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In some cases, we need just one relational pair to determine a clonoid.

Theorem (Aichinger, Mayr 2018)

If A is a finite algebra and B is a finite Mal'cev algebra then clonoids from
A to B are finitely related (i.e. determined by a single relational pair).

Since abelian groups are Mal'cev algebras, we obtain:

Upper Bound

For A and B finite abelian groups, the number of clonoids from A to B is
finite or countably infinite.




Obtaining the upper bound

Theorem (Kreinecker 2019)

For prime p, the number of clonoids from Z, to Z, is countably infinite.




Obtaining the upper bound

Theorem (Kreinecker 2019)

For prime p, the number of clonoids from Z, to Z, is countably infinite.

o Complete description of lattice of clonoids from Z, to Zj.



Obtaining the upper bound

Theorem (Kreinecker 2019)

For prime p, the number of clonoids from Z, to Z, is countably infinite.

o Complete description of lattice of clonoids from Z, to Zj.
@ p = 2: Just 2 non-finitely generated clonoids.

@ p > 2: Infinitely many non-finitely generated clonoids.



Obtaining the upper bound

Theorem (Kreinecker 2019)

For prime p, the number of clonoids from Z, to Z, is countably infinite.

o Complete description of lattice of clonoids from Z, to Zj.
@ p = 2: Just 2 non-finitely generated clonoids.

@ p > 2: Infinitely many non-finitely generated clonoids.

Theorem (Mayr, W. 2024)

Let A and B be finite abelian groups (more generally, finite modules)
whose orders are not coprime. Then the number of clonoids from A to B
is countably infinite.




Obtaining the upper bound

Theorem (Kreinecker 2019)

For prime p, the number of clonoids from Z, to Z, is countably infinite.

o Complete description of lattice of clonoids from Z, to Zj.
@ p = 2: Just 2 non-finitely generated clonoids.

@ p > 2: Infinitely many non-finitely generated clonoids.

Theorem (Mayr, W. 2024)

Let A and B be finite abelian groups (more generally, finite modules)
whose orders are not coprime. Then the number of clonoids from A to B
is countably infinite.




What if A and B are coprime?

A= (Z2+),B=(Zs3;+), f:73—17s3



What if A and B are coprime?

A= (Z+),B=(Zs3;+), f:75—7s

e f is generated by its unary A, B-minors (unary functions in (f)s g).



What if A and B are coprime?

A= (Z+),B=(Zs3;+), f:75—7s

e f is generated by its unary A, B-minors (unary functions in (f)s g).
@ Unary minors of f include f(x,x), f(0,x), f(x,0), and f(0,0).



What if A and B are coprime?

A= (Zo;+),B=(Zs;+), f:Z}— Zs

e f is generated by its unary A, B-minors (unary functions in (f)s g).
@ Unary minors of f include f(x, x), f(0, x), f(x,0), and £(0,0).
f(x1,x2) =f(0,0)
+ 271 [f(x1,0) + f(x1 + x2,0) — £(0,0) — f(x2,0)
+ (0, %) + (0, x1 + x2) — £(0,0) — £(0,x1)
+ f(X17X1) + f(X27X2) - f(0,0) - f(Xl + X2, x1 + Xz)].



What if A and B are coprime?

A= (Z+),B=(Zs3;+), f:75—7s

e f is generated by its unary A, B-minors (unary functions in (f)s g).
@ Unary minors of f include f(x,x), f(0,x), f(x,0), and f(0,0).

f(Xl, X2) :f(O, O)

+ 271 [f(x1,0) + f(x1 + x2,0) — £(0,0) — f(x2,0)
+ (0, %) + (0, x1 + x2) — £(0,0) — £(0,x1)
+ f(x1, x1) + F(x2, x2) — £(0,0) — F(x1 + x2, x1 + x2)].

Notice that this formula holds independently of the choice of f.
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For U C BA* we say U is uniformly generated by n-ary minors if
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That is, the choice of coefficients is independent of the choice of f € U.
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Let A = (Zp, +) and let B be a finite abelian group of coprime order.
o For k € N, {f : Ak — B} is uniformly generated by unary functions.
@ The number of clonoids from A to B is finite.

For f : A2 — B with £(0,0) =0,

HOy) = p 7t S Flx -+ ay,0) — F(ay,0) = { (o) =0
acZp ’

The operation f — J(f) is uniformly representable by unary minors.

For v € A? unary minors of f generate

y) — {f(w) if (x,y) € (v),

0 else.

Then f =) f, for v's generating distint lines.
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Assume WLOG f(pA, pA,...,pA) = 0.
Let N = A x pA x --- x pA < Ak,

n-ary minors of f generate fy : AKX — B,

Fulx) = {S(X) Z;G A x (pA)<T,

This generation is uniform on {f : Ak — B : f(pA,..., pA) = 0}.
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o Let V= {N < Ak: pAk < N and N/pAk = 7,}.
® GLy(Zpn) acts transitively on V.
@ So n-ary minors of f generate fy : AK — B,

{f(x) if x €N,

0 else.

o [JV = A so cover A* by subgroups of this form.

@ For NAM e V,NNM C pA¥, hence f:ZfN.
N
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Conjecture for Abelian Groups

Number of clonoids from A to B is finite if and only if gcd(|A],|B|) = 1.

Theorem (Fioravanti, Kompatscher, Rossi 2025)

For A = (Zp)" and B an abelian group of coprime order,

o {f: AX — B} is uniformly generated by n-ary minors for each k € N.
@ There are finitely many clonoids from A to B.

Smallest unknown case: A =Z,» X Z, and B coprime.

Conjecture for Modules

For A and B finite modules, the number of clonoids from A to B is finite if
and only if gcd(JA|, |B|) = 1.




Thanks!



