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Abstract. We describe a part of the lattice of subvarieties of left distributive
left idempotent groupoids (i.e. those satisfying the identities x(yz) ≈ (xy)(xz)

and (xx)y ≈ xy) modulo the lattice of subvarieties of left distributive idempo-
tent groupoids. A free groupoid in a subvariety of LDLI groupoids satisfying
an identity x

n
≈ x decomposes as the direct product of its largest idempotent

factor and a cycle. Some properties of subdirectly ireducible LDLI groupoids

are found.

We consider groupoids (i.e. sets equipped with a binary operation) satisfying
the following two identities:

x(yz) ≈ (xy)(xz),(LD)

(xx)y ≈ xy.(LI)

We call such groupoids left distributive left idempotent, shortly LDLI. A groupoid
is called idempotent, if it satisfies the identity

xx ≈ x.(I)

Note that the well known class of left distributive left quasigroups (see e.g. [2], [7],
[8]) satisfies left idempotency. Indeed, our results can be applied there.

The purpose of this note is to continue recent investigations of P. Jedlička [3]
on LDLI groupoids. We apply his result to compute the lattice of subvarieties of
LDLI groupoids satisfying an identity xn+1 ≈ x for some n, modulo the lattice
of subvarieties of LDI groupoids (see Theorem 4). This generalizes a result of
T. Kepka [4] who described in a similar way subvarieties of LD groupoids with
x(xy) ≈ y (such groupoids are called left symmetric; they satisfy LI and x3 ≈ x).

In Section 2 we show some properties of subdirectly irreducible LDLI groupoids
and apply them to get some information about the structure of the lattice of sub-
varieties satisfying identities xm+n ≈ xm.

We use rather standard terminology and notation, for an introduction to uni-
versal algebra see e.g. [1]. We need the following result of P. Jedlicka [3]. Let
G be an LDLI groupoid and let ipG be the smallest equivalence on G containing
{(a, aa) : a ∈ G}. Then ipG is a congruence, G/ipG is idempotent and ipG is the
smallest congruence such that the corresponding factor is idempotent. Moreover,
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for any (a, b) ∈ ipG, ac = bc holds for every c ∈ G. Consequently, any block of ipG

is a subalgebra of G and it is term equivalent to a connected monounary algebra.

1. Varieties satisfying xn+1 ≈ x

Let us define inductively x1 = x and xn = xxn−1 for every n > 1. (Note that
other possible definitions of powers do not really make sense: one can check by
induction that any term t in one variable is LI-equivalent to the term xn, where
n is the depth of the rightmost variable in t.) It is easy to prove that in LDLI
groupoids the identities xy ≈ xny and (xk)l ≈ xk+l−1 hold.

We say that a variety V of groupoids has exponent n, if n is the least positive
integer such that the identity xn+1 ≈ x holds in V. (Of course, such n does not
necessarily exist, however, many important varieties, for instance left n-symmetric
left distributive groupoids (see e.g. [8]), have finite exponent.)

Let Cn denote the groupoid on the set {0, . . . , n−1} with the operation ab = b+1
mod n. Clearly, Cn are LDLI groupoids.

Lemma 1. Let G be an LDLI groupoid with xn+1 ≈ x. Then

(1) every block of ipG is isomorphic to Ck for some k|n;
(2) Cn is a homomorphic image of G, if and only if G is isomorphic to the

direct product Cn × (G/ipG).

Proof. (1) is easy. For (2), choose a projection g : G → Cn and put f(x) =
(g(x), x/ipG). Then f : G → Cn × (G/ipG) is a homomorphism. Since there is a
homomorphism Ck → Cl iff l|k, every block of ipG is isomorphic to Cn (g restricted
to a block of ipG is a homomorphism). Hence g is bijective on every block of ipG,
because rotations are the only endomorphisms of Cn, and thus f is an isomorphism.
The other implication is clear. ¤

Lemma 2. Let V be a subvariety of LDLI groupoids and assume V has exponent
n. Then Ck ∈ V, iff k|n.

Proof. If k does not divide n, then Ck does not satisfy xn+1 ≈ x. On the other
hand, if V has exponent n, then, according to Lemma 1, ip-blocks of elements of V
are Ck with k|n (indeed, ip-blocks are subgroupoids). Let k0 be the greatest k such
that Ck ∈ V. If k0 < n, then V satisfies xk0+1 ≈ x, a contradiction with minimality
of n. Hence Cn ∈ V and thus Ck ∈ V for all k|n, because they are homomorphic
images of Cn. ¤

Let FV(X) denote the free groupoid over X in a variety V. Let I denote the
variety of idempotent groupoids.

Theorem 3. Let V be a subvariety of LDLI groupoids and assume V has exponent
n. Then FV(X) is isomorphic to Cn × FV∩I(X). Consequently, the variety V is
generated by (V ∩ I) ∪ {Cn}.

Proof. Since Cn ∈ V, it is a homomorphic image of FV(X). Hence, by Lemma 1,
FV(X) ≃ Cn×H, where H = FV(X)/ipFV(X). It is easy to see that H ≃ FV∩I(X),
because ip is the smallest idempotent congruence. ¤

A right zero band is a groupoid satisfying the identity xy ≈ y. It is well known
that the variety RZB of right zero bands is minimal (i.e. it is generated by each
of its elements).
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Theorem 4. Let L denote the lattice of subvarieties of LDI groupoids, K its sub-
lattice of varieties containing RZB and N the lattice of positive integer divisors of
n. The lattice of subvarieties of the variety of LDLI groupoids satisfying xn+1 ≈ x
is isomorphic to the lattice (L× {1}) ∪ (K × (N r {1})) (regarded as a subposet of
L × N), sending a variety V of exponent m to the pair Φ(V) = (V ∩ I,m).

Proof. First, we check that the mapping Φ is well-defined: the exponent m of a
subvariety V is clearly a divisor of n and since V contains Cm, it contains a right
zero band (Cm × Cm)/ip and thus it contains the whole variety RZB, because it
is minimal. Next, Φ is injective: if V1 and V2 are distinct varieties of exponent m,
then V1 ∩ I and V2 ∩ I are distinct, because Vi is generated by (Vi ∩ I) ∪ {Cm},
i = 1, 2. The mapping Φ is onto, a pair (W,m) is the image of the variety generated
by W ∪ {Cm}. Indeed, let G be an idempotent groupoid in the variety generated
by W ∪ {Cm} and we show that G ∈ W. The case m = 1 is trivial, so let m > 1.
By Birkhoff’s HSP theorem, there are H ∈ W, K ≤ H × Ck

m (for some k) and an
onto homomorphism ϕ : K → G. Since ipK is the smallest idempotent congruence
and G is idempotent, there is an onto homomorphism ψ : K/ipK → G. Further,
K/ipK ≤ (K × Ck

m)/ip ≃ K × (Ck
m/ip). However, Ck

m/ip is a right zero band and
thus it is in W. Consequently, G is a homomorphic image of a subgroupoid of a
groupoid from W, thus it is in W. Finally, Φ clearly preserves the order and it
follows from Theorem 3 that also Φ−1 preserves the order. Consequently, Φ is a
lattice isomorphism. ¤

Example. B. Roszkowska proved in [6] that the lattice of subvarieties of left sym-
metric medial idempotent (LSMI) groupoids (those where the identities x(xy) ≈ y,
xy · uv ≈ xu · yv and xx ≈ x hold) is isomorphic to the lattice of positive integers
ordered by divisibility with a top element added. A number n corresponds to the
variety based on wn(x, y) ≈ y (relatively to LSMI), where

wn(x, y) = x(y(x(y(. . . ))))
︸ ︷︷ ︸

n

.

Note that right zero bands satisfy wn(x, y) ≈ y iff n is even. Thus, using Theo-
rem 4, it is easy to describe bases of all proper subvarieties of left symmetric left
distributive medial groupoids (relatively to LSLDM):

(1) xx ≈ x;
(2) wn(x, y) ≈ y and xx ≈ x, for every n;
(3) wn(x, y) ≈ y, for every n even.

(Note that mediality and idempotency imply left distributivity, however, non-
idempotent medial groupoids are not necessarily left distributive.)

Example. J. PÃlonka [5] investigated idempotent groupoids satisfying

x(x(. . . (x
︸ ︷︷ ︸

n

y)) ≈ y, x(yz) ≈ y(xz) and xz ≈ (yx)z.

He called them n-cyclic groupoids. It is easy to see that they are LDLI and that
1-cyclic groupoids are precisely right zero bands. PÃlonka proved that the only
non-trivial subvarieties of n-cyclic groupoids are m-cyclic groupoids for m|n. One
can thus use Theorem 4 to describe the subvarieties of non-idempotent n-cyclic
groupoids. Every non-trivial one is generated by idempotent m-cyclic groupoids
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and the groupoid Ck, for some divisors m, k of n; hence there are exactly q2 + 1
such subvarieties, where q is the number of divisors of n.

2. Varieties satisfying xm+n ≈ xm

Theorems 3 and 4 cannot be generalized to varieties satisfying an identity xm+n ≈
xm for m > 1. For instance, in an LDLI groupoid G with x3 ≈ x2, every ipG-block
is a constant groupoid, i.e. ab = cd for all ipG-congruent elements a, b, c, d (the
corresponding unary algebra is a loop with several “tails” of length 1). However,
this variety is not generated by LDI and constant groupoids. Indeed, both LDI and
constant groupoids satisfy the identity xy ≈ x(yy), while the groupoid

a b c d
a, b b b c d
c, d a b d d

does not, though it is LDLI with x3 ≈ x2. We thus present a weaker result for such
varieties.

For a variety V, let Vm,n denote the subvariety of V based (relatively to V) by
the identity xm+n ≈ xm.

It is well known that a groupoid G is subdirectly irreducible, iff it possesses the
smallest non-trivial congruence, and that any variety is generated by its subdirectly
irreducible members.

Lemma 5. Let G be a subdirectly irreducible LDLI groupoid. If Cn is a subalgebra
of G for some n ≥ 2, then G contains no fork (i.e. elements a 6= b with a2 = b2)
and, vice versa, if G contains a fork, then Cn is not a subalgebra of G, for any
n ≥ 2.

Proof. Put α = {(a, b) ∈ G × G : a2 = b2}. It is clear that α is an equivalence,
which glues each fork. It is a congruence, because whenever a2 = b2, we get
at = a2t = b2t = bt and (ta)2 = ta2 = tb2 = (tb)2.

Put (a, b) ∈ β iff there are k, l such that ak = b and bl = a. By a similar
argument, it is easy to see that β is a congruence, which glues each circle.

Clearly, α ∩ β = idG, hence either α = idG or β = idG or both, and thus either
G contains no fork, or no circle with two or more elements, or both. ¤

Remark. One can prove that a subdirectly irreducible LDLI groupoid G either
contains a fork, or there is a prime p and a natural number k such that all ipG-blocks
are circles of length either 1, or pk (this is proven in [8] for LD left quasigroups,
however, it is sufficient to assume in the proof LDLI only). On the other hand, there
seems to be no uniformity in the former case. In the following example the ip-blocks
have different length of tails and, moreover, one contains a ‘pure fork’ (such that
b 6= b2 = c2 6= c), while the other don’t. The smallest non-trivial congruence has
the only non-trivial block {a2, a3}.

a a2 a3 b c b2 d
a, a2, a3 a2 a3 a3 a2 a2 a3 d

b, c, b2 = c2 a3 a3 a3 b2 b2 b2 d
d a3 a3 a3 a2 a3 a3 d

Lemma 6. Let V be a subvariety of LDLI groupoids and m,n be positive integers.
Then Vm,n is the join of the varieties Vm,1 and V1,n.
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Proof. Let G be an LDLI groupoid with xm+n ≈ xm. Then ipG-blocks consist
of a circle of length k, where k|n, and possibly some “tails” of length at most m
(precisely, for any element a out of the circle, am lies on the circle). Now, assume
that G is subdirectly irreducible. It follows from the previous lemma that either all
the circles are of length one, or there are no tails (because whenever a tail joins a
circle, there is a fork). Hence, G satisfies either xm+1 ≈ xm (tails of length at most
m only), or xn+1 ≈ x (circles only). Now, the claim follows from the fact that any
variety is generated by its subdirectly irreducible members. ¤

Theorem 7. Let V be a subvariety of LDLI groupoids and let k, l,m, n be positive
integers. Then

Vk,l ∨ Vm,n = Vmax(k,m),LCM(l,n)

and

Vk,l ∧ Vm,n = Vmin(k,m),GCD(l,n).

Proof. For the first equality, use the previous lemma and compute Vk,l ∨ Vm,n =
Vk,1∨Vm,1∨V1,l∨V1,n = Vmax(k,m),1∨V1,LCM(l,n) = Vmax(k,m),LCM(l,n). The second
claim is rather clear. ¤

Let V be a variety of LDLI groupoids such that it satisfies no identity xm+n ≈ xm.
We show that the mapping (m,n) 7→ Vm,n is injective on N × N. The identity
xz ≈ yz implies an identity t ≈ s iff the depth of the rightmost variable in t equals to
the depth of the rightmost variable in s and the two variables are identical. Indeed,
all identities of V have the latter property — otherwise t(x, . . . , x) ≈ s(x, . . . , x)
were a non-trivial identity in one variable. Hence V contains all groupoids with
xz ≈ yz, i.e., in fact, unary algebras. It is easy to see that for any m1, n1 and m2, n2

with (m1, n1) 6= (m2, n2) there is a unary algebra such that it satisfies exactly one of
the identities xm1+n1 ≈ xm1 , xm2+n2 ≈ xm2 . Hence, Vm1,n1

6= Vm2,n2
. Moreover,

V1,1 contains RZB.
However, not every subvariety of LDLI groupoids is equal to Vm,n for some

V,m, n. For instance, consider the variety C of constant groupoids (satisfying the
identity xy ≈ uv); clearly, x3 ≈ x2 holds in C. Suppose there is a variety V such
that V2,1 = C. Then V1,1 is a non-trivial idempotent subvariety of C. However,
there is no non-trivial idempotent groupoid in C, a contradiction.

Problem. As shown above, the claim of Theorem 3 does not work for varieties
without exponent. Particularly interesting case is the following: describe the struc-
ture of free LDLI groupoids modulo free LDI ones.
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