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Clonoids

Definition

For algebras A and B and for C ⊆
⋃

n∈N BAn
we say that C is a clonoid

from A to B if

C ◦ Clo(A) ⊆ C & Clo(B) ◦ C ⊆ C

C is closed under precomposition with term functions of A, and
C is closed under postcomposition with term functions of B;

Example: A = (Z3; +,−, 0), B = ({0, 1}; ∧,∨), C clonoid from A to B.
If f : A2 → B is in C then

f (x1 + x2, 0) ∈ C and f (2x1, 2x2 + x3) ∈ C ,

and so g(x1, x2, x3) = f (x1 + x2, 0) ∧ f (2x1, 2x2 + x3) ∈ C .

Notation: For f : Ak → B, ⟨f ⟩ is the clonoid from A to B generated by f .
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Polymorphisms and Clonoids

Clones are determined by relations.
Clonoids are determined by pairs of relations.

Definition

For R ⊆ An, S ⊆ Bn, let

Pol(R, S) =
⋃
k∈N

{f : Ak → B | f (R, . . . ,R) ⊆ S}

denote the set of polymorphisms of the relational pair (R, S).

Theorem (Couceiro, Foldes 2009)

Let A and B be algebras with |A| finite. Let C ⊆
⋃

n∈N BAn
. The following

are equivalent.

1 C is a clonoid from A to B.
2 C =

⋂
i∈I Pol(Ri , Si ) where Ri ≤ Ami , Si ≤ Bmi are subalgebras.
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An upper bound on the number of clonoids

In some cases, we need just one relational pair to determine a clonoid.

Theorem (Aichinger, Mayr 2018)

If A is a finite algebra and B is a finite Mal’cev algebra then clonoids from
A to B are finitely related (i.e. determined by a single relational pair).

Since abelian groups are Mal’cev algebras, we obtain:

Upper Bound

For A and B finite abelian groups, the number of clonoids from A to B is
finite or countably infinite.
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Obtaining the upper bound

Theorem (Kreinecker 2019)

For prime p, the number of clonoids from Zp to Zp is countably infinite.

Complete description of lattice of clonoids from Zp to Zp.

p = 2: Just 2 non-finitely generated clonoids.

p > 2: Infinitely many non-finitely generated clonoids.

Theorem (Mayr, W. 2024)

Let A and B be finite abelian groups (more generally, finite modules)
whose orders are not coprime. Then the number of clonoids from A to B
is countably infinite.



Obtaining the upper bound

Theorem (Kreinecker 2019)

For prime p, the number of clonoids from Zp to Zp is countably infinite.

Complete description of lattice of clonoids from Zp to Zp.

p = 2: Just 2 non-finitely generated clonoids.

p > 2: Infinitely many non-finitely generated clonoids.

Theorem (Mayr, W. 2024)

Let A and B be finite abelian groups (more generally, finite modules)
whose orders are not coprime. Then the number of clonoids from A to B
is countably infinite.



Obtaining the upper bound

Theorem (Kreinecker 2019)

For prime p, the number of clonoids from Zp to Zp is countably infinite.

Complete description of lattice of clonoids from Zp to Zp.

p = 2: Just 2 non-finitely generated clonoids.

p > 2: Infinitely many non-finitely generated clonoids.

Theorem (Mayr, W. 2024)

Let A and B be finite abelian groups (more generally, finite modules)
whose orders are not coprime. Then the number of clonoids from A to B
is countably infinite.



Obtaining the upper bound

Theorem (Kreinecker 2019)

For prime p, the number of clonoids from Zp to Zp is countably infinite.

Complete description of lattice of clonoids from Zp to Zp.

p = 2: Just 2 non-finitely generated clonoids.

p > 2: Infinitely many non-finitely generated clonoids.

Theorem (Mayr, W. 2024)

Let A and B be finite abelian groups (more generally, finite modules)
whose orders are not coprime. Then the number of clonoids from A to B
is countably infinite.



Obtaining the upper bound

Theorem (Kreinecker 2019)

For prime p, the number of clonoids from Zp to Zp is countably infinite.

Complete description of lattice of clonoids from Zp to Zp.

p = 2: Just 2 non-finitely generated clonoids.

p > 2: Infinitely many non-finitely generated clonoids.

Theorem (Mayr, W. 2024)

Let A and B be finite abelian groups (more generally, finite modules)
whose orders are not coprime. Then the number of clonoids from A to B
is countably infinite.



What if A and B are coprime?

A = (Z2; +),B = (Z3; +), f : Z2
2 → Z3

f is generated by its unary A,B-minors (unary functions in ⟨f ⟩A,B).
Unary minors of f include f (x , x), f (0, x), f (x , 0), and f (0, 0).

f (x1, x2) =f (0, 0)

+ 2−1[f (x1, 0) + f (x1 + x2, 0)− f (0, 0)− f (x2, 0)

+ f (0, x2) + f (0, x1 + x2)− f (0, 0)− f (0, x1)

+ f (x1, x1) + f (x2, x2)− f (0, 0)− f (x1 + x2, x1 + x2)].

Notice that this formula holds independently of the choice of f .
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Uniform generation

For A an R-module and B an S-module,
f : Ak → B is generated by n-ary minors if

∃s : {r ∈ Rk×k : rank(r) ≤ n} → S such that

f (x) =
∑

r∈Rk×k ,rank(r)≤n

s(r)f (rx).

For U ⊆ BAk
we say U is uniformly generated by n-ary minors if

∃s : {r ∈ Rk×k : rank(r) ≤ n} → S such that for all f ∈ U,

f (x) =
∑

r∈Rk×k ,rank(r)≤n

s(r)f (rx).

That is, the choice of coefficients is independent of the choice of f ∈ U.
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Theorem (Fioravanti 2020)

Let A = (Zp, +) and let B be a finite abelian group of coprime order.

For k ∈ N, {f : Ak → B} is uniformly generated by unary functions.

The number of clonoids from A to B is finite.

For f : A2 → B with f (0, 0) = 0,

J(f )(x , y) := p−1
∑
a∈Zp

f (x + ay , 0)− f (ay , 0) =

{
f (x , y) if y = 0,

0 else.

The operation f 7→ J(f ) is uniformly representable by unary minors.

For v ∈ A2 unary minors of f generate

fv (x , y) =

{
f (x , y) if (x , y) ∈ ⟨v⟩,
0 else.

Then f =
∑

fv for v ’s generating distint lines.
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Abelian Groups of Coprime Order

Conjecture

Given A and B finite abelian groups, the number of clonoids from A to B
is finite if and only if they are of coprime order.

Some more evidence...

Theorem (Mayr, W. 2024)

Let A = (Zm, +) and let n be the maximal power of a prime dividing m.
Let B be a finite abelian group with order coprime to m.

{f : Ak → B} is uniformly generated by n-ary minors for each k ∈ N.
The number of clonoids from A to B is finite.
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Theorem (Mayr, W. 2024)

Let A = (Zpn , +) for a prime p and n ≥ 1. Let B coprime abelian group.

{f : Ak → B} is uniformly generated by n-ary minors for each k ∈ N.
The number of clonoids from A to B is finite.

0

pn−1Zpn

...

pZpn

Zpn Induction on n. Base case A = Zp: unary functions suffice.

So f − J1(f ) is uniformly representable by unary minors,
where J1(f ) = f on pn−1Zpn

∼= Zp.

Reduce to case f (pn−1Zpn , . . . , p
n−1Zpn) = 0

By induction, on Zpn−1 : (n − 1)-ary functions suffice.

f − Jn−1(f ) is uniformly representable by (n − 1)-ary minors,
where Jn−1(f ) = f on pZpn

∼= Zpn−1 .

Reduce to case f (pZpn , pZpn , . . . , pZpn) = 0.
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Assume WLOG f (pA, pA, . . . , pA) = 0.

Let N = A× pA× · · · × pA ≤ Ak .

n-ary minors of f generate fN : Ak → B,

fN(x) =

{
f (x) if x ∈ A× (pA)k−1,

0 else.

This generation is uniform on {f : Ak → B : f (pA, . . . , pA) = 0}.
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Let V = {N ≤ Ak : pAk ≤ N and N/pAk ∼= Zp}.

GLk(Zpn) acts transitively on V .

So n-ary minors of f generate fN : Ak → B,

fN(x) =

{
f (x) if x ∈ N,

0 else.

⋃
V = Ak so cover Ak by subgroups of this form.

For N ̸= M ∈ V ,N ∩M ⊆ pAk , hence f =
∑
N

fN . ■
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Closer to proving the conjecture

Conjecture for Abelian Groups

Number of clonoids from A to B is finite if and only if gcd(|A|, |B|) = 1.

Theorem (Fioravanti, Kompatscher, Rossi 2025)

For A = (Zp)
n and B an abelian group of coprime order,

{f : Ak → B} is uniformly generated by n-ary minors for each k ∈ N.
There are finitely many clonoids from A to B.

Smallest unknown case: A = Zp2 × Zp and B coprime.

Conjecture for Modules

For A and B finite modules, the number of clonoids from A to B is finite if
and only if gcd(|A|, |B|) = 1.
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Thanks!


