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Abstract. For each digraph with at most 5 vertices, we provide a list of its
polymorphisms interesting with respect to the complexity of the corresponding

Constraint Satisfaction Problem. We find a digraph on six vertices such that
the complexity of its retraction problem is unknown with current techniques;

this is the smallest such example.

1. Introduction

For a fixed finite relational structure A, the Constraint Satisfaction Problem over
A, CSP(A) for short, can be formulated as a decision problem asking whether an
input (finite) relational structure X of the same type as A admits a homomorphism
to A. The computational and descriptive complexity of CSPs is now a very active
research area, the main open question is the Dichotomy Conjecture of Feder and
Vardi [18] stating that each CSP(A) is either NP -complete, or tractable.

Much of recent development builds on results in [21, 13, 7], where it was shown
that the complexity of CSP(A) depends only on a certain set of functions – the
polymorphisms of the structure A. Bulatov, Jeavons and Krokhin [13] formulated
the Algebraic Dichotomy Conjecture postulating a necessary and sufficient condi-
tion for tractability of CSP(A) in terms of polymorphisms (and they proved NP -
completeness in the other case). The conjecture was confirmed in various special
cases, the most notable recent results are [8, 10, 4, 2].

This paper gives a report on results obtained by computer testing the existence
of various types of polymorphisms for digraphs, i.e. relational structures with one
binary relation. We have chosen those polymorphisms which are important in
the CSP and which can be checked in reasonable time – Mal’cev polymorphism,
near-unanimity polymorphisms (up to arity 5), edge polymorphisms (up to arity
5), semilattice polymorphism, 2-semilattice polymorphism, totally symmetric poly-
morphisms (up to arity 4), weak near-unanimity polymorphisms (up to arity 5),
polymorphisms characterizing bounded width, and Siggers polymorphism (see Sec-
tion 2 for definitions and explanation).

We concentrated on digraphs for two reasons. First, they are simple enough
so that they are ideal toy examples for testing various conjectures (not only in
CSP). Secondly, they are general enough for studying the complexity of CSPs –
a construction in [18] shows that for every relational structure A there exists a
digraph G such that CSP(A) and CSP(G) are poly-time equivalent.
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Figure 1. The sea devil digraph: the smallest digraph with (cur-
rently) unknown complexity of its CSP.

The above mentioned polymorphisms were checked for all non-isomorphic di-
graphs with up to 5 vertices and for a number of randomly chosen digraphs on
6, 7 and 8 vertices. The results are discussed in Section 3 and our computational
techniques in Section 4. We believe that our rather comprehensive catalogue of poly-
morphisms will be useful for researchers in CSP and universal algebra. Moreover,
we have found a digraph on 6 vertices, which is conjecturally tractable according to
the Algebraic Dichotomy Conjecture, but the complexity of the corresponding CSP
(more precisely, the complexity of its retraction problem, see Section 2) is unknown
with current techniques. The digraph is depicted on Figure 1. Note that this is the
smallest such example, since we found that all digraphs with at most 5 vertices are
either NP-complete, or have bounded width (and hence are tractable).

2. CSP and Polymorphisms

A digraph is a pair G = (V,E), where V is a finite set of vertices and E ⊆
V × V is a set of edges. For a digraph G = (V = {v1, . . . , vk}, E) we denote by Ḡ
the relational structure Ḡ = (V,E, {v1}, {v2}, . . . , {vk}), so that Ḡ has one binary
relation E and |V | (singleton) unary relations. The CSP over G is also called
G-coloring problem, CSP(Ḡ) is the retraction problem for G.

A digraph is a core if all of its endomorphisms are bijective. It is easily seen that
every digraph G has an induced core subgraph H (unique up to isomorphism) such
that G maps homomorphically onto H and therefore the corresponding CSPs are
the same. It was shown in [13] that for a core digraph G the problems CSP(G) and
CSP(Ḡ) are poly-time equivalent. Therefore the results below which are formulated
for Ḡ can be translated to results about G.

An n-ary polymorphism of a digraph G = (V,E) is a mapping f : V n → V
which preserves edges. Namely, for any (a1, b1), (a2, b2), . . . , (an, bn) ∈ E, the pair
(f(a1, . . . , an), f(b1, . . . , bn)) is in E.

A polymorphism f is called idempotent, if f(x, x, . . . , x) = x for all x ∈ V . The
following definition lists some important types of idempotent polymorphisms.

Definition 1. Let n ≥ 2. An idempotent polymorphism f : V n → V is
• a weak near-unanimity polymorphism (wnu n), if (for all x, y ∈ V )

f(y, x, x, . . . , x) = f(x, y, x, x, . . . , x) = · · · = f(x, x, . . . , x, y);

• a near-unanimity polymorphism (nu n), if it is a weak near-unanimity poly-
morphism of arity n ≥ 3 and f(x, x, . . . , x, y) = x;

• a totally symmetric polymorphism (ts n), if

f(x1, x2, . . . , xn) = f(y1, y2, . . . , yn)

whenever {x1, . . . , xn} = {y1, . . . , yn};
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Figure 2. The poset of polymorphism conditions: theoretical picture.

• an edge polymorphism (edge n), if n ≥ 3,

f(y, y, x, x, . . . , x) = t(y, x, y, x, x, . . . , x) = x

and

f(x, x, x, y, x, . . . , x) = f(x, x, x, x, y, x, . . . , x) = · · · = f(x, . . . , x, y) = x;

• a Siggers polymorphism (siggers), if n = 4 and

f(x, y, y, z) = f(y, x, z, x);

• a Mal’cev polymorphism (malcev), if n = 3 and

f(y, y, x) = f(x, y, y) = x;

• a semilattice polymorphism (sml), if n = 2 and

f(x, y) = f(y, x), f(f(x, y), z) = f(x, f(y, z));

• a 2-semilattice polymorphism (2sml), if n = 2 and

f(x, y) = f(y, x), f(f(x, y), x) = f(x, y);

The poset on Figure 2 compares the strength of these polymorphisms. An edge
means that the lower polymorphism implies the upper one. In other words, the
lower condition on polymorphisms is stronger than the upper one. Most of the
implications, which are not explained below, are readily seen from the fact that the
set of polymorphisms is closed under composition. To avoid confusion, we remark
that a k-ary edge polymorphism is usually called a (k − 1)-edge polymorphism in
the literature.

Bulatov, Jeavons and Krokhin [13] proved that the complexity of CSP(Ḡ) de-
pends only on the set of idempotent polymorphisms of G. Moreover, they showed
that the absence of so called Taylor polymorphism (not defined above) implies
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NP -completness of CSP(Ḡ) and they conjectured that if Ḡ admits such a poly-
morphism, then CSP(Ḡ) is tractable. This is the Algebraic Dichotomy Conjecture
mentioned in the introduction. We remark that the formulation in [13] was differ-
ent, but equivalent according to results in Chapter 9 of [19] (see also [14]). The
existence of a Taylor polymorphism was shown to be equivalent to the existence of
a weak near-unanimity polymorphism [26], and, more recently, to the existence of
a cyclic polymorphism [3]. For computational purposes we used yet another equiv-
alent characterization, the existence of what we call here a Siggers polymorphism.
Note that the original condition of Siggers [27] uses 6-ary polymorphism. It was
observed by P. Marković and R. McKenzie that from a result of [4] one can derive
many similar conditions (see [27]); we chose one that seemed computationally most
feasible. We remark that this condition is the weakest nontrivial “equational con-
dition” on idempotent polymorphisms – all strictly weaker conditions are satisfied
by all digraphs (see Chapter 9 of [19] for a more general result).

There are two known algorithms, or, rather, algorithmic principles for solving
CSP(Ḡ) in poly-time. All of known algorithms are combinations of these two.

The first algorithmic idea tries to describe all solutions (=homomorphisms) in
a way similar to Gaussian elimination. The milestone result [6] was an algorithm
that works for all digraphs (more generally, all relational structures) with a Mal’cev
polymorphism. The result was generalized in [5, 20] to structures with an edge
polymorphism (note that a ternary edge polymorphism is basically Mal’cev after
shifting variables). The last result in certain sense (see [20]) finishes the research in
this direction. The algorithm solving CSP(Ḡ) in this case is called few subpowers.
If G admits an edge term we also say that G has few subpowers. It was recently
shown [22] that digraphs with Mal’cev polymorphism have a very restrictive struc-
ture, in particular, they all have a near-unanimity polymorphism of arity 3 (hence,
considering digraphs only, the malcev node in Figure 2 could be shifted below nu3).

The second algorithmic idea is to try to check whether a homomorphism exists
by looking at small pieces of the input digraph. The digraphs for which such a
local consistency algorithm can be used are said to have bounded width (bw), see
[18, 24, 12]. It was shown that the existence of a near-unanimity polymorphism
implies bounded width [18]; near unanimity polymorphisms actually characterize a
stronger condition than bounded width, called strict width (see [18]). A semilattice
polymorphism implies bounded width as well [21]. More generally, totally symmet-
ric polymorphisms of all arities ensure bounded width, they characterize problems
of width 1 [17]. The semilattice case was generalized by Bulatov [9] – he proved
that a 2-semilattice polymorphism suffices. The research in this direction was fin-
ished after a sequence of partial results [23, 15, 1] in [2], where the authors proved
the Bounded Width Conjecture of Larose and Zádori from [24] – a digraph has
bounded width if and only if it has weak near-unanimity polymorphisms of all but
finitely many arities (an independent proof was announced by Bulatov [11]). Using
results of [2] it was shown by M. Kozik (a manuscript is not yet available) that this
condition is equivalent to the existence of weak near-unanimity polymorphisms f
of arity 3 and g of arity 4 such that f(x, x, y) = g(x, x, x, y). This characterization
was used in our computations (the condition (bw)).
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Figure 3. The poset of polymorphism conditions: our setting.

3. Results

In our experiments, we had to restrict the arities of polymorphisms. We searched
for (weak) near-unanimity and edge polymorphisms up to arity 5 and for totally
symmetric polymorphisms up to arity 4. The corresponding poset is drawn on
Figure 3.

The results and scripts running the computation are available from our website
http://www.karlin.mff.cuni.cz/~stanovsk/math/gpoly.htm

In this section we present several interesting statistics.

3.1. Digraphs on ≤ 5 vertices. The major part of our computation was, to
determine polymorphisms of all digraphs (all up to isomorphism) with at most 5
vertices.

On Figures 4, 5, 6 and 7, one can read dependencies between the polymorphism
conditions for digraphs with 2, 3, 4, and 5 vertices, respectively. The entries in
the table show the number of digraphs that have both the row and the column
polymorphisms. Particularly, the diagonal shows the total number of digraphs
with the respective polymorphism.

Figures 8, 9 and 10 display the poset of polymorphism conditions for digraphs
with 2, 3, and 4/5 vertices, respectively (for sizes 4 and 5, the poset is identical).
For small digraphs, some of the conditions are equivalent; so, what you see, are
factorposets of the poset from Figure 3 over this equivalence. Vertices with multiple
labels represent conditions that are indistinguishable on digraphs of respective size.
These posets can be read from Figures 4, 5, 6 and 7. Indeed, the implication
“polymorphism A implies polymorphism B for all digraphs of a given size” holds
precisely if the number of digraphs of the given size admitting both A,B is the
same as the number of digraphs admitting A.
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siggers edge5 edge4 nu5 nu4 nu3 malcev 2sml sml wnu2 ts34
siggers 10 10 10 10 10 10 8 9 9 9 9
edge5 10 10 10 10 10 10 8 9 9 9 9
edge4 10 10 10 10 10 10 8 9 9 9 9
nu5 10 10 10 10 10 10 8 9 9 9 9
nu4 10 10 10 10 10 10 8 9 9 9 9
nu3 10 10 10 10 10 10 8 9 9 9 9

malcev 8 8 8 8 8 8 8 7 7 7 7
2sml 9 9 9 9 9 9 7 9 9 9 9
sml 9 9 9 9 9 9 7 9 9 9 9

wnu2 9 9 9 9 9 9 7 9 9 9 9
ts34 9 9 9 9 9 9 7 9 9 9 9

Figure 4. Dependence table for 2-element digraphs.

siggers edge5 edge4 nu5 nu4 nu3 malcev 2sml sml wnu2 ts34
siggers 97 92 92 92 92 92 29 91 90 91 90
edge5 92 92 92 92 92 92 29 86 85 86 85
edge4 92 92 92 92 92 92 29 86 85 86 85
nu5 92 92 92 92 92 92 29 86 85 86 85
nu4 92 92 92 92 92 92 29 86 85 86 85
nu3 92 92 92 92 92 92 29 86 85 86 85

malcev 29 29 29 29 29 29 29 25 24 25 24
2sml 91 86 86 86 86 86 25 91 90 91 90
sml 90 85 85 85 85 85 24 90 90 90 90

wnu2 91 86 86 86 86 86 25 91 90 91 90
ts34 90 85 85 85 85 85 24 90 90 90 90

Figure 5. Dependence table for 3-element digraphs.

siggers edge5 edge4 nu5 nu4 nu3 malcev 2sml sml wnu2 ts34
siggers 2279 1736 1690 1737 1736 1690 118 2190 2178 2190 2184
edge5 1736 1736 1690 1736 1736 1690 118 1676 1670 1676 1670
edge4 1690 1690 1690 1690 1690 1690 118 1630 1624 1630 1624
nu5 1737 1736 1690 1737 1736 1690 118 1677 1671 1677 1671
nu4 1736 1736 1690 1736 1736 1690 118 1676 1670 1676 1670
nu3 1690 1690 1690 1690 1690 1690 118 1630 1624 1630 1624

malcev 118 118 118 118 118 118 118 96 92 96 92
2sml 2190 1676 1630 1677 1676 1630 96 2190 2178 2190 2184
sml 2178 1670 1624 1671 1670 1624 92 2178 2178 2178 2178

wnu2 2190 1676 1630 1677 1676 1630 96 2190 2178 2190 2184
ts34 2184 1670 1624 1671 1670 1624 92 2184 2178 2184 2184

Figure 6. Dependence table for 4-element digraphs.

siggers edge5 edge4 nu5 nu4 nu3 malcev 2sml sml wnu2 ts34
siggers 136819 69444 60528 70832 69444 60528 472 132510 130871 132510 132430
edge5 69444 69444 60528 69444 69444 60528 472 68610 68554 68610 68555
edge4 60528 60528 60528 60528 60528 60528 472 59694 59640 59694 59641
nu5 70832 69444 60528 70832 69444 60528 472 69998 69940 69998 69943
nu4 69444 69444 60528 69444 69444 60528 472 68610 68554 68610 68555
nu3 60528 60528 60528 60528 60528 60528 472 59694 59640 59694 59641

malcev 472 472 472 472 472 472 472 383 359 383 360
2sml 132510 68610 59694 69998 68610 59694 383 132510 130871 132510 132430
sml 130871 68554 59640 69940 68554 59640 359 130871 130871 130871 130871

wnu2 132510 68610 59694 69998 68610 59694 383 132510 130871 132510 132430
ts34 132430 68555 59641 69943 68555 59641 360 132430 130871 132430 132430

Figure 7. Dependence table for 5-element digraphs.s nu3 and upwards
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Figure 8. Poset of polymorphism conditions on 2-element digraphs.
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Figure 10. Poset of polymorphism conditions on 4- and 5-element digraphs.

Figure 11 displays the number of digraphs on 2 to 5 vertices, where a given
polymorphism condition is minimal, that is, where the digraph has the given poly-
morphism, but does not admit any stronger one with respect to Figure 3. It turns
out that many digraphs admit a rather low condition: the most popular one is
semilattice, and many digraphs also admit ternary nu. We note that Mal’cev poly-
morphisms are rare, a fact that is theoretically explained in [22]. The first line of
the table shows the number of NP-complete digraphs, the last line the total number
of non-isomorphic digraphs.

Figure 12 displays the smallest digraphs such that a given condition is minimal.
In cases when there are more examples of the same size, the lexicographically first
one is chosen. Digraphs are presented both by their size/id number, and row
vectors of their incidence matrices; examples with 6 vertices were found by random
search (see below). Included are also digraphs that provide independence of the two
branches from Figure 9 (a digraph that admits Mal’cev polymorphism and avoids
binary weak near-unanimity polymorphism, and a digraph that admits semilattice
polymorphism and avoids 5-ary near-unanimity polymorphism), and digraphs that
provide independence of the two branches of the pentagon on Figure 3.

The number of digraphs with a given set of minimal polymorphism conditions is
summarized on Figure 13. Particularly interesting are the three bottom lines of the
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condition size 2 size 3 size 4 size 5
NONE 0 7 765 155151
malcev 8 29 118 471
nu3 2 63 1572 60056
nu4 0 0 46 8916
nu5 0 0 1 1388
edge4 0 0 0 0
edge5 0 0 0 0
bw 0 0 29 3475
sml 9 90 2178 130870
2sml 0 1 12 1639
ts4 0 0 6 1559
ts3 0 0 0 0
wnu2 0 0 0 0
wnu3 0 0 0 0
wnu4 0 0 0 0
wnu5 0 0 0 0
siggers 0 0 0 0
TOTAL 10 104 3044 291968

Figure 11. The number of digraphs where a given polymorphism
condition is minimal.

condition size/# example
nu3 2/7 01 11
nu4 4/948 0111 0011 0000 1101
nu5 4/2048 0111 1010 1011 1111
bw 4/220 0011 0000 1001 0100
2sml 3/21 010 001 100
ts4 4/1097 0111 0010 0100 1001
wnu3,wnu5 6/random 000000 000000 010010 010100 100001 101000
has sml, no nu5 3/71 011 010 101
has malcev, no wnu2 3/4 001 000 100
has 2sml, no ts3 3/21 010 001 100
has ts4, no 2sml 6/random 011000 000100 000001 010000 010101 000001

Figure 12. The smallest digraphs where a given polymorphism
condition is minimal, and the smallest independence examples.

table – certain combinations of conditions are satisfied by precisely 1 or 2 digraphs
(out of 291968) on 5 vertices.

Figures 14 and 15 contain the minimal polymorphism conditions for all digraphs
on 2 and 3 vertices. The full list for 4- and 5-element digraphs can be downloaded
from our website (the size 5 tables have over 1000 pages!).

3.2. Larger digraphs. There are 96,928,992 non-isomorphic digraphs on 6 ver-
tices. This makes the brute-force computation through all of them nearly impos-
sible. Instead, we were generating random digraphs with given edge probabilities.
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minimal poly’s size 2 size 3 size 4 size 5 example
malcev sml 7 24 92 358 00 00
nu3 sml 2 61 1532 59281 01 11
malcev 1 4 22 89 01 10
sml 0 5 507 60931 011 010 101
nu3 0 2 38 745 011 001 010
malcev 2sml 0 1 4 23 010 001 100
nu4 sml 0 0 46 8914 0111 0011 0000 1101
bw 0 0 29 3475 0011 0000 1001 0100
2sml ts4 0 0 6 1556 0111 0010 0100 1001
nu5 sml 0 0 1 1386 0111 1010 1011 1111
nu3 2sml 0 0 2 30 0111 0010 0001 0100
2sml 0 0 0 25 00101 00000 00011 10001 01000
nu5 2sml ts4 0 0 0 2 00011 00100 10011 11000 11001
nu4 2sml 0 0 0 2 00111 00011 00010 00001 00100
malcev 2sml ts4 0 0 0 1 00100 00010 00001 10000 01000
NONE 0 7 765 155151 011 001 100

Figure 13. The number of digraphs with given combination of
minimal polymorphism conditions.

# table minimal polymorphisms
01 00 00 malcev sml
02 01 00 malcev sml
03 01 10 malcev
04 00 01 malcev sml
05 01 01 malcev sml
06 00 11 malcev sml
07 01 11 nu3 sml
08 10 01 malcev sml
09 11 01 nu3 sml
10 11 11 malcev sml

Figure 14. Minimal polymorphism conditions on 2-element digraphs.

We experimented with ratios from 1/6 to 5/6, using weeks of computer time. We
obtained two interesting digraphs, presented in Figure 12.

Particularly, we found the sea devil digraph, the smallest digraph with a Siggers
polymorphism that does not have bounded width (see Figure 1). It has a 3-ary and
5-ary wnu, but fails to have a 4-ary one. Separately, we computed that it fails to
have edge polymorphisms up to arity 7. It is unknown to us, whether the digraph
has an edge polymorphism of a higher arity, in other words, whether its retraction
problem can be solved by the few subpowers algorithm.

The sea devil digraph was found using edge probability 1/3. It is essentially
the only such a 6-element digraph we found (one can obtain few more by reversing
certain edges.) We also found three such digraphs on 7 vertices using probabilities
1/3 and 1/4 and one on 8 vertices (1/4), but all of them are just simple modifications
of the sea devil.
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# table minimal poly’s
01 000 000 000 malcev sml
02 001 000 000 malcev sml
03 001 001 000 malcev sml
04 001 000 100 malcev
05 000 001 100 malcev sml
06 001 001 100 malcev
07 000 000 110 malcev sml
08 001 000 110 malcev
09 001 001 110 malcev
10 000 000 001 malcev sml
11 001 000 001 malcev sml
12 001 001 001 malcev sml
13 000 000 101 malcev sml
14 001 000 101 nu3 sml
15 000 001 101 nu3 sml
16 001 001 101 nu3 sml
17 000 000 111 malcev sml
18 001 000 111 nu3 sml
19 001 001 111 nu3 sml
20 011 001 000 nu3 sml
21 010 001 100 malcev 2sml
22 011 001 100
23 011 001 010 nu3
24 011 000 110 nu3
25 011 001 110
26 010 000 001 malcev sml
27 011 000 001 nu3 sml
28 010 001 001 malcev sml
29 011 001 001 nu3 sml
30 010 000 101 malcev sml
31 011 000 101 nu3 sml
32 010 001 101 nu3 sml
33 011 001 101 nu3 sml
34 010 000 011 nu3 sml
35 011 000 011 malcev sml
36 010 001 011 nu3 sml
37 011 001 011 nu3 sml
38 010 000 111 nu3 sml
39 011 000 111 nu3 sml
40 010 001 111 nu3 sml
41 011 001 111 nu3 sml
42 011 101 110
43 010 100 001 malcev sml
44 011 100 001 nu3 sml
45 011 101 001 nu3 sml
46 010 100 101 nu3 sml
47 011 100 101 nu3 sml
48 010 101 101 nu3 sml
49 011 101 101 nu3 sml
50 010 100 111 nu3 sml
51 011 100 111 nu3 sml
52 011 101 111 nu3 sml

# table minimal poly’s
53 000 010 001 malcev sml
54 001 010 001 malcev sml
55 000 011 001 nu3 sml
56 001 011 001 nu3 sml
57 000 010 101 malcev sml
58 001 010 101 nu3 sml
59 000 011 101 nu3 sml
60 001 011 101 nu3 sml
61 001 010 011 nu3 sml
62 000 011 011 malcev sml
63 001 011 011 nu3 sml
64 000 010 111 nu3 sml
65 001 010 111 nu3 sml
66 000 011 111 nu3 sml
67 001 011 111 nu3 sml
68 011 010 001 nu3 sml
69 011 011 001 nu3 sml
70 010 010 101 nu3 sml
71 011 010 101 sml
72 010 011 101
73 011 011 101 sml
74 011 011 011 malcev sml
75 010 010 111 nu3 sml
76 011 010 111 nu3 sml
77 010 011 111 nu3 sml
78 011 011 111 nu3 sml
79 000 110 101 nu3 sml
80 001 110 101 sml
81 000 111 101 nu3 sml
82 001 111 101 nu3 sml
83 001 110 111 sml
84 000 111 111 malcev sml
85 001 111 111 nu3 sml
86 011 110 101
87 011 111 101
88 011 111 111 nu3 sml
89 100 010 001 malcev sml
90 101 010 001 nu3 sml
91 101 011 001 nu3 sml
92 101 010 101 malcev sml
93 100 011 101 nu3 sml
94 101 011 101 nu3 sml
95 100 010 111 nu3 sml
96 101 010 111 nu3 sml
97 101 011 111 nu3 sml
98 111 011 001 nu3 sml
99 110 011 101
100 111 011 101 sml
101 111 011 011 nu3 sml
102 111 010 111 nu3 sml
103 111 011 111 nu3 sml
104 111 111 111 malcev sml

Figure 15. Minimal polymorphism conditions on 3-element digraphs.

The digraph proving independence of 4-ary totally symmetric and 2-semilattice
polymorphisms is tractable: it has bounded width. We obtained two digraphs with
the same properties, i.e., with minimal conditions ts4 and bw: the one presented in
Figure 12 (edge probability 1/3), and a very different example on 7 vertices (1/2),
with incidence matrix

0010000 0001100 0011000 0111100 1101010 0110101 1011010.
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cnf(sml,axiom, t(X,X)=X ).
cnf(sml,axiom, t(X,Y)=t(Y,X) ).
cnf(sml,axiom, t(X,t(Y,Z))=t(t(X,Y),Z) ).
cnf(pr,axiom,( ~gr(X0,X1) | ~gr(X2,X3) | gr(t(X0,X2),t(X1,X3)) )).
cnf(graph,axiom,~gr(n0,n0)).
cnf(graph,axiom,gr(n0,n1)).
cnf(graph,axiom,gr(n1,n0)).
cnf(graph,axiom,gr(n1,n1)).
cnf(elems,axiom,n0!=n1).
cnf(elems,axiom,( X=n0 | X=n1 )).

Figure 16. Paradox input file asking to determine whether the
2-element digraph #07 admits a semilattice polymorphism.

4. Techniques

In the present section, we give a short account on how we conducted the search.
Shortly speaking, we generated a list of all digraphs of a given size, and for each of
them were running tests for polymorphism conditions, starting from the bottom of
the poset on Figure 3. This way, we obtained all minimal polymorphism conditions.
For sizes more than 5, there are too many digraphs. Instead of generating them
all, we were taking random digraphs, with various edge probabilities.

To generate all digraphs of given size up to isomorphism, we used a Java applet
by Miklós Maróti [25]. It can generate all 291,968 non-isomorphic digraphs on 5
vertices within few minutes.

We created a Perl script that reads through a list of digraphs, and for each of
them determines given polymorphism conditions. To check whether a given digraph
has a given polymorphism, we use the finite model builder Paradox [16]. This is a
program that reads a set of first order formulas, and searches for a (finite) model.
It translates the problem into SAT, calls an external SAT-solver (miniSAT, in this
case), and interprets the result. To set up an input file for Paradox, we encode a
digraph by its incidence table, add axioms to ensure the universe of the model is
the set of vertices, put the equations we impose on the polymorphism we search,
and add the conditions that all mappings involved preserve the edges. A sample
file is displayed on Figure 16. When Paradox finishes its job, the script reads the
answer and, in case of failure, it proceeds further up in the polymorphism poset.

Running the poset bottom up (rather than top down) makes better sense for
small digraphs, since many of them actually satisfy very low polymorphism con-
ditions (see Figure 11). Also, bottom up direction is more likely to avoid costly
computation of polymorphisms of high arities. For larger sizes, however, it is worth
starting with checking the Siggers polymorphism, since most digraphs are NP-
complete.

We imposed time limit of 60 seconds for each call of Paradox. The time limit
was never met for digraphs of size ≤ 5. The following table shows computation
times for a single Paradox call.

• sizes 2,3: always fractions of seconds,
• size 4: always below 2 seconds,
• size 5:
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– 2.9 million (83%) in < 1 second,
– 0.6 million (17%) between 1 and 2 seconds,
– 505 between 2 and 3 seconds,
– 91 between 3 and 4 seconds, etc.
– 8 computations over 10 seconds, with maximum 21s to compute that

the digraph #235816 admits nu5.
The total time to process all 5-element digraphs was a little over a week of computer
time.

For larger digraphs, we used a pseudorandom generator. We modified the script,
to generate digraphs with given edge probability (instead of reading through a file).
Timeouts were met quite often, particularly for the 5-ary operations. It turned out
that in most of the difficult tasks, the polymorphism actually existed. It means,
proving nonexistence seems to be an easier problem than finding an example.

Finally, let us note that, in the initial experiments, we tried two model builders,
Paradox and Mace4 (both based on SAT). We realized soon that Paradox outper-
forms Mace4 by an order of magnitude. There are model builders based on different
methods, but they don’t seem to be able to handle this sort of tasks efficiently.
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[25] Miklós Maróti. http://www.math.u-szeged.hu/~mmaroti/applets/ModelPrinter.html.
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