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Abstract. Every quasigroup (loop, Bol loop, group, respectively) is
isomorphic to the factor of a subdirectly irreducible quasigroup (loop,
Bol loop, group, respectively) over its monolithic congruence.

1. Introduction

An algebra is subdirectly irreducible, if and only if the intersection of its
non-zero congruences, called the monolith, is non-zero. T. Kepka (in [5])
asked for a characterization of those algebras that are isomorphic to a quo-
tient of a subdirectly irreducible algebra, or to the quotient of a subdirectly
irreducible algebra over its monolithic congruence.

Kepka’s questions were answered by T. Kepka and J. Ježek [3] and in-
dependently by D. Stanovský [7]. To explain their results, we need the
following notation. For a class K of algebras, we use KSI to denote the sub-
class of all subdirectly irreducible algebras from K. Then H(KSI) consists of
those algebras that are isomorphic to a quotient of a subdirectly irreducible
algebra from K. We use Hµ(KSI) to denote the class of algebras that are iso-
morphic to an algebra that is the factor of a subdirectly irreducible algebra
from K by its monolith.

The results of T. Kepka and J. Ježek, and of D. Stanovský are: If K is
the variety of all algebras of a type τ containing at least one at least binary
symbol, then H(KSI) = Hµ(KSI) and this class consists of those algebras A,
for which the collection of all ideals of A has non-empty intersection. By an
ideal of A we mean here a non-empty subset I ⊆ A such that f(a1, . . . , an) ∈
I for every n-ary basic operation f (n ≥ 1) and for every a1, . . . , an ∈ A
with ai ∈ I for at least one i. A similar characterization of H(KSI) was
found later for the class K of finite unary algebras by J. Ježek, P. Marković
and D. Stanovský in [4]. However, H(KSI) 6= Hµ(KSI) in this case.
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It can be interesting to ask Kepka’s questions relative to a specific variety
V: characterize H(VSI) and Hµ(VSI). In some cases, this leads to the same
results as above. In varieties V where algebras possess no proper ideals, one
finds a way to construct, given any algebra G ∈ V, a subdirectly irreducible
algebra H ∈ V with G isomorphic to H over its monolith. In this paper, for
example, we do precisely that for these varieties: all groups, all quasigroups,
all loops, all Bol loops. We can remark that R. Freese (unpublished) achieved
the same result for lattices. S. Bulman-Fleming, E. Hotzel and J. Wang [1]
found for every semigroup S with a non-empty intersection of semigroup
ideals a subdirectly irreducible semigroup T with monolith µ such that S '
T/µ. Finally, we remark that the construction from [7] yields for a binary
algebra G with non-empty intersection of ideals, satisfying an equation of
the form t(x) ≈ x, a subdirectly irreducible algebra H satisfying the same
equation, with G isomorphic to H over its monolith.

The situation is quite different for the variety A of Abelian groups. It is
well known that every subdirectly irreducible abelian group is isomorphic
to some Prüfer group Zpk for a prime p and some k ∈ {1, 2, . . . ,∞}. Hence
H(ASI) = Hµ(ASI) = ASI .

2. Results

We recall that a quasigroup is an algebra 〈G, ·, /, \〉 satisfying the equa-
tions

x\(x · y) ≈ y, (y · x)/x ≈ y,

x · (x\y) ≈ y, (y/x) · x ≈ y.

A loop is a quasigroup with a constant e (the unit element) such that e ·
x ≈ x · e ≈ x. Groups can be regarded as loops, setting x/y = x · y−1

and x\y = x−1 · y. (An introduction to the theory of quasigroups and
loops can be found in [2],[6]). A Bol loop is a loop satisfying the equation
x · (y · (x · z)) ≈ (x · (y · x)) · z. A Moufang loop is a loop satisfying the
equation x · (y · (x · z)) ≈ ((x · y) · x) · z. Note that every Moufang loop is a
Bol loop.

Notice that quasigroups contain no proper ideals, hence every quasigroup
is a homomorphic image of a subdirectly irreducible algebra, by the afore-
mentioned results of [3], [7]. Our main result is the following theorem.

Theorem 1. Every quasigroup G is isomorphic to the factor of a subdirectly
irreducible quasigroup H over its monolithic congruence. If G is a loop (a
Bol loop, a group, respectively), then H can be a loop (a Bol loop, a group,
respectively). If G is finite, then H can be chosen finite.

In other words,
Hµ(VSI) = H(VSI) = V,

where V is the class of all (finite, respectively) quasigroups, loops, Bol loops
or groups.
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We prove Theorem 1 with the following construction. Let G = 〈G, ·, \, /〉
be a quasigroup. We choose any simple non-Abelian group S, say the
sixty-element alternating group on five letters. Consider S as a quasigroup
〈S, ·, \, /〉 and form the extension H = S(G) o G of S(G) by G. Here S(G) is
the subgroup of the direct power SG consisting of the functions f ∈ SG of
finite support (i.e., f(x) = 1 for all but finitely many x ∈ G) and the set H

is identical with S(G) ×G. The operations in H are defined by

(f, c) · (g, d) = (f · (g ◦ Lc), c · d) ,

(f, c)/(g, d) = (f · (g−1 ◦ Lc/d), c/d) ,

(f, c)\(g, d) = ((f−1g) ◦ L−1
c , c\d) ,

where Lc : G → G is Lc(x) = c · x. In the formulas above, f−1, g−1 denote
the multiplicative inverses of the elements f, g in the group S(G), while L−1

c

denotes the inverse of the function Lc in the group of permutations of G.

Lemma 2. H is a quasigroup. If G is, respectively, a loop, a Bol loop, a
group then H is, too.

Proof. Note that (f · g) ◦ Lc = (f ◦ Lc) · (g ◦ Lc). The calculations below
show that the equations defining quasigroups are valid in H.

((f, c) · (g, d))/(g, d) = (f · (g ◦ Lc) · (g−1 ◦ L(c·d)/d), (c · d)/d) = (f, c) ,

((f, c)/(g, d)) · (g, d) = (f · (g−1 ◦ Lc/d) · (g ◦ Lc/d), (c/d) · d) = (f, c) ,

(f, c)\((f, c) · (g, d)) = ((f−1 · f · (g ◦ Lc)) ◦ L−1
c , c\(c · d)) = (g, d) ,

(f, c) · ((f, c)\(g, d)) = (f · ((f−1g) ◦ L−1
c ◦ Lc), c · (c\d)) = (g, d) .

If G is a group, then H is an ordinary wreath product, hence H is a
group. If e is a unit in G, then (1, e) is a unit in H, because Le is the
identity. Thus if G is a loop then H is a loop.

The calculation to show that if G satisfies the Bol equation, then H does
likewise, is elementary and we leave it to the reader. �

Let η2 be the kernel of the projection of H onto G.

Lemma 3. H is subdirectly irreducible, η2 is its monolithic congruence, and
G ∼= H/η2.

We remark that H is never commutative, and it can be easily shown that
H satisfies x · (y · x) ≈ (x · y) · x (the alternative law) if and only if G is a
group. Thus we leave open the following questions. Is every commutative
quasigroup isomorphic to a quotient of a subdirectly irreducible commuta-
tive quasigroup (over its monolith)? Is every Moufang loop isomorphic to a
factor (over its monolith) of a subdirectly irreducible Moufang loop?

Proof. The projection of H onto G is evidently a homomorphism, thus G ∼=
H/η2. It remains to show that η2 is the smallest non-zero congruence of H.
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We will need the following observations. Let ∼ be any congruence of H.
For any f, g, h, k ∈ S(G) and a, b, c, d ∈ G we have:

(1) (f, a) ∼ (g, b) ⇔ (f ◦ Ld, d · a) ∼ (g ◦ Ld, d · b)
[multiplication by (1, d) on the left]

(2) (f, a) ∼ (g, b) ⇔ (kf, a) ∼ (kg, b)
[multiplication by (k ◦ Ld, d) on the left, and (1)]

(3) (f, a) ∼ (g, b) ⇔ (f, a · c) ∼ (g, b · c)
[multiplication by (1, c) on the right]

(4) (f, a) ∼ (g, b) ⇔ (fh, a) ∼ (g(h ◦ L−1
a ◦ Lb), b)

[multiplication by (h ◦ L−1
a , c) on the right, and (3)]

(5) (f, a) ∼ (g, a) ⇔ (fh, a) ∼ (gh, a)
[(4), a = b] .

Now, let ∼ be any non-zero congruence of H. We shall prove that ∼
contains η2.

First we show that ∼ ∩ η2 is a non-zero congruence. (This will allow us
to assume that ∼⊆ η2.) To see this, let (f, a) ∼ (g, b) where f 6= g or a 6= b.
If a = b, we indeed have that ∼ ∩ η2 is non-zero, as claimed. So assume
that a 6= b. Observation (2) above implies that (1, a) ∼ (f−1g, b). Next, an
application of (4) for h and (2) for k = h−1 yields that

(1, a) ∼ (h−1f−1g(h ◦ L−1
a ◦ Lb), b)

and hence
(f−1g, b) ∼ (h−1f−1g(h ◦ L−1

a ◦ Lb), b)
for all h ∈ S(G). Let x ∈ G. Then

h−1f−1g(h ◦ L−1
a ◦ Lb)(x) = h(x)−1f(x)−1g(x)h(a\(b · x)) .

Since a 6= b implies that x 6= a\(b · x), there exists h0 ∈ S(G) such that
h0(x) = 1 and h0(a\(b · x)) 6= 1. Hence f−1g 6= h−1

0 f−1g(h0 ◦ L−1
a ◦ Lb)

and the second displayed formula above shows that ∼∩ η2 is a non-zero
congruence.

For the remainder of this proof, we assume that ∼⊆ η2 (or replace ∼
by ∼∩ η2). First we note that, for any f, g ∈ S(G), (f, a) ∼ (g, a) for some
a ∈ G, if and only if (f, a) ∼ (g, a) for all a ∈ G. (This follows by observation
(3).) Hence, with the help of observations (2) and (5), we see that the group
S(G) has a non-zero congruence δ characterized by:

(f, g) ∈ δ iff (f, a) ∼ (g, a) for some (all) a ∈ G.

Moreover, this congruence is invariant under the group of automorphisms
of S(G) induced by the left-translations La, a ∈ G — i.e., (f, g) ∈ δ iff
(f ◦ La, g ◦ La) ∈ δ whenever a ∈ G. (This follows by observation (1).) A
standard group-theoretic argument shows that, since S is simple and non-
Abelian and the La act transitively on G, then δ must be the universal
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congruence of S(G). This means that ∼ = η2, as required. Thus our proof
of Lemma 3 is complete. �

Acknowledgement. The authors thank the referee for reading the paper
with a critical eye and contributing to a substantial improvement of it.
Especially, we thank the referee for supplying the proof of Lemma 3 given
here. Our original proof was long and awkward; and to make it work,
we had made the assumption (unnecessarily, as our referee showed) that
|S| > (| G|2) !.

References

[1] S. Bulman-Fleming, E. Hotzel and J. Wang, Semigroups that are factors of subdirectly
irreducible semigroups by their monolith. Algebra Universalis 51 (2004), 1–7.

[2] O. Chein, H. O. Pflugfelder, J. D. H. Smith (eds.), Quasigroups and loops: theory and
applications. Heldermann Verlag, 1990.
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