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Abstract. The problem of embedding general algebras into modules is revis-
ited. We provide a new method of embedding, based on Ježek’s embedding into

semimodules. We obtain several interesting consequences: a simpler syntac-
tic characterization of quasi-affine algebras, a proof that quasi-affine algebras

without nullary operations are actually quasi-linear, and several facts regard-

ing the “abelian iff quasi-affine” problem.

1. Introduction

Embedding one class of structures into a better understood one may widen a
knowledge about the former class. We are interested in embedding (general) alge-
bras into modules. Two similar types of representations appear in the literature:

• Quasi-linear algebras are subreducts of modules; their operations can be
expressed as module terms, i.e. r1x1 + · · ·+ rnxn.

• Quasi-affine algebras are subreducts of modules with additional nullary
operations; their operations can be expressed as module polynomials, i.e.
r1x1 + · · ·+ rnxn + c with a constant c.

Quasi-linear algebras are quasi-affine, and, somewhat surprisingly, one of our main
results (Theorem 2.1) establishes the converse for all algebras without nullary basic
operations (indeed, nullary operations are unlikely to have a linear representation).

Quasi-affine algebras were characterized syntactically by R.W. Quackenbush in
[21]: obviously, in a fixed signature, quasi-affine algebras form a quasivariety, and
Quackenbush found an infinite scheme of quasi-identities axiomatizing this class (for
details, see [29]). His method for finding the conditions is based on the following
two facts about affine algebras (i.e., polynomially equivalent to modules), discovered
earlier by J.D.H. Smith and H.P. Gumm.

• An algebra is affine, if and only if it is abelian and has a polynomial Mal’cev
operation.

• A Mal’cev algebra is abelian, if and only if the Mal’cev term is central.
(For all undefined notions, see Section 1.2.) Hence, Quackenbush’s task was, to
determine, under which conditions an algebra A embeds into an algebra B such
that there is a Mal’cev central polynomial on B.

Here we follow a different path. We use J. Ježek’s embedding of algebras into
semimodules [11], and a folklore embedding of additively cancellative semimodules
into modules. We determine, under which conditions the composition of the two
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embeddings yields a quasi-linear representation, and obtain a set of quasi-identities,
which turn out to extend Quackenbush’s ones (see Theorem 2.1(3)). However,
quasi-affine algebras satisfy also our larger set, hence every quasi-affine algebra
without nullary basic operations is quasi-linear. Our approach seems to have several
advantages over the Quackenbush’s one: firstly, we obtain a linear (not only affine)
representation, secondly, our proof is shorter, and finally, despite the fact that our
axiomatizing scheme is larger, it has an easier-to-handle description.

Our result has some appeal to the “abelian iff quasi-affine” problem. Quasi-affine
algebras are always abelian, in the sense of commutator theory [3], meaning that
the diagonal is a block of a congruence of the square A ×A, or equivalently that
the quasi-identity

(TC) t(x, u1, . . . , uk) ≈ t(x, v1, . . . , vk) → t(y, u1, . . . , uk) ≈ t(y, v1, . . . , vk)

is satisfied for every term t. Modules and unary algebras are prototypical examples.
Not all abelian algebras are quasi-affine [21], although these two notions are

known to be equivalent under many additional assumptions (see Section 1.1). One
of the results of K.A. Kearnes [12] says that if an abelian algebra has a central
cancellative binary polynomial, then it is quasi-affine. We prove a stronger theorem.
It is sufficient to assume existence of a commutative cancellative binary polynomial
(Theorem 3.1 and Corollary 3.7). Every abelian algebra with a weak near-unanimity
polynomial is also shown to have such a polynomial (Corollary 3.8).

1.1. A little history. Linear and affine representations of algebras have a long
history. For instance, one of the basic results in quasigroup theory is the classical
Toyoda-Bruck-Murdoch theorem [1, 19, 30], saying that every medial (or entropic)
quasigroup is affine over a commutative ring. P. Němec and T. Kepka studied affine
quasigroups over general rings already in [20] under the name T-quasigroups (nowa-
days, affine quasigroups are usually called central, see [25] for recent developments).
In this context, Smith [24] was probably the first to realize the connection between
affine representability and the abstract condition that is now called abelianess.

However, things work in much greater generality. Smith [24], and independently
Gumm [5] showed that abelian Mal’cev algebras are affine (note that quasigroups
are Mal’cev algebras). This fact was used essentially to build a commutator theory
for congruence-permutable varieties in [24]. C. Herrmann in [9] extended this result
significantly: abelian algebras in congruence-modular varieties are affine. This
fact was used essentially to build a commutator theory for congruence-modular
varieties [3, 6, 7, 18]. Highlights of this theory include solution of the RS and
Park’s conjectures for congruence-modular varieties [2, 16].

The “abelian iff affine” theorem can be pushed a bit further. Tame congruence
theory [10, Theorem 9.6(6)] yields that, if a locally finite variety V satisfies a non-
trivial idempotent Mal’cev condition (i.e., if V omits type 1), then abelian algebras
in V are affine. For non-locally finite varieties, a stronger condition was proven
to be sufficient by Kearnes and Szendrei [14]: if V satisfies an idempotent Mal’cev
condition which fails in semilattices (in locally finite case, it corresponds to omitting
types 1,5), then abelian algebras in V are affine. The algebra (R, x+y

2 ) shows that
the assumption cannot be weakened to a non-trivial idempotent Mal’cev condition.

A weaker “abelian iff quasi-affine” theorem has been proved in several cases. For
example, an abelian algebra A is quasi-affine, if
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(1) A is finite and simple (or more generally tame) (Hobby, McKenzie, Pálfy
[10, Theorems 13.3 and 13.5]);

(2) A is simple idempotent (Kearnes [13, Theorem 3.8]);
(3) A has a central cancellative binary polynomial operation (Kearnes [12,

Corollary 1.2]);
(4) η1 ∩ ∆ = 0A2 , where η1 is the kernel of the first projection A2 → A and

∆ is the largest congruence on A2 admitting the diagonal as a block. Note
that abelian algebras with a Taylor term satisfy this condition (Kearnes,
Szendrei [14, Corollary 3.6]).

Regarding item (3), according to [27], we do not actually need to assume that A
is abelian; and in the present paper, we weaken the assumption of centrality to
commutativity (see Theorem 3.1).

Finally, let us note that our interest in the topic originated in the theory of modes
(idempotent entropic algebras). A.B. Romanowska and others were interested in
embeddability of modes into modules. She and Smith [22][23, Chapter 7] proved
that every cancellative mode is a subreduct of a module over a commutative ring.
This fact was extended by the first author to entropic algebras in [26, 28]. The
problem, whether all abelian modes have the property, remains unsettled.

Our historical exposition was partly based on the survey paper [29], where the
reader can find more details about the methods and results.

1.2. Notation and terminology. The notation and terminology of universal al-
gebra we use is rather standard and follows the book [17]. We quickly recall basic
definitions.

An operation σ is called idempotent, if the identity σ(x, x, . . . , x) ≈ x is valid.
A binary operation x ∗ y is commutative if x ∗ y ≈ y ∗ x is satisfied.
A ternary operation p is called Mal’cev, if p(y, x, x) ≈ p(x, x, y) ≈ y hold. A

Mal’cev algebra is an algebra possessing a Mal’cev term operation.
An n-ary operation w, n > 2, is called weak near-unanimity, if it is idempotent

and
w(y, x, . . . , x) ≈ w(x, y, x, . . . , x) ≈ . . . ≈ w(x, . . . , x, y)

are valid.
An n-ary operation (n > 2) is called Taylor, if it is idempotent and for every

i 6 n there are xj , yj ∈ {x, y}, j 6= i, such that the identity

t(x1, . . . , xi, x, xi+1, . . . , xn) ≈ t(y1, . . . , yi, y, yi+1, . . . , yn)

holds. For instance, Mal’cev operation or weak near-unanimity operation are Tay-
lor. A binary operation is Taylor iff it is idempotent and commutative.

An operation is called central if it commutes with all basic operations, i.e., if
it is a homomorphism. Algebras, where all basic operations are central are called
entropic (or, in the case of groupoids, medial).

An operation σ is cancellative, if the quasi-identity

σ(x1, . . . , xi−1, y, xi+1, . . . , xn) ≈ σ(x1, . . . , xi−1, z, xi+1, . . . , xn) → y ≈ z

is satisfied for every i 6 n.
A term is linear if each variable occurs in it at most once.
An algebra A is called a reduct of an algebra B, if A = B and all basic operations

of A are term operations of B. It is called a subreduct, if it is a subalgebra of a
reduct of B. (Sometimes we also say that A embeds into B.)
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A polynomial of an algebra A is an operation of the form p(x1, . . . , xn) =
t(x1, . . . , xn, a1, . . . , am), where t is a term and (a1, . . . , am) is a tuple of elements
of A. Two algebras are polynomially equivalent if they have the same universes
and the same sets of polynomial operations. Algebras polynomially equivalent to
modules are called affine. Subreducts of affine algebras are called quasi-affine. Note
that the definition of quasi-affiness given here is consistent with the one given at
the beginning of Introduction. Indeed, it follows from the fact that all polynomials
of modules are of the form r1x1 + · · ·+ rnxn + c.

By a semiring we mean an “unitary ring without subtraction”, that means an
algebra R = (R,+, ·, 0, 1) such that both binary operations are associative, addition
is commutative, multiplication distributes over addition, and the usual laws for
0, 1, i.e. 1r ≈ r ≈ r1 and 0r ≈ 0 ≈ r0, hold. A semimodule over a semiring
R, or an R-semimodule, is a “module without subtraction”, it means an algebra
M = (M,+, 0, r· : r ∈ R) such that (M,+, 0) is a commutative monoid, r· are
unary operations of multiplication by elements of R acting homomorphically on
(M,+, 0), and the identities 1x ≈ x, 0x ≈ 0, (r · s)x ≈ r(sx), (r + s)x ≈ rx+ sx are
valid for all r, s ∈ R. (All semimodules and modules in this article are supposed to
be left.) A semimodule is additively cancellative if its addition is cancellative. It
is a folklore fact that every additively cancellative semimodule is a subreduct of a
module. For more information about semirings and semimodules, see [4, 8].

In the present paper, we will use the notion of a multiset in a slightly generalized
setting: not only elements are allowed to have multiple presence, but also fractional.
Formally, a multiset on X is a function from X into the set of non-negative rational
numbers, usually denoted as a set of pairs (x, q), omitting the pairs with q = 0 and
writing (x, 1) as x. Note also that multisets on X may be identified with elements
of the semimodule freely generated by X over the semiring of non-negative rational
numbers. The multiset union will be denoted by ].

2. Quasi-identities for quasi-linearity

Let us fix a signature Σ without nullary basic operations. We will denote by
N〈S〉 the semiring of polynomials over natural numbers (including 0) with the set
of non-commuting variables S = {σ(1), . . . , σ(n) | σ ∈ Σ and n is the arity of σ}.
Note that N〈S〉 is a subreduct of the ring Z〈S〉 of polynomials over integers with
the set of non-commuting variables S.

Let F(X) be the free N〈S〉-semimodule over a set X. Every element of F(X)
can be written (uniquely) as

∑
x∈X rxx for some rx ∈ N〈S〉, or equivalently, after

redistributing polynomial terms, as
∑n

i=1 eixi for some n, ei ∈ S∗ and xi ∈ X.
Here S∗ denotes the set of words with letters in S. Terms of the latter sum will
be called branches. The multiset of all branches of u ∈ F (X) will be denoted by
B(u). The complexity of

∑n
i=1 eixi, where ei ∈ S∗, xi ∈ X is the length of the word

e1 · · · en.
In our considerations, Σ-terms over X will be identified with certain elements of

F(X). Let FΣ(X) be the Σ-reduct of F(X), where

σ(u1, . . . , un) = σ(1)u1 + · · ·+ σ(n)un

for every σ ∈ Σ of arity n and all u1, . . . , un ∈ F (X). Then the subalgebra T(X)
of FΣ(X) generated by X is absolutely free over X. Thus we may identify a term
with its evaluation in T(X) where each variable is assigned to itself. With this
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identification we may shortly and formally say what does it mean that a term s is a
subterm of a term t at the address e ∈ S∗, that is t = u+es for some u. For a tuple
of terms (t0, . . . , tn) we will use the symbol B(t0, . . . , tn) to denote B(t0 + · · ·+ tn).
The idea of the linear representation of terms is due to Ježek [11].

Example. Let Σ consist of a ternary operation τ , binary β and unary α. Then,
e.g., the term t = τ(β(x, y), β(z, x), α(z)), with a parsing tree

τ

β

x y

β

z x

α

z ,
is represented in F({x, y, z}) as

τ(1)β(1)x + τ(1)β(2)y + τ(2)β(1)z + τ(2)β(2)x + τ(3)α(1)z

and the (multi)set of branches B(t) can be depicted as
τ(1)

β(1)

x

τ(1)

β(2)

y

τ(2)

β(1)

z

τ(2)

β(2)

x

τ(3)

α(1)

z .

Example. Let σ be a ternary operation. Then we have

B(σ(x, x, z), σ(y, y, z)) = B(σ(x, y, z), σ(y, x, z)).

Theorem 2.1. For an algebra A without nullary basic operations, the following
are equivalent:

(1) A is quasi-affine (i.e., A is a subreduct of an affine algebra);
(2) A is quasi-linear (i.e., A is a subreduct of a module);
(3) A models the quasi-identity

t1 ≈ s1 ∧ · · · ∧ tm ≈ sm → t0 ≈ s0

for each positive integer m and each pair of tuples of terms satisfying
B(t0, . . . , tm) = B(s0, . . . , sm).

In the rest of the section, we prove the theorem. To show the relevance of the
quasi-identities, we will start with the implication (3) ⇒ (2). The implication
(2) ⇒ (1) is trivial and we finish with the proof that quasi-affine algebras satisfy
the quasi-identities of (3).

As noted in Introduction, the reasoning will be based on Ježek’s embedding of
algebras into semimodules, though the proof is self-contained. Given an algebra
A over the signature Σ, we take the free N〈S〉-semimodule F(A) and generate a
congruence θ by all pairs

(a, σ(1)a1 + · · ·+ σ(n)an)

such that a, a1, . . . , an ∈ A and a = σ(a1, . . . , an) in A. Then a 7→ a/θ is an
embedding of A into the Σ-reduct of F(A)/θ. For details, see [11, Section 3].
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Let θ+ be the least congruence expansion of θ such that the semimodule F(A)/θ+

is additively cancellative. Then F(A)/θ+ is a subreduct of a Z〈S〉-module, and we
are left with the following question: does A also embed into F(A)/θ+ ? That
means, is θ+|A the identity relation?

Lemma 2.2. u θ+ v iff there is w ∈ F (A) such that u + w θ v + w.

Proof. Note that θ+ has to contain all such pairs (u, v). On the other hand, the
binary relation thus defined is a congruence whose factor is additively cancellative.

�

Lemma 2.3. u θ+ v iff there are a natural number m and a1, . . . , am ∈ A such that

u + a1 + · · ·+ am θ v + a1 + · · ·+ am.

Proof. Note that for every w ∈ F (A) there is w′ ∈ F (A) such that w+w′ is a sum of
terms. Indeed, to each branch u ∈ B(w) we associate a term tu ∈ T (A) containing
u, and let u′ be such that tu = u + u′. Then we may take w′ =

∑
{u′ | u ∈ B(w)}.

However, for every t ∈ T (A) there is a ∈ A such that t θ a. Now, use Lemma
2.2. �

Let us introduce some notation. For a term t with variables in A, let At be its
evaluation in A where each variable is assigned to itself. For a ∈ A we will write
a ↘ t if a = At, and ↗ will be the converse relation. Observe that

At = As iff t (↗ ◦ ↘) s.

For tuples of terms, we will write (a1, . . . , am) ↘ (t1, . . . , tm) if ai ↘ ti for all i.
We define a relation ∼m, or simply ∼, on the set T (X)m by

(t1, . . . , tm) ∼ (s1, . . . , sm) iff t1 + · · ·+ tm = s1 + · · ·+ sm in F(X).

In other words, iff the multisets of branches satisfy B(t1, . . . , tm) = B(s1, . . . , sm).
For a, b ∈ A, let a ρk

m b if there are c1, . . . , cm ∈ A such that

(a, c1, . . . , cm) (↘ ◦ ∼ ◦ ↗)k (b, c1, . . . , cm).

Lemma 2.4. For a, b ∈ A, a θ+ b iff a ρk
mb for some k and m.

Proof. For u, v ∈ F (A) let

(L) u λ v if u = w + e(σ(1)a1 + · · ·+ σ(n)an) and v = w + ea

for some w ∈ F (A), e ∈ S∗, an n-ary operation σ ∈ Σ, and a, a1, . . . , an ∈ A
such that σ(a1, . . . , an) = a in A. Then θ is the transitive and reflexive closure of
λ ∪ λ−1, where λ−1 is the inverse of λ.

Claim. Let (u, v) ∈ λ ∪ λ−1. If u = t0 + · · · + tm, where all ti ∈ T (A), then
there are t′i, t

′′
i ∈ T (A) such that (t0, . . . , tm) ∼ (t′0, . . . , t

′
m), v = t′′0 + · · · + t′′m and

(t′0, . . . , t
′
m) (↗ ◦ ↘) (t′′0 , . . . , t′′m).

Proof of Claim. The statement in the case when (u, v) ∈ λ−1 follows easily. Let
v = w + e(σ(1)a1 + · · · + σ(n)an) and u = w + ea = t0 + . . . + tm. Let l 6 m
be such that ea ∈ B(tl). Put t′l = tl and let t′′l be the term obtained from tl by
substituting σ(a1, . . . , an) for a at the address e in tl, i.e. if t′l = p + ea, then
t′′l = p + e(σ(1)a1 + · · ·+ σ(n)an). For k 6= l we may put t′′k = t′k = tk.

Let us assume that (u, v) ∈ λ and u, v are as in (L). Let li 6 m be such that
eσ(i)ai ∈ B(tli). Then, in particular, tl1 has a subterm σ(a1, r2, . . . , rn), where
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ri ∈ T (A), at the address e. Define t′l1 as the term obtained from tl1 by substituting
ai for ri at the address eσ(i) for all i ∈ {2, . . . , n}. Let t′li , 2 6 i 6 n, be the term
obtained from tli by substituting ri for ai at the address eσ(i). (Note that it may
happen that some ai = ri, which means the respective changes are void.) Note that
tl1 + · · ·+ tln = t′l1 + · · ·+ t′ln . If k 6= li for all i, let t′k = tk. Then u = t′0 + · · ·+ t′m.
Now let t′′l1 be the term obtained from t′l1 by substituting a for σ(a1 . . . , an) at the
address e, i.e. if t′l1 = p + e(σ(1)a1 + · · · + σ(n)an), then t′′l1 = p + ea. For other
k 6= l1, let t′′k = t′k. Then v = t′′0 + · · ·+ t′′m, and since At′k = At′′k for all k, we obtain
(t′0, . . . , t

′
m) (↗ ◦ ↘) (t′′0 , . . . , t′′m). �

Assume a θ+ b. By Lemma 2.3, there are c1, . . . , cm ∈ A such that

u := a + c1 + · · ·+ cm θ b + c1 + · · ·+ cm =: v.

Thus there is a sequence u0, . . . , uk ∈ T (A) such that u0 = u, uk = v and
(uj , uj+1) ∈ λ ∪ λ−1 for all j. By the Claim, there are terms tj,l, t′j,l, j = 0, . . . , k,
l = 0, . . . ,m, such that uj = tj,0+· · ·+tj,m = t′j,0+· · ·+t′j,m and t′j,i (↗ ◦ ↘) tj+1,i.

The converse implication in the statement is evident. �

Lemma 2.5. For a, b ∈ A, if a ρk
m b, then a ρ1

m′ b for some m′.

Proof. Let

(a0, c0) ↘ u0 ∼ v1 ↗ (a1, c1) ↘ u1 ∼ v2 ↗ (a2, c2) ↘ · · · ↗ (ak, ck),

where a0 = a, ak = b, c0 = ck. Then

(a0, c0, a1, c1, , . . . , ak−1, ck−1) ↘ (u0, . . . , uk−1) ∼ (v1, . . . , vk)

∼ (vk, v1, . . . , vk−1) ↗ (ak, ck, a1, c1, , . . . , ak−1, ck−1).

(We get m′ = (m + 1)k − 1.) �

Proof of Theorem 2.1, (3) ⇒ (2). Let a, b ∈ A and assume that a θ+ b. It follows
from Lemmas 2.4 and 2.5 that there are c1, . . . , cm ∈ A and terms t0, . . . , tm,
s0, . . . , sm such that

(a, c1, . . . , cm) ↘ (t0, . . . , tm) ∼ (s0, . . . , sm) ↗ (b, c1, . . . , cm).

By assumption, A satisfies the quasi-identity

t1 ≈ s1 ∧ · · · ∧ tm ≈ sm → t0 ≈ s0.

Note that in this quasi-identity, variables are elements of A. And since
Ati = ci = Asi

for every 1 6 i 6 m,
a = At0 = As0 = b.

Hence a 7→ a/θ+ is an embedding of A into a reduct of the additively cancellative
semimodule F(A)/θ+, and thus A is quasi-linear. �

In order to prove the remaining implication, we start with some auxiliary defi-
nitions. First, to capture the affine representation of operations, let us introduce
new symbols cσ for each σ ∈ Σ, and put CΣ = {cσ | σ ∈ Σ}. Let G(X) be the
N〈S〉-semimodule F(X∪CΣ) extended by CΣ as the set of nullary basic operations.
Let GΣ(X) be the Σ-reduct of G(X), where

(AFF) σ(u1, . . . , un) = σ(1)u1 + · · ·+ σ(n)un + cσ
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for every σ ∈ Σ with arity n and all u1, . . . , un ∈ G(X).
For a multiset of branches B from G(X) and e ∈ S∗, σ ∈ Σ let Ne,σ be the

cardinality (counted with multiplicities) of the multiset

{(eσ(i)x, q) ∈ B | 1 6 i 6 arity of σ, x ∈ X ∪ CΣ}

and let

B′ =

{(
ecσ,

Ne,σ

arity of σ

) ∣∣∣∣∣ e ∈ S∗ and σ ∈ Σ

}

We set B∗ = B′ ]B′′ ]B′′′ ] · · · .

Example. Let σ, τ be binary operations, t1 = σ(τ(x, σ(x, y)), z), t2 = σ(x, z).
Then one may compute

B(t1, t2) = {σ(1)x, (σ(2)z, 2), σ(1)τ(1)x, σ(1)τ(2)σ(1)x, σ(1)τ(2)σ(2)y},
B′(t1, t2) = {(cσ, 3/2), (σ(1)cτ , 1/2), σ(1)τ(2)cσ},
B′′(t1, t2) = {(cσ, 1/4), (σ(1)cτ , 1/2)},
B′′′(t1, t2) = {(cσ, 1/4)},
B∗(t1, t2) = {(cσ, 2), σ(1)cτ , σ(1)τ(2)cσ}.

In the above example all multiplicities in B∗(t1, t2) are natural numbers. If u
is a sum of terms, then B∗(u) always has natural multiplicities. This fact will be
important in the following proof.

Proof of Theorem 2.1, (1) ⇒ (3). First note that if a Σ-algebra is quasi-affine, then
it is a subreduct of some Z〈S〉-module M extended by nullary operations corre-
sponding to the symbols from CΣ. Let MΣ be the Σ-reduct of M, where the
basic operations are given by (AFF). Let ti, si be terms from T (M) such that
B(t0, . . . , tm) = B(s0, . . . , sm). We just need to check that

(Q) if MΣ
t1 = MΣ

s1, . . . ,
MΣ

tm = MΣ
sm, then MΣ

t0 = MΣ
s0.

Let : G(M) → M be the N〈S〉-semimodule homomorphism such that its re-
striction to M is the identity mapping and cσ = cσ for σ ∈ Σ.

Claim. For t ∈ T (M) we have MΣ
t = t +

∑
B∗(t) .

Proof of Claim. This follows inductively from the observation that

B∗(σ(t1, . . . , tn)) = B∗(σ(1)t1 + · · ·+ σ(n)tn) = {cσ} ]
n⊎

i=1

σ(i) B∗(ti).

�

Because B(t0, . . . , tm) = B(s0, . . . , sm) we have B∗(t0, . . . , tm) = B∗(s0, . . . , sm),
and by the Claim

MΣ
t0 + · · ·+ MΣ

tm = t0 + · · ·+ tm +
∑

B∗(t0, . . . , tm)

= s0 + · · ·+ sm +
∑

B∗(s0, . . . , sm)

= MΣ
s0 + · · ·+ MΣ

sm.
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This, together with the cancellativity of the addition in M, yields the satisfaction
of (Q).

�

Let us note that the set of quasi-identities from the condition (3) of Theorem
2.1 properly contains the original Quackenbush’s scheme. However, we found our
description much easier to handle, in particular in view of the results in Section 3.

3. Application

Theorem 3.1. Let A be an algebra without nullary basic operations and possessing
a commutative cancellative polynomial x ∗ y. Then A is quasi-linear if and only if
it is abelian.

In this section we will prove Theorem 3.1 and derive some consequences.

Lemma 3.2. An abelian commutative groupoid A = (A, ∗) is entropic.

Proof. By the commutativity we have the validity of (x∗y)∗(z∗x) ≈ (x∗z)∗(y∗x),
and by (TC) the validity of (x ∗ y) ∗ (z ∗ t) ≈ (x ∗ z) ∗ (y ∗ t). �

An operation q(x0, . . . , xm) is commutative if q(x0, . . . , xm) ≈ q(xπ(0), . . . , xπ(m))
is satisfied for every permutation π of {0, . . . ,m}.

Lemma 3.3. An abelian algebra A possessing a commutative cancellative binary
polynomial x ∗ y has a commutative cancellative polynomial q(x0, . . . , xm) for arbi-
trary m.

Proof. For the sake of simplicity, we may assume that the operation x ∗ y is basic,
i.e. ∗ ∈ Σ. Let l be a natural number. Let tl(x0, . . . , x2l−1) be a linear {∗}-term,
where addresses of all variables have length l. The cancellativity of tl is evident.
We will prove inductively the commutativity of tl. Term t0 equals x0, and the
statement for it is trivial. For t1(x0, x1) = x0 ∗ x1 the assertion is just a part of
the assumption of the lemma. So let tl = (t00 ∗ t01) ∗ (t10 ∗ t11), and assume that
all tk, k < l, are commutative. Assume that x0 is the leftmost variable occurring
in tl. It is enough to prove that

tl(x0, . . . , xi−1, xi, xi+1, . . . , x2l−1) ≈ tl(xi, . . . , xi−1, x0, xi+1, . . . , x2l−1)

holds for every i ∈ {1, . . . , 2l−1}. If xi occurs in t00 ∗ t01, then the assertion follows
from the commutativity of this term. If xi occurs in t10, then the assertion follows
from the validity of (t00 ∗ t01) ∗ (t10 ∗ t11) ≈ (t00 ∗ t10) ∗ (t01 ∗ t11), proved in Lemma
3.2, and the commutativity of t00∗t10. Finally, if xi occurs in t11, then the assertion
follows from the commutativity of t10 ∗ t11 and the latter case.

Now choose l such that m + 1 6 2l, and define

q(x0, . . . , xm) = tl(x0, . . . , xm, d, . . . , d),

where d is an arbitrary element of A. �

Lemma 3.4. Let t(x, y1, . . . , yn) and s(x, z1, . . . , zm) be linear terms having the
same branch containing x, i.e. x is at the same address in t and s. Then an
abelian algebra satisfies the quasi-identity

t(x1, y1, . . . , yn) ≈ s(x1, z1, . . . , zm) → t(x2, y1, . . . , yn) ≈ s(x2, z1, . . . , zm).
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Lemma 3.5. Let A be an abelian algebra possessing a commutative polynomial
q(x0, . . . , xm). If B(t0, . . . , tm) = B(s0, . . . , sm), where si, ti ∈ T ({y}), then A
satisfies

q(t0, . . . , tm) ≈ q(s0, . . . , sm).

Proof. We proceed by induction on the complexity of t0 + · · ·+ tm. If all terms ti
equal y, then also all si equal y, and the assertion is trivially satisfied. Let us assume
that the above trivial case does not hold. Let us also assume that the assertion
is valid for each pair of (m + 1)-tuples of terms of a smaller complexity than of
t0 + · · ·+ tm. Observe that there are e ∈ S∗, σ ∈ Σ and i, j ∈ {1, . . . ,m} such that
σ(y, . . . , y) is a subterm of ti and sj at the address e. By the commutativity of q
we may assume that i = j = 0. Let t′0 be the term obtained from t0 by substituting
y for σ(y, . . . , y) at the address e, and let s′0 be obtained from s0 in the same way.
Let t′l = tl and s′l = sl for l > 1. We have B(t′0, . . . , t

′
m) = B(s′0, . . . , s

′
m), and by

the inductive assumption

q(t′0, . . . , t
′
m) ≈ q(s′0, . . . , s

′
m).

Now the assertion follows from Lemma 3.4. �

Lemma 3.6. Let A be an abelian algebra possessing a commutative polynomial
q(x0, . . . , xm). If B(t0, . . . , tm) = B(s0, . . . , sm), where si, ti ∈ T (X), then A satis-
fies

q(t0, . . . , tm) ≈ q(s0, . . . , sm).

Proof. Let y be a variable not belonging to X. We will define the sequence of
multisets of branches Bj with natural multiplicities and the sequences of terms
tl,j , sl,j ∈ T (X ∪ {y}) satisfying

Bj = {ex ∈ B(t0,j , . . . , tm,j) | e ∈ S∗ and x ∈ X − {y}}

and
B(t0,j , . . . , tm,j) = B(s0,j , . . . , sm,j),

in the following way. Let B0 = B(t0, . . . , tm), tl,0 = tl and sl,0 = sl. Assume that Bj

and tl,j , sl,j are already defined. If Bj 6= ∅, then take an arbitrary branch ex ∈ Bj ,
where e ∈ S∗, x ∈ X. There are l, k such that ex ∈ B(tl,j) and ex ∈ B(sk,j). Let
Bj+1 = Bj − {ex} and let tl,j+1 be the term obtained form tl,j by substituting
y for x at the address e (in other words by substituting the branch ey for ex),
sk,j+1 be obtained from sk,j in the same way, and tl′,j+1 = tl′,j , sk′,j+1 = sk′,j for
l′ 6= l and k′ 6= k. Finally, let J be such that BJ = ∅. Then tl,J = tl(y, . . . , y),
sl,J = sl(y, . . . , y), for l 6 m, and, by Lemma 3.5, A satisfies

q(t0,J , . . . , tm,J) ≈ q(s0,J , . . . , sm,J).

Lemma 3.4, together with the commutativity of q, yields the validity of

q(t0,j , . . . , tm,j) ≈ q(s0,j , . . . , sm,j) ↔ q(t0,j+1, . . . , tm,j+1) ≈ q(s0,j+1, . . . , sm,j+1),

for all j. Thus q(t0, . . . , tm) ≈ q(s0, . . . , sm) holds in A. �

Proof of Theorem 3.1. Use Lemmas 3.3 and 3.6 together with Theorem 2.1. �

Now we may easily derive a strengthening of Kearnes’ theorem mentioned on
page 2.
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Corollary 3.7. Let A be an abelian algebra without nullary basic operations and
possessing a cancellative polynomial x • y such that (A, •) is entropic. Then A is
quasi-linear.

Proof. Define a binary cancellative commutative polynomial as x∗y = (d•x)•(y•d),
where d ∈ A, and use Theorem 3.1. �

Our last contribution is a new proof that an abelian algebra having a weak near-
unanimity polynomial is quasi-affine. It is a special case of Kearnes’ and Szendrei’s
theorem mentioned on page 3. The importance of such operation follows from the
fact, proved by M. Maróti and R. McKenzie in [15], that possessing a weak near-
unanimity term is equivalent to having a Taylor term for locally finite varieties.

Corollary 3.8. Let A be an abelian algebra without nullary basic operations and
having a weak near-unanimity polynomial w(x1, . . . , xn). Then A is quasi-linear.

Proof. Let x ∗ y = w(x, y, d, . . . , d), where d is an arbitrary element of A. In order
to use Theorem 3.1 we will show that x ∗ y is commutative and cancellative.

Because w is a weak near-unanimity operation, for a, b ∈ A

w(a, . . . , a, b, a, a, . . . , a) = w(a, . . . , a, a, b, a, . . . , a),

where b appears on the ith position on the left side and on the (i + 1)th position
on the right side, i < n. By (TC) we obtain the equality

(C) w(c1, . . . , ci−1, b, a, ci+2, . . . , cn) = w(c1, . . . , ci−1, a, b, ci+2, . . . , cn)

for every cj ∈ A. For i = 1 and cj = d this yields a ∗ b = b ∗ a. Now assume that
a ∗ c = b ∗ c. By (TC) and (C), this implies

a = w(a, . . . , a) = w(b, a, . . .) = w(a, b, a, . . . , a).

Applying again (TC) and (C),

a = w(b, a, . . . , a) = w(b, b, a, . . . , a) = w(a, b, b, a, . . . , a).

We may proceed in this way obtaining finally

a = w(a, b . . . , b) = w(b, b . . . , b) = b.

�

We do not know the answer to the following question posed by the referee.

Problem. For finite algebras with finite signature without nullary basic operations,
is the property of being quasi-linear decidable?

Note however that abelianess is decidable, as we may check whether the diagonal
is a block of a congruence of the square of a given finite algebra with finite signature.
Thus, if an algebra A satisfies any of known conditions guaranteeing that abelian
algebras are quasi-linear, then in fact we may decide whether it is quasi-linear. Note
also that the properties in the conditions (1)-(4) in Subsection 1.1 and in Theorem
3.1 are decidable.
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