that A has a subalgebra U , |U | ≥ 2. Then
U ′ = h−1(U) is a subalgebra of B, |U ′| ≥ 2 and U ′2 ∪ idB is a nontrivial
congruence of B, denoted by ΘU ′ . If all such subalgebras U of A with at
least two elements had empty intersection, then the corresponding inverse
images U ′ would have empty intersection. However, their corresponding
congruences ΘU ′ would all be nontrivial, and would have trivial intersection,
which contradicts the assumption that B is subdirectly irreducible.

Assume now (4) and denote V the intersection of all subalgebras of A with
at least two elements. Assume that the intersection of all subalgebras of A is
empty. It means that the intersection of V and all one-element subalgebras
of A is empty. Since A cannot have three pairwise disjoint subalgebras
(by (4)), it has at most two one-element subalgebras, at most one in V
and exactly one outside of V — denote it {a}. Hence the intersection of
all subalgebras of V is non-empty (it is either V itself or the one-element
subalgebra of V ) and so is that of A − {a}. ¤
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