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Abstract. We study a class of strongly solvable modes, called differential
modes. We characterize abelian algebras in this class and prove that all of

them are quasi-affine, i.e., they are subreducts of modules over commutative

rings.

1. Introduction

Modes are idempotent algebras where every pair of operations commutes, or, in
other terms, idempotent algebras where all operations are homomorphisms from the
respective direct power (see Section 3 for a formal definition). One of the major open
problems in the theory of modes is, to find an abstract characterization of modes
that are subreducts of a module over a commutative ring (see the monograph [11]
or the survey paper [9]). The problem has been addressed in several papers, the
complete list of references can be found in a recent contribution [15], and many
results are summarized in [11]. Abelianess is an obvious necessary condition and it
seems plausible to conjecture that it is also sufficient. We confirm the conjecture for
differential modes. (We consider abelian algebras in the abstract sense of universal
algebra; they are called diagonally normal in [11]).

Our result also has some appeal to the “abelian implies quasi-affine” problem
[17]. A mode is quasi-affine if and only if it is a subreduct of a module over a com-
mutative ring (see Section 2 for explanation). All quasi-affine algebras are abelian,
but not the other way around. One of the major projects in universal algebra is to
determine abstract conditions that make abelian algebras quasi-affine. There was
a significant progress over the years, from the initial results of H. P. Gumm [1] and
J. D. H. Smith [12] proving the implication for congruence permutable varieties, to
the strongest result so far, for varieties satisfying a non-trivial idempotent Mal’cev
condition [4] by K. Kearnes and Á. Szendrei. The full story is covered by the sur-
vey paper [17], or in a shorter way by the introductory notes of the most recent
contribution [16].

The present paper settles the implication for the class of differential modes [5],
consisting of modes with a single n-ary operation that possess a congruence such
that all its blocks and the factor are left projection algebras (instead of left, we
could have chosen any position to be the distinguished one). The main idea of the
proof is, to syntactically verify the axioms of quasi-affine algebras recently found
by M. Stronkowski and the author in [16].
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Despite the fact the class we study is rather small, I find the result interesting
for two reasons. First, all previous theorems on embedding modes into modules
assumed some sort of cancellativity. But there are no cancellative differential modes
(we can only have cancellativity in one coordinate). Second, the results of K.
Kearnes [2, 3] indicate that modes come in three substantially different families. For
finite modes, the families are: strongly solvable modes, affine modes and semilattice
modes. Affine modes are trivially quasi-affine, and non-trivial semilattice modes
are never abelian, so the interesting case is the strongly solvable one. It is natural
to start with differential modes: they posses a strongly solvable chain of length 2.
The class was investigated in a recent series of papers [5, 7, 14] (and much earlier
in the binary case, see [11]), providing tools and insight for our work.

The paper is organized as follows. In Section 2, we recall the folklore fact that
quasi-affine modes are subreducts of modules over commutative rings. Section 3
contains an introduction to Szendrei modes and the observation that abelian modes
are Szendrei modes. In the next section, we introduce a framework for Szendrei
differential modes, to be used in Section 5 to characterize abelian differential modes,
and in Section 6 to prove our main result. The final section contains remarks on
differential modes that are reducts of modules.

2. Quasi-affine modes

An algebra A is called a reduct of an algebra B, if they have the same universe
and the operations of A can be expressed as term operations of B. Subreduct
means a subalgebra of a reduct. Two similar types of representation appear in
literature:

• Quasi-linear algebras are subreducts of modules; it means their operations
can be expressed as module terms

r1x1 + . . .+ rnxn.

• Quasi-affine algebras are subreducts of modules with additional constants
for every element of the universe; it means their operations can be expressed
as module polynomials

r1x1 + · · ·+ rnxn + c,

with a constant c.
It has been shown recently [16] that, for algebras without nullary operations, the
two notions coincide. It means that every quasi-affine algebra with no constants
admits a quasi-linear representation. This is not an easy proof. However, it is very
easy to prove it for idempotent algebras, and indeed this fact had been very well
known before.

Proposition 2.1. Every quasi-affine algebra containing an idempotent element e
is a subreduct of a module such that e = 0.

Proof. Assume A = (A,FA) admits a quasi-affine representation in a module M
over a ring R. It means, A ⊆M and for every basic operation fA ∈ FA,

fA(a1, . . . , an) = rf1a1 + . . .+ rfnan + cf

for some rf1, . . . , rfn ∈ R and cf ∈ M . Consider the set B = {a − e : a ∈ A} and
a collection FB of operations

fB(a1, . . . , an) = rf1a1 + . . .+ rfnan.
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The mapping ϕ : A → B, a 7→ a − e, is bijective, maps e onto 0 and it is an
isomorphism of (A,FA) ' (B,FB), since

fB(ϕ(a1), . . . , ϕ(an)) = fB(a1 − e, . . . , an − e)
= rf1(a1 − e) + . . .+ rfn(an − e)
= (rf1a1 + . . .+ rfnan + cf )− (rf1e+ . . .+ rfne+ cf )

= fA(a1, . . . , an)− fA(e, . . . , e)

= fA(a1, . . . , an)− e = ϕ(fA(a1, . . . , an))

for every operation f and every tuple a1, . . . , an ∈ A. �

Another folklore result says that, for modes, we can always assume the ring is
commutative.

Proposition 2.2. Every quasi-affine mode is a subreduct of a module over a com-
mutative ring.

Proof. According to Proposition 2.1, we can assume that the mode A = (A,F ) is
a subreduct of a module M over a ring R such that 0 ∈ A. Let

f(a1, . . . , an) = rf1a1 + · · ·+ rfnan

be the linear representation of the basic operations. We can assume that the module
M is generated by the set A, that the ring R acts faithfully on M and that R is
generated by the set G = {rf1, . . . , rfn : f ∈ F} of all coefficients that appear in
the linear representation. Let G∗ denote the set of all products of elements from
G. We start with a proof that

stu · a = tsu · a

for every s, t ∈ G, u ∈ G∗ and every a ∈ A. Assume s = rfi, t = rgj and
u = u1 · · ·up, where u1 = rh1k1 , . . . , up = rhpkp

. The fact that an m-ary operation
f and an n-ary operation g commute is expressed by the identity

f(g(x11, . . . , x1n), . . . , g(xm1, . . . , xmn)) = g(f(x11, . . . , xm1), . . . , f(x1n, . . . , xmn)).

Replace xij with a term w1 constructed in the following way: wp+1 = y, and
wq = hq(x, . . . , x, wq+1, x, . . . , x) for every q = p, . . . , 1, where wq+1 sits at the kq-
th coordinate. Now, evaluate y with a and all other variables with zero. It results
in the desired identity.

An easy induction show that in fact stu · a = tsu · a for every s, t, u ∈ G∗ and
every a ∈ A. The next step is to prove that

stu · a = tsu · a

for every s, t, u ∈ R and every a ∈ A. Since every element of a ring is a sum of
products of generators, we can write s =

∑
si, t =

∑
ti, u =

∑
ui, where all

si, ti, ui ∈ G∗. Now, stu · a = (
∑
i,j,k sitjuk) · a =

∑
i,j,k(sitjuk · a), and we can use

the previous fact.
Finally, we show that

st ·m = ts ·m
for every s, t ∈ R and every m ∈ M . Write m =

∑
ri · ai for ri ∈ R and ai ∈ A.

Then st ·m = st · (
∑
ri · ai) =

∑
(stri · ai), and we can use the previous fact.

Consequently, since R acts faithfully, we have st = ts for every s, t ∈ R. �
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The approach from the proof can be used for an arbitrary idempotent variety.
For subvarieties of modes, one obtains the concept of the affinization ring of a
variety, studied thoroughly in [11].

Example 2.3. [10] Consider the variety of binary differential modes. It is defined
(relatively to modes) by the identity

x ∗ (y ∗ z) = x ∗ y.

Let A = (A, ∗) be a quasi-affine binary differential mode and a∗b = (1−r)a+rb its
linear representation in a module M over a commutative ring R. We can assume
that 0 ∈ A, that M is generated by A, that R acts faithfully on M and that R
is generated by {1, r}. Hence, R is a quotient of the polynomial ring Z[x]. The
identity x ∗ (y ∗ z) = x ∗ y translates into the equality

(1− r)a+ r(1− r)b+ r2c = (1− r)a+ rb

for every a, b, c ∈ A. Setting a = b = 0, we obtain r2c = 0 for every c ∈ A, hence
also for every c ∈ M , and so r2 = 0. In this case, the equality is always satisfied.
Consequently, for every quasi-affine binary differential mode, we can always take a
module over the ring R = Z[x]/(x2).

3. Szendrei and abelian modes

The property that two operations f, g commute can be expressed by the so called
entropic law :

f(g(x11, . . . , x1n), . . . , g(xm1, . . . , xmn)) = g(f(x11, . . . , xm1), . . . , f(x1n, . . . , xmn)).

If f = g, we can write it as

f(f(x11, . . . , x1n), . . . , f(xn1, . . . , xnn)) = f(f(x1̃1, . . . , x1̃n), . . . , f(xñ1, . . . , xñn))

where ĩj = ji for every i, j. However, subreducts of modules over commutative
rings satisfy a more restrictive set of conditions:

f(f(x11, . . . , x1n), . . . , f(xn1, . . . , xnn)) = f(f(x1̄1, . . . , x1̄n), . . . , f(xn̄1, . . . , xn̄n))

whenever ¯ is an involution on indices that flips a single pair of indices ij, ji and
leaves the other pairs still. The conditions will be called Szendrei identities, and
modes satisfying Szendrei identities for every basic operation will be called Szendrei
modes. Note that binary modes are always Szendrei modes, because the binary
Szendrei identity is actually the entropic law. The importance of this concept is
given by the following theorem [13][15]: A mode satisfies Szendrei identities if and
only if it is a subreduct of a semimodule over a commutative semiring.

An algebra A is called abelian if the diagonal is a block of a congruence of the
square A×A. Equivalently, if the quasi-identity

t(x, u1, . . . , uk) = t(x, v1, . . . , vk)→ t(y, u1, . . . , uk) = t(y, v1, . . . , vk)

is satisfied in A for every term t. Modules are obviously abelian, and so is every
quasi-affine algebra.

The following observation is an obvious consequence of the conjecture that
abelian modes are quasi-affine, and supports my belief in the conjecture.

Proposition 3.1. Abelian modes are Szendrei modes.
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Proof. Let t = f(f(x11, . . . , x1n), . . . , f(xn1, . . . , xnn)). Then

t(x11, . . . , xnn) = t(x1̃1, . . . , xñn)

is the entropic law for an n-ary operation f . Fix i < j and replace all variables,
except xij and xji, by x. We obtain

t(x, . . . , x, xij , x, . . . , x, xji, x, . . . , x) = t(x, . . . , x, xji, x, . . . , x, xij , x, . . . , x).

Using (n2 − 2)-times abelianess, we can replace the first occurence of x by x11, the
second occurence by x12, and so on. The result is a Szendrei identity that flips
ij ↔ ji. �

(A more general result can be found in [6]: abelian entropic algebras with a
single n-ary operation satisfy all equations true in every algebra (R, f), where f is
an n-ary linear form.)

Remark 3.2. Neither abelian modes, nor quasi-affine modes, form a variety. Here
is an example from [9]. The mode (Z4, ◦), where a ◦ b = −a + 2b, is a reduct of
the Z-module Z4, but its factor over the congruence 0|13|2 is not abelian, because
[1] ◦ [1] = [1] ◦ [2], but [0] ◦ [1] 6= [0] ◦ [2].

4. Szendrei differential modes

We describe a framework for Szendrei differential modes, useful for our arguments
in the next two sections. It is similar to the one developed in [7], but we use a
different notation. To avoid any confusion, we start from the very beginning. We
recall from [5] that (left, n-ary) differential modes are axiomatized by the following
identities:

f(x, x, . . . , x) = x(I)

f(f(x, y2, . . . , yn), z2, . . . , zn) = f(f(x, z2, . . . , zn), y2, . . . , yn)(E)

f(x, f(y21, . . . , y2n), . . . , f(yn1, . . . , ynn)) = f(x, y21, . . . , yn1)(R)

Using (R), every term is equivalent to a term in the reduced form

f(. . . (f(f(x, y12, . . . , y1n), y22, . . . , y2n) . . . ), ym2, . . . , ymn).

It is easy to check (or find in [7]) that the Szendrei identities are equivalent, in
differential modes, to a single identity

f(x, y2, . . . , yn) = f(. . . (f(f(x, y2, x, . . . , x), x, y3, x, . . . , x) . . . ), x, . . . , x, yn).

We see that the action of every argument y2, . . . , yn is in a sense independent of the
action of the other ones, so instead of an algebra with a single n-ary operation, it is
more convenient to consider a term equivalent algebra with n−1 binary operations,
defined by

x ∗i y = f(x, . . . , x︸ ︷︷ ︸
i−1

, y, x, . . . , x︸ ︷︷ ︸
n−i

).

Using (R), the operation f can be recovered by

f(x, y2, . . . , yn) = (. . . ((x ∗2 y2) ∗3 y3) . . . ) ∗n yn.
We just proved the following statement.

Proposition 4.1. Let (A, f) be a Szendrei differential mode. Then it is term
equivalent to the algebra (A, ∗2, . . . , ∗n).
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It is easy to check that the original set of identities (I) (E) (R) is equivalent to
the following set, to be denoted in the same way.

x ∗i x = x for every i(I)

(x ∗i y) ∗j z = (x ∗j z) ∗i y for every i, j(E)

x ∗i (y ∗j z) = x ∗i y for every i, j(R)

It follows that every term is equivalent to a term in the reduced form

(((x ∗i1 y1) ∗i2 y2) . . .) ∗im ym,(†)

for some m, some i1, . . . , im ∈ {2, . . . , n} and some choice of variables x, y1, . . . , ym.
Using (I) and (E), we can find an equivalent term where x occurs only at the
leftmost place; such expression is unique up to a permutation of the right actions
(the proof is easy and can be found in [5]).

We shall use the following short notation for terms in the reduced form. Let
W (A) be the set of words over the alphabet {2, . . . , n} × A. The term (†) will be
denoted shortly xw̄, where w̄ = (i1, y1)(i2, y2) . . . (im, ym) is a word from W (A). We
will always use overlined letters for words. Concatenation of words will be denoted
by juxtaposition, so xūv̄ means the term xw̄, where w̄ = ūv̄. According to (E),

xūv̄ = xv̄ū

for every ū, v̄ ∈W (A), hence we are going to commute subwords freely without any
explicit notice. According to (R),

(xū) ∗i (yv̄) = xū(i, y).

We shall need the following two technical notions. We say that two words ū =
(i1, y1) . . . (ik, yk), v̄ = (j1, z1) . . . (jl, zl) are similar, and write ū ∼ v̄, if k = l and
there is a permutation π of the indices such that im = jπ(m) for every m = 1, . . . , k.
We say that they are equivalent, and write ū ≈ v̄, if there is a permutation π such
that im = jπ(m) and ym = zπ(m) for every m = 1, . . . , k, it means if the two words
are equal up to a permutation of letters.

5. Abelian differential modes

Proposition 5.1. A Szendrei differential mode A is abelian if and only if the
following two conditions are satisfied:

(A1) every operation ∗i is right cancellative;
(A2) for every a, b ∈ A and words c̄, d̄ ∈ W (A) with c̄ ∼ d̄, if ac̄ = ad̄, then

bc̄ = bd̄.

Proof. (⇒) (A1) Let ∗ = ∗i and assume a∗c = b∗c. Using abelianess, a∗b = b∗b = b.
Consequently, b = a ∗ b = a ∗ (a ∗ b) = a ∗ a = a, using (R) in the third step. (A2) is
a special case of abelianess for t(x, y1, . . . , ym) = xw̄, where w̄ = (i1, y1) . . . (im, ym)
such that w̄ ∼ c̄ ∼ d̄.

(⇐) Let t be a term, we can assume it is in the reduced form t(x1, . . . , xm) = xkw̄
for a word w̄ ∈ W ({x1, . . . , xm}). Using (E) and (I), we can also assume that xk
does not appear in w̄. We want to prove that t(a, c2, . . . , cm) = t(a, d2, . . . , dm)
implies t(b, c2, . . . , cm) = t(b, d2, . . . , dm), for every a, b, ci, di ∈ A.

For k = 1, this is exactly condition (A2). For k 6= 1, using (E), we can further
assume that w̄ = ūv̄ such that ū does not contain the variable x1 and v̄ ∈W ({x1}).
Now, if t(a, c2, . . . , cm) = t(a, d2, . . . , dm), cancel from the right using (A1), and
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obtain s(c2, . . . , cm) = s(d2, . . . , dm), where s = xkū. Then, multiply back from the
right, and obtain t(b, c2, . . . , cm) = t(b, d2, . . . , dm). �

Conditions (A1) and (A2) are independent for general differential modes, but
(A2) implies (A1) for the finite ones. To show independence, we present two binary
examples. (Binary modes are always Szendrei modes.)

Example 5.2. The following table shows a non-abelian binary differential mode
satisfying (A1) and failing (A2): 2 ∗ 2 = 2 ∗ 1, but 0 ∗ 2 6= 0 ∗ 1.

0 1 2
0 0 0 1
1 1 1 0
2 2 2 2

In the terminology of [14], this is the smallest cocyclic subdirectly irreducible binary
differential mode and, in fact, all cocyclic SI’s satisfy (A1) and fail (A2).

Example 5.3. The following construction shows a non-abelian binary differential
mode satisfying (A2) and failing (A1). Let X = N∪ {◦, •} and let f(x) = x+ 1 for
x ∈ N and f(◦) = f(•) = 1. Put A = X × {0, 1} and define a binary operation by
(x, a) ∗ (y, a) = (x, a) for both a = 0, 1, and by (x, a) ∗ (y, b) = (f(x), a) for a 6= b.
The operation is obviously not right cancellative, but we omit a rather technical
proof that this is a differential mode satisfying (A2).

There is no such finite example, as asserted by the following proposition. An
algebra is called locally finite, if every finitely generated subalgebra is finite.

Proposition 5.4. A locally finite Szendrei differential mode is abelian if and only
if condition (A2) holds.

Proof. Let A be a locally finite Szendrei differential mode satisfying (A2). We
prove that every operation ∗i is right cancellative. Let λ be a congruence of A such
that all blocks of λ and the factor A/λ are left projection algebras (see [5]). Let
Ra denote the right translation by a, it means Ra(x) = x ∗i a. Since A/λ is a left
projection algebra, we have Ra(x) λ x for every a, x.

Now, fix a ∈ A and a λ block B, and consider the subalgebra 〈a, b〉, generated
by a and any element of B. Since A is locally finite, the subalgebra 〈a, b〉 is finite,
so there is k and x ∈ 〈a, b〉 ∩ B such that Rka(x) = x. Write it as Rka(x) = Rkx(x)
and use (A2) to obtain that Rka(y) = Rkx(y) = y for every y ∈ B, the latter
equality following from the fact that the blocks of λ are left projection algebras.
Consequently, the restriction of every right translation Ra on every block of λ is a
bijection. But A/λ is a left projection algebra, hence Ra is a bijection on A. �

Our final example shows that there indeed are (finite) abelian differential modes.

Example 5.5. [11] Let (Zk2 , ∗) with a ∗ b = (1 − k)a + kb. This is a binary
differential mode, it is a reduct of a module, hence abelian. All right translations
are permutations of order k: we have Rna (x) = (1− nk)x+ nka, and so Rna (x) = x
iff nk = 0.

Remark 5.6. Neither abelian differential modes, nor quasi-affine differential modes,
form a variety. Example 5.2 is a factor of (Z4, ∗) over the congruence 0|1|23.
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6. Quasi-affine representation of differential modes

Throughout the section, we implicitly use Proposition 4.1 and consider Szendrei
differential modes as algebras (A, ∗2, . . . , ∗n). In particular, all terms are in the
language of ∗2, . . . , ∗n. The notions of being abelian, or quasi-affine, are invariant
with respect to term equivalence.

Theorem 6.1. A differential mode is abelian if and only if it is quasi-affine.

Our proof is based on a syntactic verification of an axiomatization of quasi-affine
algebras, found by M. Stronkowski and the author in [16]. First, we need to explain
the axiomatization. A multiset is a generalization of a set in which members are
allowed to appear more than once.

If T is a multiset of terms, let B(T ) denote the multiset of branches of terms
from T . A branch of a term is defined for every occurence of a variable, as the
variable together with its address. Formally, if t = x, a variable, the only branch
of t is x; and if t = f(s1, . . . , sn) for a basic operation f , then b is a branch of t
if and only if b = (f, i)b′, where b′ is a branch of si. (See [16] for an alternative
description using free semimodules.)

Theorem 6.2. [16] An algebra is quasi-affine if and only if it satisfies all quasi-
identities

t1 = s1 & . . . & tn = sn → t0 = s0

such that B({t0, t1, . . . , tn}) = B({s0, s1, . . . , sn}).

In Szendrei differential modes, it is convenient to assume terms are in the reduced
form. The lemma states what equality of branch multisets means.

Lemma 6.3. Let t0, . . . , tn, s0, . . . , sn be terms such that

B({t0, . . . , tn}) = B({s0, . . . , sn}).
Then there exist equivalent reduced forms x0ū0, . . . , xnūn, y0v̄0, . . . , ynv̄n such that
the following two conditions are satisfied:

(B1) ū0ū1 . . . ūn ≈ v̄0v̄1 . . . v̄n;
(B2) there is a permutation π of the indices such that xi = yπ(i) and ui ∼ vπ(i).

Proof. Consider the identity

x ∗i0 ((((y ∗i1 z1) ∗i2 z2) . . . ) ∗in zn) = x ∗i0 y.(R+)

It is an obvious consequence of (R), for every choice of i0, . . . , in. An occurence of
a variable in a term will be called good, if its address contains at most one right
turn, i.e., at most one letter of the form (∗i, 2). An application of the identity (R+)
only removes bad occurences of variables, and good occurences remain good. The
other way around, every bad occurence can be removed by an application of (R+).

For a multiset T of terms, we define multisets B1(T ), B2(T ) in the following way.
For every t ∈ T and every good occurence of a variable x in t with precisely one
right turn (∗i, 2), we put one copy of the letter (i, x) into B1(T ). For every t ∈ T
and every good occurence of a variable x in t with no right turns, we put one copy
of the corresponding branch into B2(T ). Both multisets B1(T ), B2(T ) are invariant
with respect to an application of (R+) to any of the terms in T .

Now, start with two multisets of terms T = {t0, . . . , tn}, S = {s0, . . . , sn} such
that B(T ) = B(S). Hence also B1(T ) = B1(S) and B2(T ) = B2(S). Using (R+)
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sufficiently many times, we obtain multisets T ′ = {t′0 . . . , t′n}, S′ = {s′0, . . . , s′n} con-
taining equivalent reduced forms. According to the previous paragraph, Bi(T ′) =
Bi(T ) = Bi(S) = Bi(S′) for both i = 1, 2. Condition (Bi) obviously follows from
equality of the multisets Bi. �

Corollary 6.4. A Szendrei differential mode is quasi-affine if it satisfies all quasi-
identities

t1 = s1 & . . . & tn = sn → t0 = s0

such that the terms are in the reduced form and satisfy conditions (B1) and (B2)
of Lemma 6.3.

Proof of Theorem 6.1. Every abelian mode is a Szendrei mode (Proposition 3.1),
so we need to verify that abelianess, i.e. conditions (A1), (A2) of Proposition 5.1,
implies every quasi-identity described in Corollary 6.4. Assume t1 = s1, . . . , tn = sn
holds, we prove t0 = s0. We will use the assumptions and notation introduced in
Lemma 6.3 and start with an analysis of the permutation π from (B2).

Claim. Let C be a cycle of length k in the permutation π such that 0 6∈ C. Let
c ∈ C, and w̄1 ∼ w̄2 be two similar words. Denote ū = ūcūπ(c) . . . ūπk−1(c) and
v̄ = v̄cv̄π(c) . . . v̄πk−1(c). If aūw̄1 = av̄w̄2 for every a, then aw̄1 = aw̄2 for every a.

Proof. Starting with the premise for a = xπk−1(c), we obtain

xπk−1(c)ūw̄1 = xπk−1(c)v̄w̄2

= xπk−1(c)v̄cv̄π(c) . . . v̄πk−1(c)w̄2

= ycv̄cv̄π(c) . . . v̄πk−1(c)w̄2

= xcūcv̄π(c) . . . v̄πk−1(c)w̄2,

using (B2) and tc = sc in the last two steps. Repeating the procedure performed
on the last two lines k times, we obtain

xπk−1(c)ūw̄1 = xcūcv̄π(c)v̄π2(c) . . . v̄πk−1(c)w̄2

= yπ(c)ūcv̄π(c)v̄π2(c) . . . v̄πk−1(c)w̄2

= xπ(c)ūcūπ(c)v̄π2(c) . . . v̄πk−1(c)w̄2

= . . .

= xπk−1(c)ūcūπ(c)ūπ2(c) . . . ūπk−1(c)w̄2

= xπk−1(c)ūw̄2.

Now, use cancellation (A1) and obtain

xπk−1(c)w̄1 = xπk−1(c)w̄2.

Finally, use (A2) with the assumption that w̄1 ∼ w̄2 and obtain

aw̄1 = aw̄2

for every a. �

Let π = C0C1 . . . Cl be the cycle decomposition of π such that 0 is contained in
C0. According to (B1), we have

aū0ū1 . . . ūn = av̄0v̄1 . . . v̄n
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for every a. By (B2), ui ∼ vπ(i), so we can apply the claim on the previous identity
l-times, for every cycle C1, . . . , Cl. The result is that, for every a,

aū0ūπ(0) . . . ūπk−1(0) = av̄0v̄π(0) . . . v̄πk−1(0),

where k is the length of C0. Now, start with a = x0 and do exactly k − 1 steps as
in the proof of the claim. The result is

x0ū0ūπ(0) . . . ūπk−1(0) = xπk−1(0)v̄0ūπ(0) . . . ūπk−1(0).

By cancellation (A1),
x0ū0 = xπk−1(0)v̄0 = y0v̄0.

Hence t0 = s0, as desired. �

Let me note that in an earlier version of this paper, I had a proof of Theorem
6.1 based on the Quackenbush’s axiomatization of quasi-affine alebras [8]. In [16],
we claim that our axiomatization is larger but much easier to handle (and provide
some evidence by finding easy proofs of some older results). Based on my experience
from proving Theorem 6.1, I have to confirm our bold statement.

7. Reducts of modules

Our main result answers the question when a differential mode is a subreduct of
a module. When does it admit a stronger representation, as a reduct of a module?
The final section contains several observations and remarks with respect to this
question.

Similarly as in Example 2.3, every quasi-affine n-ary differential mode can be
represented over the ring Rn = Z[x2, . . . , xn]/(x2

2, . . . , x
2
n) with

a ∗i b = (1− xi)a+ xib.

Since (1− xi)(1 + xi) = 1− x2
i = 1, the element 1− xi is invertible. Consequently,

if A is a reduct of a module over the ring Rn, every operation ∗i forms a right
quasigroup (it means, all right translations are permutations). This is a stronger
condition than (A1), but not sufficiently strong for a differential mode to be a
reduct of a module.

Example 7.1. Let R = Z3[x]/(x2), let a ∗ b = (1−x)a+xb and put A = {ux+ v :
u, v ∈ Z3, v 6= −1}. Then A = (A, ∗) is a six-element subalgebra of (R, ∗), and it is
a quasi-affine differential mode which also is a right quasigroup. However, the only
six-element abelian group is Z6 and it has only two binary reducts which are right
quasigroups: a ◦1 b = a and a ◦2 b = −a + 2b. None of the reducts is isomorphic
to A.

Is there a nice condition characterizing reducts of modules within the variety of
differential modes?

Our final remark says, forget about affine algebras. An algebra is called affine,
if it is polynomially equivalent to a module. In particular, affine algebras have a
Mal’tsev polynomial. But every differential mode has a non-tivial factor which is a
left projection subalgebra, so it cannot have a Mal’tsev operation. Actually, there
is an independence result. (Similar and more general results for binary modes are
in Section 8.5 of [11].)

Proposition 7.2. The variety of differential modes is independent of any variety
with a Mal’tsev term.
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Proof. First, note that if t(x, . . . ) is a term where x is the leftmost variable, then
the reduct (A, t) of a differential mode A is a differential mode again: if λ is the
congruence on A such that all blocks and the factor are left projection algebras, it
also is a congruence on (A, t), with the same property.

Let p(x, y, z) be a Mal’tsev term in a variety V. If z is the leftmost variable,
consider the Mal’tsev term p(z, y, x) instead, hence, without loss of generality, we
can assume that x or y is the leftmost variable of p. Let t(x, y) = p(x, x, p(x, x, y)).
Then, in differential modes, t(x, y) = p(x, x, x) = x using (R) and (I), however
in V, we get t(x, y) = p(x, x, y) = y. Hence t proves independence of the two
varieties. �

Acknowledgement. I wish to thank the referee for an unusually careful reading
of the paper and pointing out several weak places.

References

[1] H. P. Gumm, Algebras in permutable varieties: geometrical properties of affine algebras, Al-

gebra Universalis 9/1 (1979), 8-34.
[2] K. Kearnes, The structure of finite modes, manuscript, 1990’s.

[3] K. Kearnes, Subdirectly irreducible modes, Discuss. Math. Algebra Stochastic Methods 19/1

(1999), 129-145.
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[16] M. Stronkowski, D. Stanovský, Embedding general algebras into modules, Proc. Amer. Math.

Soc. 138/8 (2010), 2687–2699.
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