HOMOMORPHIC IMAGES OF
SUBDIRECTLY IRREDUCIBLE GROUPOIDS

DAVID STANOVSKY

ABSTRACT. A groupoid H is a homomorphic image of a subdirectly irreducible
groupoid G (over its monolith) if and only if H has a smallest ideal.

Let G denote the class of all homomorphic images of subdirectly irreducible
groupoids. It is easy to see that the additive semigroup of positive integers is
not in G. On the other hand, according to [3, 2.3], every groupoid possessing an
absorbing element is in G. Now, the aim of this very short note is to prove the
following (somewhat surprising) result: a groupoid H is in G if and only if the
intersection of all ideals of H is non-empty. Moreover, if H € G, then there exists
a subdirectly irreducible groupoid G (G is finite if H is so) such that H ~ G/pu,
where p is the smallest non-trivial congruence of G.

1. PRELIMINARIES

A groupoid is a non-empty set equipped with binary operation (usually denoted
as multiplication). A non-empty subset I of a groupoid G is said to be an ideal of
G if GIUIG C I and we denote by Int(G) the intersection of all ideals of G. The
following two lemmas are quite obvious.

1.1 Lemma. Let G be a groupoid. Then Int(G) is either empty or an ideal of G. If
the latter is true, then Int(G) is the smallest ideal of G. Moreover, G possesses an
absorbing element o if and only if Int(G) is a one-element set; then Int(G) = {o}.

1.2 Lemma. Let ¢ be a projective homomorphism of a groupoid G onto a groupoid
H. If J is an ideal of H, then the inverse image ¢~ '(J) is an ideal of G. Conse-
quently, o(Int(G)) C Int(H). In particular, if Int(G) # 0, then Int(H) # 0.

A non-trivial groupoid G having a smallest non-trivial congruence ug is said to
be subdirectly irreducible and p is then called the monolith of G.

1.3 Lemma. Let G be a subdirectly irreducible groupoid. Then I = Int(G) # 0.
Moreover, if |I| > 2, then ug C (I x I) Uidg.

Proof. If G contains an absorbing element o, then Int(G) = {0}, and hence we
will assume that G has no absorbing element. Now, being I and ideal of G, we
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have |I| > 2 and p;r = (I x I) U idg is a non-trivial congruence of G and so
e C pr. Consequently, if (u,v) € ug, u # v, then (u,v) € pr and u,v € I. Thus
u, v € Int(QG).

1.4 Corollary. Let a groupoid H be a homomorphic image of a subdirectly irre-
ducible groupoid G. Then Int(H) # (.

1.5 Example. If G = N(+4) is the additive semigroup of non-negative integers,
then Int(G) = 0.

1.6 Lemma. If I, J are ideals of a groupoid G, then IJUJI CINJ and INJ is
an ideal of G.

Proof. The result is obvious.

1.7 Corollary. The intersection of a non-empty finite set of ideals of G is again
an ideal of G. Consequently, if the set of ideals of G is finite, then Int(G) # 0.

1.8 Corollary. If G is a finite groupoid, then Int(G) # 0.

1.9 Example ([1]). Let D designate the set of rational numbers of the form a2*,
where a, k are integers. For a positive integer n, let I,, be the n-th cartesian
power of D. Define an operation o on D, by (r1,...,7,) 0 (s1,...,8,) = (%(rl +
51),...,5(rn + sp)). If H is a non-empty open convex subset of D,,, then H (o) is
a subgroupoid of D, (o) and Int(H (o)) = H.

2. MAIN RESULT

2.1 Construction. Let n > 3 be an odd number. We define a groupoid Z,(x) on
the set {0,1,...,n — 1} in the following way:

e 0xm=0forevery 0 <m<n-—1;
k+*0=0foreveryodd 1<k <n-—2;
Ix0=1foreveryeven 2 <[ <mn-—1;
1xm=mforevery 1 <m <n —1;
mxm =m for every 2 <m <n—1;
kxl=k+1forall2<k<n—-21<I<n-1k#I
(n—1)xl=0forevery1 <l <mn-—2.
It is easy to check that Z,(x) is a simple idempotent groupoid and that no right
translation of this groupoid is a permutation. Moreover, 0 is a left absorbing element
and 1 is a left neutral element.

2.2 Construction. Let n > 4 be an even number. We define a groupoid Z,,(*) on
the set {0,1,...,n — 1} in the following way:
e O0xm=0forevery 0 <m<n-—1;

kx0=1foreveryodd 1 <k <n-—1;
lx0=0for every even 2 <[ <mn—2;
1xm=mforevery 1 <m <n—1;
mxm =m for every 2<m <n—1;
kxl=k+1forall2<k<n—-21<I<n-1k#I
(n—1)xl=0forevery1 <l <n-—1.
Again, Z,(x) is a simple idempotent groupoid whose no right translation is a per-
mutation. The element 0 is left absorbing.

The groupoid Z2(x) on the set {0,1} we define in the following way: 1% 0 =
0,0x0=0x1=1x1=1.
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2.3 Construction. Let k be an infinite cardinal number. We define a groupoid
Z,.(x) on the set  in the following way:

e ODxa=0forevery 0 < a<k;

e (B+ k)« 0 =1 for all limit ordinals 8 < x and finite even numbers k > 0,
B+ k #0;

(B+1) 0 =0 for all limit ordinals 3 < » and finite odd numbers [ > 1;
1+xa=aforevery 1 < a < k;

axa =« for every 2 < o < K;
axf=a+1lforall2<a<rkand1<f< k.

The groupoid Z, () is simple and idempotent and none of its right translations is
a permutation. The element 0 is left absorbing and the element 1 is left neutral.

2.4 Theorem. The following conditions are equivalent for a groupoid H:
(i) H is a homomorphic image of a subdirectly irreducible groupoid.

(i) Int(H) # 0.
(ili) H possesses a smallest ideal.
(iv) H is isomorphic to G/uc for a subdirectly irreducible groupoid G.

Proof. In view of 1.4, it is enough to show that (iii) implies (iv). Hence, let I =
Int(H), K = H \ I and x = max(|I|,|K]).

If Kk =1, then |H| < 2. If |[H| = 1, then G can be choosen to be any simple
groupoid. If |H| = 2, then |I| = 1, i.e. I = {0}, where o is an absorbing element
of H={o,a}. We take G = HU{b}, b ¢ H, and put uwov = uv for all u,v € H,
aob=b,0oob=boo=boa=>bob=o0. Clearly, G(o) is a subdirectly irreducible
groupoid and H ~ G/ug.

Now, assume that x > 2 and K # 0.

2.4.1 Lemma. There exist permutations 7, € k! for all a € I,u € K, such that
the following two conditions are satisfied:

(A) Tgu # Taw for alla € I,u,v € K;

(B) for all a,b € I, a # b, and all 0 < o < k, there exists some u € K with

Tau(®) # mpu(a).

Proof. (a) Let |I| = k. Choose w € K, a bijection ¢ : I — & and a quasigroup Q(¢)
defined on k. Put 7, (o) = a0 &(a) for all @ € I and o < k. Now it is easy to find
the remaining permutations 74 4, a € I, u € K \ {w}.

(b) Let |I] < k,4 < k. Choose a permutation p € ! without fix points, an
injective mapping ¢ : I — K and permutations m, € !, u € K such that pm, #
Ty # my for all u,v € K, u # v. Now, define 7., = m, for all a € I, u € K such
that {(a) # v and m, ¢(5) = pre(y) for every b € I.

(c) Let |I| < k < 3. This case is easy.

Put G = (I x k) UK and define an operation o on G in the following way:

e yov =uw for all u,v € K such that uwv € K;
e yov = (uv,0) for all u,v € K such that uv € I;
e (a,a)o (b,3) = (ab,ax ) forall a,b e I,0 < a,B < k (the operation * on
% is defined in 2.1, 2.2 and 2.3);
o uo(a,a)=(ua,mgy(a)) foralla € I,u € K,0 < a < k;
o (a,a)ou = (au,mgy(a)) foralla € I,u € K,0 < a < k.
Foraecl,let I, ={a} xk C I X k.
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2.4.2 Lemma. The groupoid G(o) is subdirectly irreducible and

pee) = | JTa x 1) Uidg.
acl

Proof. Tt is clear that u = |J,;(la X I.) Uidg is a non-trivial cogruence of G
and we have to show that © C v for any non-trivial congruence of G(o). For this
purpose, put J ={a €[ : 1, x I, Cv}. If k =2, then obviously JIUIJ C J.
Ifk>3,ae J,beland 0 < a < k, then ((a,0),(a,a)) € v, and therefore
((ab,0), (ab, @)) = ((a,0) o (b, a), (a,«) o (b,)) € v. From this ab € J and, quite
similarly, ba € J. Thus JIUIJ C J. If a € J,u € K and 0 < «,3 < K, then
((au, mo (@), (au, Tq 4 (0))) = ((a, &)ou, (a, B)ou) € v. Since 7, ,, is a permutation,
we get au € J. Quite similarly, ua € J, and we conclude that J is an ideal of G,
J =1 and p C v, provided that J # (). Consequently, it remains to show that .J is
nonempty. This will be done in next five steps.

(1) Assume that ((a, ), (a,3)) € v for some a € I and 0 < o < 8 < k.

If « = 0 and 8 = 1, then, using the right translation by (a,~) for all
0< vy <k, wegetaacJ.

If ax0 # (3x0, then using right translation by (a,0), we get ((aa,0), (aa,1)) €
v, and hence aa - aa € J.

Finally, if « * 0 = 8% 0 and 2 < 3, then using right translation by (a, «)
for a # 0 and by (a,1) for « = 0, we get ((aa, ), (aa,3?)) € v (here
3% = 3+ 1 for « infinite or « finite and 3 < x — 2, and % = 0 for x finite
and 3 = k — 1). According to the preceding part of the proof, we have
(aa - aa)(aa - aa) € J.

(2) Assume that ((a, ), (b,5)) € v for some a,b€ I, a#b,0 < a < <k and
take arbitrary c € I.

If 2 < «, then, applying the right translations by (c¢,1) and (¢, @), we get
((ac, a®), (be, %)) € v and ((be, BF), (ac, a)) € v. So ((ac,a®), (ac,a)) € v
and our result follows from (1).

If & = 1, then, applying the right translations by (c¢,7) and (¢, 1), where
2 <y # 3, we get ((ac,7), (be, 3%)) € v and ((be, 8P), (ac,1)) € v. Thus
((ac,v), (ac,1)) € v and (1) applies again.

If « = 0 and 2 < 3, then, using the right translations by (c,v) and (c, 3),
where 1 < v # 3, we get ((ac,0), (be, 3%)) € v and ((ac,0), (be, 3)) € v.
That is ((be, 89), (bc, 3)) € v and (1) takes place.

If « =0, =1 and 3 < k, then, because of the right translations by (c,2)
and (¢, 1), we get ((ac,0), (be,2)) € v and ((ac,0), (be,1)) € v. It follows
that ((be,2), (be, 1)) € v and (1) makes the job.

Finally, if « = 0, § = 1 and x = 2, then, because of the right translations
by (c,1) and (c,0), we get ((ac, 1), (bc,1)) € v and ((ac, 1), (bc,0)) € v. So
((be, 1), (be, 0)) € v and (1) works.

(3) Assume that ((a, @), (b,a)) € v for some a,b € I, a #band 0 < a < k.
Then, by (B) (see 2.4.1), there is u € K such that 8 = 1, () # mp () =
~. Thus, using the right translation by u, we get ((au, 3), (bu,~)) € v. Now,
either (1) or (2) can be used.

(4) Assume that ((a,a),u) € v for some a € I,u € K and 0 < a < k.

If ba # bu for some b € I, then, using the left translation by (b,0), we get
((ba, 0 * ), (bu, 7, 5(0))) and either (2) or (3) can be used.
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If Kk > 3 and ca = cu for some ¢ € I, then, using the facts that =, is a
permutation of x, but no right translation of Z,(x) is a permutation, we
find 0 < 8 < k such that 8*a # 7., (8) = 7. We apply the left translation
by (¢, 3) and we get ((ca, 8 * a), (cu,~)) € v. Thus (1) takes place.

The case k = 2 is clear.

(5) Assume that (u,v) € v for some u,v € K, u # v, and take arbitrary a € I.
By (A) (see 2.4.1), there is 0 < a < £ such that § = 7y (@) # Ta0(a) = 7.
Now, applying the left translation by (a, ), we get ((au, 8),(av,v)) € v.
Thus at least one of (1) and (2) can be used.

2.4.3 Lemma. G(o)/pg) ~ H.
Proof. Easy to see.

Now, we will discuss the case K = (), i.e. H is an ideal-free goupoid and I =
Int H = H. Put G = H x x and define an operation o on H by (a,«) o (a,3) =
(aa, B *a) and (a,a) o (b, 8) = (ab,a* B) for all a,b € H,a # b, 0 < o, 3 < k. For
a€ H,let H, ={a} x k.

2.4.4 Lemma. The groupoid G(o) is subdirectly irreducible and

HG(o) = U (Ha X Ha)-
acH

Proof. We have to show that u = |, ;(HaxH,) C v for any non-trivial congruence
v of G(o). Proceeding similarly as in the proof of 2.4.2, it is sufficient to check that
H, x H, C v for at least one a € H. This will be done in the next three steps.

(1) Assume that ((a, @), (a,3)) € v for some a € H and 0 < o < § < k. Now,
using left translations instead of the right ones, we can proceed similarly as
in 2.4.2 (1).

(2) Assume that ((a, ), (b,0)) € vforsomea,b € H,a # b,and 0 < a < § < k.
If k > 3, then we can proceed similarly as in 2.4.2 (2); we have to choose
a # ¢ #b. The case k = 2 is clear.

(3) Assume that ((a, ), (b,a)) € v for some a,b € H,a # b and 0 < a < k.
There is 0 < 8 < & such that a x 8 # (8 * o, and hence, using the right
translation by (a, 8), we get ((aa, 3% a), (ba,a* 3)) € v. Now, either (1) or
(2) takes place.

2.4.5 Lemma. G(o)/pg) ~ H.

Proof. Easy to see.

2.5 Corollary. Let H be a finite groupoid, |H| = n and | Int(H)| = m. Then there
exists a finite subdirectly irreducible groupoid G such that G/uc ~ H. Moreover,
G can be choosen in such a way that

(1) |Gl =2ifn=1;

(2) 1G| =3 ifn=2;

(3) |G| =m2+(n—m) ifn >3 andn < 2m;

4) |Gl =(m+1)(n—m)ifn>3 andn>2m.
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2.6 Remark. The results can be easily strengthened to all algebras with at least
one at least binary operation. Given algebra H of signature ¥ (with all symbols of
finite arity) with operations (o, : ¢ € X), a non-empty subset I of H is said to be
an ideal of H if for every symbol o € ¥ of arity n > 1 and for every x1,...,x, € H
holds o, (x1,...,2,) € I whenever x; € I for at least one i. We denote by Int(H)
the intersection of all ideals of H.

Now, Theorem 2.4 and Corollary 2.5 hold also for all algebras with signature
containing at least one symbol of arity at least 2. Obviously the statements 1.1 —
1.4 work for such algebras. So it remains to construct the subdirectly irreducible
algebra G with operations (g, : 0 € X) satisfying the condition 2.4 (iv). It is
defined on the same set (I x k) U K by the following way (for every symbol o € ¥):

o go(uy,...,up) =o0s(ut,...,uy) =vforalluy,..., u, € K such that v € K;

o go(uy,...,un) = (0g(u1,...,uy),0) for all uy,...,u, € K not satisfying
previous condition;

e if 0 is unary, then g,((a,a)) = (0s(a), @) for every a € I, 0 < a < k;

e if o is at least binary, then

ga’(u17 ceey Uk, (ava)vuk—}—lv .. ';u’nfl) = (Oa(ula ey Uk, Gy U1, - - - 7un71)7ﬂ-a,u1 (05))

forallael, uy,...,up1 € K,0<a<k, k=0,...,n—1;

e if o is at least binary, then g,(z1,...,2,) = (05§21, ..., &xy), a1 * (a2 ®
- ®ay)) for all xq,...,x, € G such that z;,,...,z;, €I, k> 2, denoting
xi; = (aj,0;5), j=1,...,k,and £ : G — H, €|k = idg, &(a, o) = a for all
acl,0<a<k,and ® some group operation on k.

It is easy to see that in the case of groupoids (i.e. ¥ contains one binary opera-
tion) this definition gives precisely the same subdirectly irreducible groupoid as in
the proof of Theorem 2.4. In fact, the proof of the property 2.4 (iv) in the general
case can be done easily following the proof of this theorem. We omit this proof
because of technical difficulty and absence of any new ideas.

On the other hand, if the signature of the given algebra contains only unary
operations, this result does not work anymore. Any suitable characterization is not
known yet.

2.7 Remark. Let F denote the class of finite groupoids and H the class of all
groupoids H € F such that H ~ G/uc for a finite subdirectly irreducible groupoid
G with |G| = |H|+ 1. According to [2, 4.11] and [3, 2.4] (see also [4]), the following
groupoids belong to H:

(1) finite groupoids with zero multiplication,

(2) finite quasigroups,

(3) finite simple groupoids,

(4) finite subdirectly irreducible groupoids H such that the monolith contains
at least one pair (a,b) with aa = a # b.

3
4

On the other hand, any "reasonable” characterization of H seems to be an open
problem.
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