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Abstract. Let V be a variety of algebras. We establish a condition (so called

generalized entropic property), equivalent to the fact that for every algebra

A ∈ V, the set of all subalgebras of A is a subuniverse of the complex algebra of
A. We investigate the relationship between the generalized entropic property

and the entropic law. Further, provided the generalized entropic property is

satisfied in V, we study the identities satisfied by the complex algebras of
subalgebras of algebras from V.

Dedicated to the 70th birthday of George Grätzer

1. Introduction

For an algebra A = (A,F ), we define complex operations on the set P(A) of all
non-empty subsets of the set A by

f(A1, . . . , An) = {f(a1, . . . , an) : ai ∈ Ai}
for every ∅ 6= A1, . . . , An ⊆ A and every n-ary f ∈ F . The set f(A1, . . . , An) is
called the complex product of the subsets Ai and the algebra CmA = (P(A), F )
is called the complex algebra of A. Complex algebras (called also globals or powers
of algebras) were studied by several authors, for instance G. Grätzer and H. Lakser
[6], S. Whitney [7], A. Shafaat [19], C. Brink [2], I. Bošnjak and R. Madarász [1].

The notation of complex operations is used widely. In groups, for instance, a
coset xN is the complex product of the singleton {x} and the subgroup N . For
a lattice L, the set IdL of its ideals forms a lattice under the set inclusion. If L
is distributive, then joins and meets in IdL are precisely the complex operations
obtained from joins and meets of L, so IdL is a subalgebra of CmL.

Consider the set CSubA of all (non-empty) subalgebras of an algebra A. This
set may or may not be closed under the complex operations. For instance, if A is
an abelian group, it is, but for most groups, it is not. In the former case, CSubA
is a subuniverse of CmA and it will be called the complex algebra of subalgebras.
We will say that A has the complex algebra of subalgebras or that CSubA exists.
Complex algebras of subalgebras were introduced and studied by A. Romanowska
and J. D. H. Smith in [15]. A very natural setting for considering the complex
algebras of subalgebras is the variety of modes (idempotent entropic algebras).
Research on complex algebras of submodes was carried out by A. Romanowska
and J. D. H. Smith in [16], [17], and by the second author of this paper in [12],
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[13]. In [14], the complex algebras of subalgebras were considered also in the non-
idempotent case.

We are concerned with the following question: In which varieties does every
algebra have the complex algebra of subalgebras? In Section 2 we establish the gen-
eralized entropic property for a variety, equivalent to the fact that every algebra has
the complex algebra of subalgebras. The generalized entropic property appears to
be a weak version of the entropic law, so it is natural to ask about their relationship.

The relationship is investigated in Sections 3 and 4. In general, the generalized
entropic property and the entropic law are not equivalent. We provide several
examples: An idempotent algebra with many binary operations (Example 3.1), a
non-idempotent groupoid (Example 4.1) or unary algebras (Example 4.3). On the
other hand, the generalized entropic property and the entropic law are equivalent
under several additional assumptions, e.g., in groupoids with a unit element, in
commutative idempotent groupoids, or in idempotent semigroups. We provide
several partial results towards the conjecture that the two conditions are equivalent
for idempotent groupoids (Theorem 3.3 and other).

In Sections 5 and 6, we continue the research started by the second author in [13]
and investigate which identities are satisfied by complex algebras of subalgebras.
A characterization of such identities is proved in Theorem 5.3. We are not able to
decide the validity of a conjecture stated in [13] saying that the variety generated by
complex algebras of subalgebras for algebras from an idempotent variety V coincides
with V if and only if the latter has a basis of linear and idempotent identities. We
show that a similar statement for non-idempotent varieties is false, according to
Example 5.11.

Notation and terminology. We denote by FV(X) the free algebra over a set X
in a variety V and we assume the standard representation of the free algebra by
terms modulo the identities of V. The notation t(x1, . . . , xn) means that the term
t contains no other variables than x1, . . . , xn (but not necessarily all of them) and
we say that t is n-ary; equivalently, we write t ∈ F({x1, . . . , xn}). We call a term t
linear, if every variable occurs in t at most once. An identity t ≈ u is called linear,
if both terms t, u are linear. An identity t ≈ u is called regular, if t, u contain the
same variables.

An algebra A = (A,F ) is called entropic if it satisfies for every n-ary f ∈ F and
m-ary g ∈ F the identity

g(f(x11, . . . , xn1), . . . , f(x1m, . . . , xnm)) ≈ f(g(x11, . . . , x1m), . . . , g(xn1, . . . , xnm))

(in other words, if all operations of A commute each other). Note that a groupoid,
i.e., a binary algebra, with the operation denoted usually multiplicatively, is en-
tropic if it satisfies the identity

xy · uv ≈ xu · yv,

called sometimes the mediality [8]. A variety V is called entropic if every algebra
in V is entropic. An algebra is idempotent if each element forms a one-element
subalgebra. Idempotent entropic algebras are called modes. The monograph by
A. Romanowska and J.D.H. Smith [18] provides the most full up-to-date account
of results about modes.
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2. generalized entropic property

In this section we introduce and discuss the central notion of this paper, the
generalized entropic property.

Definition 2.1. We say that a variety V (respectively, an algebra A) satisfies the
generalized entropic property if for every n-ary operation f and m-ary operation g
of V (of A), there exist m-ary terms t1, . . . , tn such that the identity

g(f(x11, . . . , xn1), . . . , f(x1m, . . . , xnm)) ≈ f(t1(x11, . . . , x1m), . . . , tn(xn1, . . . , xnm))

holds in V (in A).

It was proved by T. Evans in [5], that every groupoid in a variety V has the
complex algebra of subalgebras if and only if V satisfies generalized entropic prop-
erty. We prove the statement for an arbitrary signature. The “if” part of it first
appeared in [13], where the generalized entropic property was presented as a “com-
plex condition”.

Proposition 2.2. Every algebra in a variety V has the complex algebra of subal-
gebras if and only if the variety V satisfies the generalized entropic property.

Proof. First, assume that a variety V satisfies the generalized entropic property.
Let A ∈ V, A1, . . . ,An be subalgebras of A and f an n-ary operation of A.
We are going to show that f(A1, . . . , An) is closed on an m-ary operation g. Let
x1, . . . , xm ∈ f(A1, . . . , An). There exist elements aij ∈ Ai, for 1 ≤ i ≤ n and
1 ≤ j ≤ m such that xj = f(a1j , . . . , anj). It follows from the generalized entropic
property that there exist terms t1, . . . , tn such that

g(x1, . . . , xm) = g(f(a11, . . . , an1), . . . , f(a1m, . . . , anm)) =

f(t1(a11, . . . , a1m), . . . , tn(an1, . . . , anm)) ∈ f(A1, . . . , An).

Consequently, f(A1, . . . , An) is a subalgebra of A.
Assume that for each algebra A ∈ V, the set CSubA is closed under complex

operations. Let X be an infinite set of variables, let xij , i = 1, . . . , n, j = 1, . . . ,m,
be pairwise distinct variables from X and let Fi be the subalgebra of FV(X) gen-
erated by the set {xij ∈ X | j = 1, . . . ,m}, for every i = 1, . . . , n. Note that the Fi

are pairwise disjoint. For each n-ary operation f , the set f(F1, . . . , Fn) is a sub-
algebra of FV(X). So for any m-ary operation g and a1, . . . , am ∈ f(F1, . . . , Fn),
g(a1, . . . , am) ∈ f(F1, . . . , Fn). Particularly, if

a1 = f(x11, . . . , xn1),
...

am = f(x1m, . . . , xnm),

then we have

g(a1, . . . , am) = g(f(x11, . . . , xn1), . . . , f(x1m, . . . , xnm)) ∈ f(F1, . . . , Fn).

So there are elements b1 ∈ F1, . . . , bn ∈ Fn such, that g(a1, . . . , am) = f(b1, . . . , bn).
It means that there exist terms ti(xi1, . . . , xim), i = 1, . . . , n, such that the gener-
alized entropic property is satisfied in FV(X), and hence in V too. �

The generalized entropic property is not necessary to make the set of non-empty
subalgebras of an algebra A closed under the complex operations.
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Example 2.3.

Consider the following 3-element groupoid G1:

· a b c
a a c c
b c b c
c a b c

Notice that G1 is not entropic, because c = aa · ba 6= ab · aa = a. It is easy to see
that CSubG1 is a subgroupoid of CmG1, with the multiplication table

· {a} {b} {c} {a, c} {b, c} {a, b, c}
{a} {a} {c} {c} {a, c} {c} {a, c}
{b} {c} {b} {c} {c} {b, c} {b, c}
{c} {a} {b} {c} {a, c} {b, c} {a, b, c}
{a, c} {a} {b, c} {c} {a, c} {b, c} {a, b, c}
{b, c} {a, c} {b} {c} {a, c} {b, c} {a, b, c}
{a, b, c} {a, c} {b, c} {c} {a, c} {b, c} {a, b, c}

There is a groupoid F in the variety V(G1), namely F = FV(G1)(x, y, z), such that
CSubF is not a subgroupoid of CmF. To see this, consider the subgroupoid A
of F generated by x, y and B = ({z}, ·). One can check that A = {x, y, xy, yx},
x ≈ (xz)x and ((yx)z)y, x ∈ (AB)A, but (((yx)z)y)x /∈ (AB)A. Hence the set
(AB)A is not a subgroupoid of F and thus G1 does not satisfy the generalized
entropic property. Later we prove a criterion, (Corollary 3.9), which shows that
G1 does not satisfy the generalized entropic property without finding a particular
failure in V(G1).

3. generalized entropic property vs. entropy: the idempotent case

The entropic law is a special case of the generalized entropic property, where the
terms t1, . . . , tn are equal to g. We would like to investigate how far is the general-
ized entropic property from entropy. Generally, these two laws are not equivalent.
In this section we consider a case for idempotent algebras. We also provide several
sufficient conditions implying that an idempotent groupoid satisfying the general-
ized entropic property is entropic. The main result, Theorem 3.3, is applied several
times in the following propositions and examples.

There is a non-entropic algebra with many operations, each of them entropic,
which has the generalized entropic property.

Example 3.1.

Let R be a ring with a unit, G a subgroup of the multiplicative monoid of R,
and X a subset of G closed under conjugation by elements of X and closed under
the mapping x 7→ 1−x, where − is the ring subtraction. If M is a left module over
the ring R, we define for every element r ∈ R a binary operation r : M2 → M by

r(x, y) = (1− r)x + ry.

Of course, the groupoid (M, r) is idempotent and entropic for every r ∈ R. Consider
the algebra M = (M,X), where X = {r|r ∈ X}. For every r, t ∈ X, we put



ON COMPLEX ALGEBRAS OF SUBALGEBRAS 5

s1 = (1− r)−1t(1− r) ∈ X and s2 = r−1tr ∈ X and we get

t(r(x1, x2), r(y1, y2)) ≈ (1− t)(1− r)x1 + (1− t)rx2 + t(1− r)y1 + try2 ≈
≈ (1− r)(1− s1)x1 + r(1− s2)x2 + (1− r)s1y1 + rs2y2 ≈ r(s1(x1, y1), s2(x2, y2)).

So the algebra M satisfies the generalized entropic property. On the other hand, it
is entropic, if and only if rt = tr for all r, t ∈ X. To check this put x1 = y1 = y2 = 0
and x2 = 1 in the previous identity.

For example, if R is a non-commutative division ring (a skew field), G is its
multiplicative group and X = R r {0, 1}, then M is a non-entropic idempotent
algebra satisfying the generalized entropic property. It is infinite, with infinitely
many (binary) operations. To get a finite example, we need a more elaborate
setting.

Let R be the ring of all 2 × 2 matrices over a field F, G the subgroup of all
matrices with determinant 1 and X the subset of all matrices with trace 1. It
is well known that traces are invariant under conjugation and it is easy to check
that X is closed under the mapping x 7→ 1 − x. Let M be a two-dimensional
vector space over F, considered as a module over R. If F = GF(2) then X has
only two elements and they commute. If F = GF(3), then X has nine elements
and some of them do not commute, so we get a 9-element non-entropic idempotent
algebra M9 = (M9, X) with 9 binary operations satisfying the generalized entropic
property. In fact, the algebra (M9, X

′), where X ′ = X r {( 2 0
0 2 )}, has the same

properties.
Finally, we note that similar examples can be obtained with operations of an

arbitrary arity n ≥ 2; consider the operations

(r2, . . . , rn)(x1, . . . , xn) = (1− r2 − · · · − rn)x1 + r2x2 + · · ·+ rnxn.

Because the algebra (M, r) is entropic, for any r, one might think about the
following conjecture:

Conjecture 3.2. Every idempotent algebra (A, f) with the generalized entropic
property is entropic.

In the sequel, we prove several special cases of the conjecture for groupoids. A
groupoid satisfies the generalized entropic property, if there are binary terms t, s
such that the identity

xy · uv ≈ t(x, u)s(y, v) (G1)

holds. An immediate consequence of the generalized entropic property in idem-
potent groupoids are the following important identities that can be treated as the
laws of pseudo-distributivity :

xy · xz ≈ xs(y, z), (G2)

yx · zx ≈ t(y, z)x, (G3)

x · yz ≈ t(x, y)s(x, z), (G4)

yz · x ≈ t(y, x)s(z, x). (G5)

(G2) states that, for every a, the left translation La : x 7→ ax is a homomor-
phism (G, s) → (G, ·) and (G3) states that the right translation Ra : x 7→ xa is a
homomorphism (G, t) → (G, ·).

The main partial result towards Conjecture 3.2 is the following theorem.
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Theorem 3.3. If an idempotent groupoid G satisfies the generalized entropic prop-
erty for some terms t, s and at least one of t, s is linear, then G is entropic.

Proof. If t is linear, one of Lemmas 3.4–3.7, applies. If s is linear, consider the dual
groupoid G∂ (with the operation defined by x • y = yx); this groupoid satisfies
the generalized entropic property with the role of t, s interchanged, hence both G∂

and G are entropic by one of Lemmas 3.4–3.7; note that entropy is a self-dual
identity. �

Lemma 3.4. If an idempotent groupoid G satisfies the generalized entropic prop-
erty for the term t(x, y) = x and an arbitrary term s, then G is entropic.

Proof. The generalized entropic property states that xy · uv ≈ xs(y, v). Since the
value of xy · uv does not depend on u, we have xy · uv ≈ xy · vv ≈ xy · v. Hence,
with x = y, we obtain x · uv ≈ xv. Applying this identity to the term xs(y, v), we
get xs(y, v) ≈ xw, where w ∈ {y, v} is the rightmost variable in the term s(y, v).
So, we have xy · uv ≈ xy · v ≈ xs(y, v) ≈ xw. If w = y, then xv ≈ xx · vv ≈ xx ≈ x
by identifying: x = y and u = v. Thus the entropy holds. If w = v then xy · uv
does not depend on y and u, hence we can interchange them and the entropy holds
again. �

Lemma 3.5. If an idempotent groupoid G satisfies the generalized entropic prop-
erty for the term t(x, y) = y and an arbitrary term s, then G is entropic.

Proof. The generalized entropic property says that xy · uv ≈ us(y, v). Since the
value of xy · uv does not depend on x, we have xy · uv ≈ yy · uv ≈ y · uv. Hence,
with u = v we obtain xy · u ≈ yu. Applying this identity to the term s(x, y)z,
we get s(x, y)z ≈ wz, where w ∈ {x, y} is the rightmost variable in the term
s(x, y). So, we have s(x, y) ≈ s(x, y)s(x, y) ≈ ws(x, y) = t(x,w)s(x, y), and thus
s(x, y) ≈ x · wy by the generalized entropic property. So we may assume that
the rightmost variable of s is y, i.e., w = y. Consequently, s(x, y) ≈ xy and thus
xy · uv ≈ u · yv ≈ y · uv ≈ xu · yv by (G1), (G4) and (G1). �

Lemma 3.6. If an idempotent groupoid G satisfies the generalized entropic prop-
erty for the term t(x, y) = xy and an arbitrary term s, then G is entropic.

Proof. Note that (G3) is the right distributivity. Hence r(x, y)z ≈ r(xz, yz), for
every term r.
Claim 1. s(x, z) · xz ≈ s(x, z).

Using right distributivity in s, twice the generalized entropic property and again
the right distributivity in s, we obtain

s(x, z) · xz ≈ s(x · xz, z · xz) ≈ s(xs(x, z), zx · z)) ≈ s(xs(x, z), zs(x, z))

≈ s(x, z)s(x, z) ≈ s(x, z).

Claim 2. xs(y, z) ≈ x · yz.
Using several times the generalized entropic property and the idempotent law,

we get

xs(y, z) ≈ xy · xz ≈ (xy)(xz · xz) ≈ (x · xz)s(y, xz) ≈ (xs(x, z))s(y, xz)

≈ (xy)(s(x, z) · xz) ≈ (xy)s(x, z) ≈ x · yz,

where the last but one equality follows from Claim 1.
Finally, it follows from Claim 2 that xy · uv ≈ xu · s(y, v) ≈ xu · yv. �
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Lemma 3.7. If an idempotent groupoid G satisfies the generalized entropic prop-
erty for the term t(x, y) = yx and an arbitrary term s, then G is entropic.

Proof. Note that (G3) is read as xy · z ≈ yz · xz that can be treated as the right
anti-distributivity. One can check by induction that r(x, y)z ≈ r∂(xz, yz) for every
term r, where r∂ denotes the term dual to r (this is the term that results when
reading r from right to left; inductively, x∂ = x and (r1r2)∂ = r∂

2 r∂
1 ).

Claim 1. s(x, z) · xz ≈ s(x, z).
Using the right anti-distributivity in s, then three times the generalized entropic

property and again the right anti-distributivity in s, we get

s(x, z) · xz ≈ s∂(x · xz, z · xz) ≈ s∂(xs(x, z), xz · z)) ≈ s∂(xs(x, z), zx · z))

≈ s∂(xs(x, z), zs(x, z)) ≈ s(x, z)s(x, z) ≈ s(x, z).

Claim 2. s(x, y) ≈ xy.
Using twice Claim 1 and three times the generalized entropic property, we obtain

s(x, y) ≈ s(x, y)(xy) ≈ (s(x, y) · xy)(xy) ≈ (xs(x, y))s(xy, y) ≈ (x · xy)s(xy, y)

≈ (xy · xy)(xy) ≈ xy.

Hence the groupoid G satisfies xy · uv ≈ ux · yv. Consider the dual groupoid
G∂ ; it satisfies xy · uv ≈ xu · vy and thus it is entropic by the preceding lemma.
Since entropy is a self-dual identity, G is entropic too. �

Theorem 3.3 has several interesting consequences.

Corollary 3.8. Let V be a variety of idempotent groupoids such that every binary
term is equivalent to a linear term in V. If V satisfies the generalized entropic
property, then V is entropic.

All groupoids with the property that every binary term is equivalent to a linear
term were characterized by J. Dudek [4], see also [3]. The groupoid G1 from
Example 2.3 can be found in the list of these groupoids.

We say that an element e ∈ G is a one-sided unit of a groupoid G, if ex = x for
all x ∈ G, or xe = x for all x ∈ G.

Corollary 3.9. Let G be an idempotent groupoid with a one-sided unit. If G
satisfies the generalized entropic property, then it is entropic.

Proof. Assume that e is a left unit in G. Then

xy ≈ ex · ey ≈ t(e, e)s(x, y) ≈ es(x, y) ≈ s(x, y)

in G and thus Theorem 3.3 applies. If e is a right unit, proceed dually. �

For example, the element c is a left unit in the groupoid G1 from Example 2.3.
Since G1 is non-entropic, it cannot satisfy the generalized entropic property.

The following observation will also become useful in the sequel.

Lemma 3.10. If an idempotent algebra A = (A,F ) satisfies the generalized en-
tropic property such that, for each pair f, g ∈ F , the terms t1, . . . , tn are equal, then
A is entropic.

Proof. Let t = t1 = · · · = tn. Then

g(x1, . . . , xm) ≈ g(f(x1, . . . , x1), . . . , f(xm, . . . , xm))

≈ f(t(x1, . . . , xm), . . . , t(x1, . . . , xm)) ≈ t(x1, . . . , xm).
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�

We apply our previous results in several well-known classes of groupoids. Recall
that idempotent semigroups are also called bands.

Proposition 3.11. A band satisfying the generalized entropic property is entropic.

Proof. In bands, any binary term is equivalent to one of x, y, xy, yx, xyx, yxy: by
the idempotency, neither a variable can appear at two consecutive places, nor xy
can appear more then once in a row. So, if t or s is equivalent to one of the first
four (linear) terms, we can apply Theorem 3.3. If t, s are equivalent to the same
term, then we can use Lemma 3.10. Hence we are left with two cases:

xyuv ≈ uxuyvy and xyuv ≈ xuxvyv.

If the first identity holds, then we get xv ≈ xvx by substitution x = y = u, and
xv ≈ vxv by substitution y = u = v. So, we have the commutativity, hence the
entropy follows.

In the latter case, xuw ≈ xxuw ≈ xuxwxw ≈ xuxw, where the last equality
follows from the idempotency, and, similarly, wvyv ≈ wyv. Thus xuxvyv is equal
to (xux)(vyv) ≈ (xu)(vyv) ≈ (xu)(yv). �

Proposition 3.12. An idempotent commutative groupoid satisfying the generalized
entropic property is entropic.

Proof. Using (G3), the commutativity and (G2), we obtain

t(x, y)z ≈ xz · yz ≈ zx · zy ≈ zs(x, y) ≈ s(x, y)z.

Consequently,

s(x, u) ≈ s(x, u)s(x, u) ≈ t(x, u)s(x, u) ≈ xx · uu ≈ xu.

Similarly for t. �

A groupoid G is called left (respectively, right) cancellative, if zx = zy implies
x = y (xz = yz implies x = y), for all x, y, z ∈ G. For instance, quasigroups are
both left and right cancellative.

Proposition 3.13. An idempotent left or right cancellative groupoid satisfying the
generalized entropic property is entropic.

Proof. Assume the left cancellativity. Then x · xy ≈ xx · xy ≈ t(x, x)s(x, y) ≈
x · s(x, y) and so by the left cancellativity we get s(x, y) ≈ xy. Apply Theorem 3.3.
In the case of the right cancellativity proceed dually. �

Next, we apply Corollary 3.8 to show that the generalized entropic property fails
in the varieties generated by all graph algebras and by all equivalence algebras,
although every graph algebra and every equivalence algebra has the complex algebra
of subalgebras.

Example 3.14.

Let A be a set and let α ⊆ A × A be an equivalence relation on A. The equiv-
alence algebra A(α) is a groupoid with the multiplication defined as follows (see,
for example, [9]):

x · y =
{

x, if (x, y) ∈ α,
y, otherwise.
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It is easy to see that a homomorphic image and a subalgebra of an equivalence
algebra is again an equivalence algebra. In fact, any subset of an equivalence
algebra is a subalgebra. Hence, every equivalence algebra has the complex algebra
of subalgebras.

Consider the variety E generated by equivalence algebras. It is not entropic, since
in the equivalence algebra on the set {a, b, c}, corresponding to the equivalence with
two blocks {a, b} and {c}, we have a = (ca)b 6= (cb)(ab) = b. It is not difficult to
check that the two-generated free algebra in E has only four elements: x, y, xy, yx.
Hence, by Corollary 3.8, the variety E does not satisfy the generalized entropic
property.

Example 3.15.

Let G = (V,E) be a graph with a set V of vertices and a set E ⊆ V × V of
edges. Its graph algebra A(G) = (V ∪ {0}, ·) is a groupoid with the multiplication
defined as follows:

x · y =
{

x, if (x, y) ∈ E,
0, otherwise.

As shown in [11], any subalgebra with 0 and any homomorphic image of a graph
algebra is a graph algebra. In fact, any subset with 0 of a graph algebra is clearly
a subalgebra. Moreover, for any two subalgebras A and B of the graph algebra
A(G), if all a ∈ A and b ∈ B are connected by the edge, then AB = A. On the
other side, if there are such a ∈ A and b ∈ B that (a, b) is not in E, then 0 ∈ AB.
Thus every graph algebra has the complex algebra of subalgebras.

Consider the variety GI generated by idempotent graph algebras. It is not en-
tropic, since in the graph algebra corresponding to the graph

rk
a

kr
b

rk
c

we have b = (bc)a 6= (ba)(ca) = 0. Similarly to Example 3.14, the two-generated
free algebra in GI has only four elements: x, y, xy, yx. By Corollary 3.8, the variety
GI does not satisfy the generalized entropic property.

We finish this section with an observation.

Proposition 3.16. Every idempotent groupoid with the generalized entropic prop-
erty satisfies the identity

xy · uv ≈ (xy · uy)(xv · uv) ≈ (xy · xv)(uy · uv).

Proof. Using (G1) and (G2) we obtain xy · uv ≈ t(x, u)s(y, v) ≈ t(x, u)y · t(x, u)v
and now the first identity follows from (G3). Similarly, using (G1), (G3) and (G2)
we obtain xy · uv ≈ t(x, u)s(y, v) ≈ xs(y, v) · us(y, v) ≈ (xy · xv)(uy · uv). �

The converse is false. It can be checked that the following groupoid G2

· a b c
a a b a
b c b c
c c b c

satisfies the identities from Proposition 3.16, but it fails the generalized entropic
property.
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4. generalized entropic property vs. entropy: the non-idempotent
case

We start with an observation that the generalized entropic property and the
entropic law are generally inequivalent for non-idempotent groupoids.

Example 4.1.

Let VA denote the variety of groupoids satisfying the identity

(x1x2)(x3x4) ≈ (x3x1)(x2x4).

Clearly, the generalized entropic property holds in VA. It follows from Lemma 4.2
that VA is not entropic: in our case A = {(1, 3, 2)}, and the subgroup generated by
A in the symmetric group S4 does not contain the transposition (2, 3).

Lemma 4.2. Let A ⊆ S4 be a set of permutations on four elements and let VA be
the variety of groupoids satisfying the identities

x1x2 · x3x4 ≈ xπ1xπ2 · xπ3xπ4

for every π ∈ A. Then VA is entropic, if and only if the transposition (2, 3) is in
the subgroup generated by A in S4.

Proof. Generally, two terms p, q are equivalent in a variety V, if and only if there is
a sequence p = w1, w2, . . . , wn = q such that, for each i, wi has a subterm which is a
substitution instance of some term which appears in an equation ε from the base of
V, and wi+1 is derived from wi by replacing this subterm by the same substitution
instance of the other side of ε. In VA, starting with the term x1x2 ·x3x4, we cannot
make any proper substitution, hence wi+1 is always obtained from wi by permuting
variables of wi by some π ∈ A. Hence, if we use permutations π1, . . . , πn−1, we
arrive in the term xπ1xπ2 · xπ3xπ4, where π = πn−1 · · ·π1. So, the entropy can be
obtained iff (2, 3) is generated by permutations from A. �

The two conditions are inequivalent also for unary algebras. (They haven’t
appeared in the previous section, because idempotency is a rather trivial property
in there.)

Example 4.3.

Let A = (A,F ) be a unary algebra, i.e., F contains only unary operations.
Clearly, A is entropic iff fg ≈ gf , for all f, g ∈ F .

Let B be a subset of the symmetric group over a set X such that B = B−1. Put
B = (X, {f : f ∈ B}). Then for every f, g ∈ B we can always find a term t such
that fg = gt (namely, t = g−1fg), so B satisfies the generalized entropic property.
On the other hand, if fg 6= gf for at least one pair f, g ∈ B, then B is not entropic.

On the other hand, there are several important classes, where the generalized
entropic property is equivalent with the entropic law, regardless idempotency. For
instance, this is true for groupoids with a unit element. The following statement
covers a more general setting. We say that an element e is a unit for an operation
f , if

f(x, e, . . . , e) ≈ f(e, x, e, . . . , e) ≈ . . . ≈ f(e, . . . , e, x) ≈ x

for every x ∈ A. We say that e is a unit for an algebra (A,F ), if it is a unit for
each operation f ∈ F .
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Lemma 4.4. Let A = (A,F ) be an algebra with a one-element subalgebra {e}
and assume that e is a unit for an n-ary operation f ∈ F . If (A,F ) satisfies the
generalized entropic property, then f commutes with each operation g ∈ F .

Proof. The generalized entropic property says that

g(f(x11, . . . , xn1), . . . , f(x1m, . . . , xnm)) ≈ f(t1(x11, . . . , x1m), . . . , tn(xn1, . . . , xnm))

for some terms t1, . . . , tn. Hence

g(x1, . . . , xm) ≈ g(f(e, . . . , x1, . . . , e), f(e, . . . , x2, . . . , e), . . . , f(e, . . . , xm, . . . , e))

≈ f(t1(e, . . . , e), . . . , tk(x1, . . . , xm), . . . , tn(e, . . . , e))

≈ f(e, . . . , tk(x1, . . . , xm), . . . , e) ≈ tk(x1, . . . , xm),

for every k ≤ n. So

g(f(x11, . . . , xn1), . . . , f(x1m, . . . , xnm)) ≈ f(g(x11, . . . , x1m) . . . , g(xn1, . . . , xnm)).

�

As a consequence, we get

Proposition 4.5. Let A be an algebra with a unit element e. If A satisfies the
generalized entropic property, then A is entropic.

Adjoining an outside unit element is quite a standard operation when dealing
with algebras. The following example shows that such an extended algebra may
fail the generalized entropic property.

Example 4.6.

Consider a groupoid G satisfying the generalized entropic property and possess-
ing elements a, b such that ab 6= ba. Let G∗ denote the groupoid obtained from G
by adjoining a unit element e. Then G∗ is not entropic, because ea · be = ab 6=
ba = eb · ae. Hence, although G itself satisfies the generalized entropic property, by
Proposition 4.5 the groupoid G∗ does not.

A loop is an algebra A = (A, ·, /, \, e) such that the identities

x\(xy) ≈ y, (yx)/x ≈ y,

x(x\y) ≈ y, (y/x)x ≈ y,

xe ≈ ex ≈ x

hold in A. In other words, loops can be considered as “non-associative groups”. On
the other hand, groups can be regarded as loops with x/y = xy−1 and y\x = y−1x.

Proposition 4.7. Let V be a variety of loops. The following conditions are equiv-
alent:

(1) V satisfies the generalized entropic property;
(2) V is entropic;
(3) V is a variety of abelian groups.

Proof. (1) ⇒ (2). Let A ∈ V. It follows from Lemma 4.4 that (A, ·) is entropic.
And it is easy to check that, for any loop A, if (A, ·) is entropic, then A is entropic.

(2) ⇒ (3). If A is an entropic loop and x, y, z ∈ A, then

xy · z = xy · ez = xe · yz = x · yz
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(hence A is a group) and

xy = (xy)(x−1x) = (xx−1)(yx) = yx.

(3) ⇒ (1). It is well known that the complex product of two subgroups is a
subgroup. �

We finish this section with a result on commutative groupoids. A term r is called
G-symmetric, if G satisfies r(x, y) ≈ r(y, x).

Proposition 4.8. If a commutative groupoid G satisfies the generalized entropic
property for some terms t, s and at least one of t, s is linear or G-symmetric, then
G is entropic.

Proof. Because of commutativity, we can assume that the linear or G-symmetric
term is t. If t is G-symmetric, then, using several times the commutativity and the
generalized entropic property, we get

xy · uv ≈ yx · uv ≈ t(y, u) · s(x, v) ≈ t(u, y) · s(x, v) ≈ ux · yv ≈ xu · yv.

If t is linear, then either t(x, y) ∈ {xy, yx} (so t is G-symmetric and the first
case applies), or t(x, y) = x, or t(x, y) = y. First, assume xy · uv ≈ xs(y, v).
Consequently, the term xy · uv does not depend on u and we can compute using
the commutativity:

xy · uv ≈ xy · yv ≈ yv · xy ≈ yv · yx ≈ yv · ux ≈ ux · yv ≈ xu · yv.

Next, if xy · uv ≈ us(y, v), then xy · uv does not depend on x and a similar compu-
tation does the job. �

5. Identities in complex algebras of subalgebras

Let V be a variety. We will denote by CmV the variety generated by complex
algebras of algebras in V, i.e.,

CmV = V({CmA : A ∈ V}).

Further, if V satisfies the generalized entropic property, we let CSubV be the
variety generated by complex algebras of subalgebras of algebras in V, i.e.,

CSubV = V({CSubA : A ∈ V}).

Evidently, CSubV ⊆ CmV, because CSubA is a subalgebra of CmA. Also
V ⊆ CmV, because every algebra A can be embedded into CmA by x 7→ {x}.
And if V is idempotent, then V ⊆ CSubV, by the same embedding. On the other
hand, we do not have V ⊆ CSubV in general, for instance, for the variety of abelian
groups (CSubV is defined due to Proposition 4.7), because in this case CSubV is
idempotent, while V is not.

In [6], G. Grätzer and H. Lakser proved the following theorem.

Theorem 5.1. Let V be a variety. Then CmV satisfies precisely those identities
resulting through identification of variables from the linear identities true in V.

Corollary 5.2. Let V be a variety. Then V = CmV, if and only if V has a base
consisting of linear identities.
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We investigate the question raised in [12]: What are the identities satisfied by
CSubV (provided it is defined)? In particular, when V = CSubV?

It follows from Theorem 5.1 that CSubV satisfies the linear identities valid in V.
If V is idempotent, CSubV is also idempotent, and the idempotency is not linear.
Moreover CSubV can still be idempotent, while V is not—recall the example with
abelian groups. We are going to prove an analogue of Theorem 5.1, characterizing
the identities satisfied by CSubV. First, we have to introduce the notion of a
semilinear precursor.

An identity t ≈ s is called semilinear, if at least one of the terms t, s is linear. The
linearization of a term t(x1, . . . , xn) is the term t∗, resulting from t by replacement
of the j-th occurence of a variable xi by the variable xij , for all 1 ≤ i ≤ n and
1 ≤ j ≤ ki, where ki is the number of occurences of the variable xi in t.

Let t, s be terms and let ki, li denote the number of occurences of the variable
xi in t, s. If xi does not occur in the term t, we redefine ki = 1.

The identity t∗ ≈ s̃ is called a semilinear precursor for the (ordered) pair (t, s),
if there are terms rij(xi1, . . . , xiki

), 1 ≤ i ≤ n, 1 ≤ j ≤ li such that

s̃ = s∗(r11(x1), . . . , r1l1(x1), . . . , rn1(xn), . . . , rnln(xn))

(where xi denotes the tuple (xi1, . . . , xiki
)). For example, the semilinear precursors

for the pair (xy · xz, yz · x) are precisely the identities of the form x1y · x2z ≈
p(y)q(z)·r(x1, x2), where p, q are unary terms and r is a binary term. The semilinear
precursors for the pair (yz ·x, xy ·xz) are precisely the identities of the form yz ·x ≈
p1(x)q(y) · p2(x)r(z), where p1, p2, q, r are unary terms. (In both examples, instead
of double indices we used different letters for variables and terms.)

Indeed, the identity t ≈ s results from any of its semilinear precursors through
identification of the variables xi1, . . . , xiki and replacement of the unary subterms
rij(xi, . . . , xi) by a single variable. In particular, the identity t ≈ s is a consequence
of each semilinear precursor for the pair (t, s) and idempotency.

Theorem 5.3. Let V be a variety satisfying the generalized entropic property. Then
CSubV satisfies the identity t ≈ s, if and only if there are semilinear precursors
for the pair (t, s) and for the pair (s, t), both satisfied in V.

Proof. First, assume that t(x1, . . . , xn) ≈ s(x1, . . . , xn) holds in CSubV and denote
ki, li the number of occurences of the variable xi in t, s. Again, if xi does not occur
in the term t, we redefine ki = 1.

Let Ai, i = 1, . . . , n, be the subalgebra generated by the set {xi1, . . . , xiki} in
FV(X), the free algebra in V over the set X = {xij : 1 ≤ i ≤ n, 1 ≤ j ≤ ki}. Since
t(A1, . . . , An) = s(A1, . . . , An), we have

t∗(x11, . . . , x1k1 , . . . , xn1, . . . , xnkn
) ∈ s(A1, . . . , An).

It means that there are terms rij(xi1, . . . , xiki
) ∈ Ai, 1 ≤ i ≤ n, 1 ≤ j ≤ li such

that

t∗(x11, . . . , x1k1 , . . . , xn1, . . . , xnkn
) ≈

s∗(r11(x1), . . . , r1l1(x1), . . . , rn1(xn), . . . , rnln(xn)).

In other words, the above identity is a semilinear precursor for the pair (t, s) and
it is satisfied in V, because the identity holds in a free algebra. To get a semilin-
ear precursor for the pair (s, t), consider the same procedure with the role of t, s
interchanged.
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We prove the converse. Let t(x1, . . . , xn), s(x1, . . . , xn) be terms and assume
there are semilinear precursors t∗ ≈ s̃ and s∗ ≈ t̃ satisfied in V. Let A ∈ V and
take arbitrary subalgebras A1, . . . ,An of A. To prove the inclusion t(A1, . . . , An) ⊆
s(A1, . . . , An), let a ∈ t(A1, . . . , An). It means that there are ai1, . . . , aiki

∈ Ai

(i = 1, . . . , n) such that
a = t∗(a11, . . . , ankn

).

The algebra A satisfies t∗ ≈ s̃, so

a = s∗(r11(a1), . . . , r1l1(a1), . . . , rn1(an), . . . , rnln(an)).

Since rij(ai1, . . . , aiki
) ∈ Ai for every i, j, we see that

a ∈ s∗(A1, . . . , A1, . . . , An . . . , An) = s(A1, . . . , An).

The other inclusion s(A1, . . . , Am) ⊆ t(A1, . . . , Am) follows similarly from the iden-
tity s∗ ≈ t̃. Hence t ≈ s holds in CSubV. �

Corollary 5.4. Let V be a variety satisfying the generalized entropic property.
Then CSubV ⊆ V, if and only if for every identity t ≈ s valid in V there is a
semilinear precursor for the pair (t, s) valid in V.

Corollary 5.5. Let V be an idempotent variety satisfying the generalized entropic
property. Then V = CSubV, if and only if for every identity t ≈ s valid in V there
is a semilinear precursor for the pair (t, s) valid in V.

Corollary 5.6. Let V be an idempotent variety satisfying the generalized entropic
property and assume that t(x1, . . . , xn) is a linear term and s(x1, . . . , xn, y1, . . . , ym)
is a term such that the variables x1, . . . , xn occur in it at most once. Then CSubV
satisfies the identity t ≈ s, if and only if V satisfies the linear identity t ≈ s∗.

Example 5.7.

It follows from Theorem 5.1 that CSubV satisfies all linear identities true in V.
This is in accordance with Theorem 5.3, because for every pair (t, s) of linear terms
there is a semilinear precursor t ≈ s (indeed, t∗ = t and s∗ = s), so if t ≈ s holds
in V, it is satisfied in CSubV too.

Example 5.8.

Let V be the variety of abelian groups. We show that CSubV is idempotent,
i.e., x + x ≈ x holds in CSubV, using Theorem 5.3. First, we find a semilinear
precursor for the pair (x, x+x): for s(x) = x+x we have s∗(x, y) = x+y and we can
put s̃(x) = s∗(x, 0) (0 is a constant term in any variables); indeed, x ≈ x + 0 holds
in V. Next, we find a semilinear precursor for the pair (x + x, x): for t(x) = x + x
we have t∗(x, y) = x + y, so we can substitute in s(x) = s∗(x) = x the term x + y
for the variable x; indeed, x + y ≈ x + y holds in V.

Example 5.9.

Let V be the variety of entropic idempotent groupoids with x(xy) ≈ y. We show,
using Theorem 5.3, that CSubV does not satisfy the identity x(xy) ≈ y. Assume
the contrary. Put t(x, y) = x(xy), s(y) = y and assume that there is a semilinear
precursor t∗ ≈ s̃ true in V. It means, there is a unary term u such that the identity
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x1(x2y) = u(y) holds in V. Because of idempotency, we can assume u(y) = y. It is
easy to find a groupoid in V which fails the property:

· 0 1 2
0 0 1 2
1 2 1 0
2 0 1 2

Unfortunately, Theorem 5.3 does not help us to decide, whether the following
conjecture from [12] is true.

Conjecture 5.10. Let V be an idempotent variety satisfying the generalized en-
tropic property. Then V = CSubV, if and only if V has a base consisting of linear
identities and the identities f(x, . . . , x) ≈ x, for all basic operations f .

Note that the backward implication is true for any idempotent variety.
All known idempotent varieties with V = CSubV have a linear and idempo-

tent base. For instance, the variety of all modes of a given type, the variety of
commutative binary modes, the variety of differential groupoids (groupoid modes
satisfying x(yz) ≈ xy), the variety of normal semigroups (semigroup modes) and
any subvariety of this variety (in particular, varieties of semilattices), left (xy ≈ x)
and right (xy ≈ y) zero bands, rectangular bands (xyz ≈ xz) and left (xyz ≈ xzy)
and right (zyx ≈ yzx) normal bands or the variety of barycentric algebras [18].

We also note that at the moment we do not know any example of a non-entropic
idempotent variety V with V = CSubV. Indeed, the only examples (known to us)
of non-entropic idempotent algebras with the generalized entropic property were
shown in Example 3.1. For instance, it is straightforward to check that M9 satisfies
the identity r(x, r(y, x)) ≈ y, where r is any basic operation from X, but this
identity fails in CSubM9.

In the last example of this section we show that Conjecture 5.10 is false if the
assumption of idempotency is dropped.

Example 5.11.

Consider the variety V of entropic groupoids with (xx)y ≈ xy and y(xx) ≈ yx.
Clearly, V satisfies the generalized entropic property. It follows from Theorem 5.1
that CSubV is entropic, and it is easy to check that CSubV satisfies the two
identities. Hence, CSubV ⊆ V. For any algebra A ∈ V, we can embed A into
CSubA by x 7→ {x, xx} (a straightforward caculation). Therefore, V = CSubV.
We prove that V cannot be based by linear identities.

All identities of V are regular, i.e., have the same variables on both sides, because
the basis of V consists of regular identities. Evidently, regular linear identities are
balanced, which means that the number of each variable symbol, counting repeti-
tions, is the same on both sides. It is easy to see that consequences of balanced
indentities are balanced. Since the identities (xx)y ≈ xy and y(xx) ≈ yx are not
balanced, they cannot be deduced from any set of linear identities of V.

6. Stronger conjecture fails

In this section we are interested in varieties that do not necessarily possess the
generalized entropic property. Our aim is to disprove an analogue of Conjecture
5.10: There is a variety generated by an idempotent algebra A such that CSubA
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exists, V(CSubA) = V(A) and V(A) has no base of linear and idempotent iden-
tities. The rest of the section is fully devoted to such example.

Consider, again, the groupoid G1 from Example 2.3.

· a b c
a a c c
b c b c
c a b c

We already noticed that CSubG1 exists, though G1 does not satisfy the gener-
alized entropic property. We show that the groupoids G1 and CSubG1 generate
the same variety (Lemma 6.5), but V(G1) has no base of linear and idempotent
identities. In fact, we prove that all linear identities satisfied by G1 are regular
(Lemma 6.3) and thus the non-regular identities

(xy)x ≈ x and (yx)x ≈ x,

valid in G1, are not consequences of idempotent and linear identities of G1.

Every term t can be written in the form

t = t1(t2(. . . tk−1(tkx) . . .)),

where t1, . . . , tk are terms and x is a variable. The variable x will be called the
focal of t and denoted by fc(t).

Lemma 6.1. If G1 satisfies an identity t ≈ u, then fc(t) = fc(u).

Proof. Assume fc(t) 6= fc(u). Assign the element c to fc(t) and the element a
to all other variables of t and u. Then the value of t is c and the value of u is a,
because a, c are right zeros in the subgroupoid {a, c}. Hence t 6≈ u in G1. �

Lemma 6.2. If G1 satisfies a linear identity t ≈ u, t = t1(t2(. . . tk−1(tkx) . . .))
and u = u1(u2(. . . um−1(umx) . . .)), then

(1) {fc(ti) : i ≤ k} = {fc(uj) : j ≤ m}. In particular, m = k.
(2) For every i ≤ k there exists j ≤ k such that ti = uj is a linear identity of

G1.

Proof. To prove (1), we can assume that fc(t) = fc(u) = x and there exists y =
fc(ti) that does not belong to {fc(uj) : j ≤ m}. Then we assign x = a, y = b and
the rest of variables will be c. It will follow that all variables in {fc(uj) : j ≤ k}
will be assigned c, hence all uj are equal to c and u = a. On the other hand, ti = b,
while the rest of tp, p 6= i, are c. Hence t = c and t 6= u under such assignment of
variables.

To show (2), for any ti we pick uj with the same focal y. Suppose that ti 6= uj

for some assignment of variables. Then y is assigned to a or b.
If y = a, then {ti, uj} = {a, c} under such assignment. Say, ti = a and uj = c.

Let fc(t) = fc(u) be assigned to b and all fc(tp), p 6= i, and fc(uq), q 6= j, to c.
Under such assignment we get that t = c and u = b, a contradiction with t = u in
G1. The case of y = b is shown similarly by interchanging a and b. �

Lemma 6.3. Every linear identity of G1 is regular.

Proof. Let r(t, u) be the number of distinct variables in the identity t ≈ u (e.g.,
r(xy, (xz)y) = 3). We argue by induction on r(t, u). If r(t, u) = 1, then t = u = x
and the statement is true.



ON COMPLEX ALGEBRAS OF SUBALGEBRAS 17

Suppose we know that every linear identity t′ ≈ u′ with r(t′, u′) ≤ n is regular
and consider a linear identity t ≈ u with r(t, u) = n+1. Then, according to Lemma
6.2, t = t1(t2(. . . tk−1(tkx) . . .)) and u = u1(u2(. . . uk−1(ukx) . . .)), for some k and
some terms ti, ui such that for every i ≤ k there exists j ≤ k with ti ≈ uj satisfied
in G1. This is indeed a linear identity and r(ti, uj) ≤ n, because x does not occur
in ti ≈ uj . By induction hypothesis, ti ≈ uj is regular. Hence the set of variables
occuring in t is a subset of the set of variables occuring in u. Similarly, applying
Lemma 6.2 on the identity u ≈ t, we obtain that the latter set is a subset of the
former one. Consequently, the identity t ≈ u is regular. �

As a byproduct we also get a description of linear identities satisfied in G1. For
this, we define focally equivalent terms t ≡f u, recursively by the length of t, u:

(1) If one of t, u has only one variable x then t ≡f u if and only if t = u = x.
(2) If both t, u have more than one variable and t = t1(t2(. . . tk−1(tkx) . . .)),

u = u1(u2(. . . ul−1(uly) . . .)), then t ≡f u if and only if k = l, x = y, for
every i ≤ k there is j ≤ k such that ti ≡f uj and for every i ≤ k there is
j ≤ k such that ui ≡f tj .

Corollary 6.4. G1 satisfies a linear identity t ≈ u, iff the terms t, u are focally
equivalent.

Proof. Apply induction and Lemmas 6.1 and 6.2. �

Lemma 6.5. G1 and CSubG1 generate the same variety.

Proof. Since an idempotent algebra always embeds into its algebra of subalgebras
(provided it exists), it is sufficient to find an embedding of the groupoid CSubG1

into the product G1 × G1. We notice that there are two homomorphisms from
CSubG1 onto G1:

f1({a}) = f1({a, c}) = f1({a, b, c}) = a,

f1({b}) = b,

f1({c}) = f1({b, c}) = c

and

f2({b}) = f2({b, c}) = f2({a, b, c}) = b,

f2({a}) = a,

f2({c}) = f2({a, c}) = c.

It is easy to check that ker(f1)∩ker(f2) = 0, hence CSubG1 is a subdirect power
of G1. �
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Charles University, Sokolovská 83, 186 00 Prague, Czech Republic

E-mail address: stanovsk@karlin.mff.cuni.cz


