Uniform Generation of Clonoids

Patrick Wynne Joint work with Peter Mayr

> Charles University SSAOS 2025, Blansko, CZ

September 8, 2025

Definition

For algebras $\mathbb A$ and $\mathbb B$ and for $C\subseteq\bigcup_{n\in\mathbb N}B^{A^n}$ we say that C is a **clonoid** from $\mathbb A$ to $\mathbb B$ if

$$C \circ \mathsf{Clo}(\mathbb{A}) \subseteq C$$

$$\mathsf{Clo}(\mathbb{B}) \circ \mathsf{C} \subseteq \mathsf{C}$$

Definition

For algebras $\mathbb A$ and $\mathbb B$ and for $C\subseteq\bigcup_{n\in\mathbb N}B^{A^n}$ we say that C is a **clonoid** from $\mathbb A$ to $\mathbb B$ if

$$C \circ \mathsf{Clo}(\mathbb{A}) \subseteq C$$
 & $\mathsf{Clo}(\mathbb{B}) \circ C \subseteq C$

- ullet C is closed under precomposition with term functions of \mathbb{A} , and
- C is closed under postcomposition with term functions of \mathbb{B} ;

Definition

For algebras $\mathbb A$ and $\mathbb B$ and for $C\subseteq\bigcup_{n\in\mathbb N}B^{A^n}$ we say that C is a **clonoid** from $\mathbb A$ to $\mathbb B$ if

$$C \circ \mathsf{Clo}(\mathbb{A}) \subseteq C$$
 & $\mathsf{Clo}(\mathbb{B}) \circ C \subseteq C$

- ullet C is closed under precomposition with term functions of $\mathbb A$, and
- C is closed under postcomposition with term functions of \mathbb{B} ;

Example: $\mathbb{A} = (\mathbb{Z}_3; +, -, 0), \mathbb{B} = (\{0, 1\}; \wedge, \vee), C \text{ clonoid from } \mathbb{A} \text{ to } \mathbb{B}.$ If $f : A^2 \to B$ is in C then

$$f(x_1 + x_2, 0) \in C$$
 and $f(2x_1, 2x_2 + x_3) \in C$,

Definition

For algebras $\mathbb A$ and $\mathbb B$ and for $C\subseteq\bigcup_{n\in\mathbb N}B^{A^n}$ we say that C is a **clonoid** from $\mathbb A$ to $\mathbb B$ if

$$C \circ \mathsf{Clo}(\mathbb{A}) \subseteq C$$
 & $\mathsf{Clo}(\mathbb{B}) \circ C \subseteq C$

- ullet C is closed under precomposition with term functions of $\mathbb A$, and
- C is closed under postcomposition with term functions of \mathbb{B} ;

Example: $\mathbb{A} = (\mathbb{Z}_3; +, -, 0), \mathbb{B} = (\{0, 1\}; \wedge, \vee), C \text{ clonoid from } \mathbb{A} \text{ to } \mathbb{B}.$ If $f : A^2 \to B$ is in C then

$$f(x_1 + x_2, 0) \in C$$
 and $f(2x_1, 2x_2 + x_3) \in C$,

and so
$$g(x_1, x_2, x_3) = f(x_1 + x_2, 0) \wedge f(2x_1, 2x_2 + x_3) \in C$$
.

Definition

For algebras $\mathbb A$ and $\mathbb B$ and for $C\subseteq\bigcup_{n\in\mathbb N}B^{A^n}$ we say that C is a **clonoid** from $\mathbb A$ to $\mathbb B$ if

$$C \circ \mathsf{Clo}(\mathbb{A}) \subseteq C$$
 & $\mathsf{Clo}(\mathbb{B}) \circ C \subseteq C$

- ullet C is closed under precomposition with term functions of $\mathbb A$, and
- ullet C is closed under postcomposition with term functions of $\mathbb B$;

Example: $\mathbb{A} = (\mathbb{Z}_3; +, -, 0), \mathbb{B} = (\{0, 1\}; \wedge, \vee), \mathbb{C} \text{ clonoid from } \mathbb{A} \text{ to } \mathbb{B}.$ If $f : A^2 \to B$ is in \mathbb{C} then

$$f(x_1 + x_2, 0) \in C$$
 and $f(2x_1, 2x_2 + x_3) \in C$,

and so $g(x_1, x_2, x_3) = f(x_1 + x_2, 0) \wedge f(2x_1, 2x_2 + x_3) \in C$.

Notation: For $f:A^k\to B$, $\langle f\rangle$ is the clonoid from A to B generated by $f_{a,b}$

Definition

For algebras $\mathbb A$ and $\mathbb B$ and for $C\subseteq\bigcup_{n\in\mathbb N}B^{A^n}$ we say that C is a **clonoid** from $\mathbb A$ to $\mathbb B$ if

$$C \circ \mathsf{Clo}(\mathbb{A}) \subseteq C$$
 & $\mathsf{Clo}(\mathbb{B}) \circ C \subseteq C$

- ullet C is closed under precomposition with term functions of $\mathbb A$, and
- ullet C is closed under postcomposition with term functions of $\mathbb B$;

Example: $\mathbb{A} = (\mathbb{Z}_3; +, -, 0), \mathbb{B} = (\{0, 1\}; \wedge, \vee), \mathbb{C} \text{ clonoid from } \mathbb{A} \text{ to } \mathbb{B}.$ If $f : A^2 \to B$ is in \mathbb{C} then

$$f(x_1 + x_2, 0) \in C$$
 and $f(2x_1, 2x_2 + x_3) \in C$,

and so $g(x_1, x_2, x_3) = f(x_1 + x_2, 0) \wedge f(2x_1, 2x_2 + x_3) \in C$.

Notation: For $f:A^k\to B$, $\langle f\rangle$ is the clonoid from A to B generated by $f_{a,b}$

Clones are determined by relations. Clonoids are determined by pairs of relations.

Clones are determined by relations. Clonoids are determined by pairs of relations.

Definition

For $R \subseteq A^n, S \subseteq B^n$, let

$$Pol(R,S) = \bigcup_{k \in \mathbb{N}} \{ f \colon A^k \to B \mid f(R,\ldots,R) \subseteq S \}$$

denote the set of **polymorphisms** of the relational pair (R, S).

Clones are determined by relations.

Clonoids are determined by pairs of relations.

Definition

For $R \subseteq A^n, S \subseteq B^n$, let

$$Pol(R,S) = \bigcup_{k \in \mathbb{N}} \{ f : A^k \to B \mid f(R,\ldots,R) \subseteq S \}$$

denote the set of **polymorphisms** of the relational pair (R, S).

Theorem (Couceiro, Foldes 2009)

Let \mathbb{A} and \mathbb{B} be algebras with |A| finite. Let $C \subseteq \bigcup_{n \in \mathbb{N}} B^{A^n}$. The following are equivalent.

- **1** C is a clonoid from \mathbb{A} to \mathbb{B} .
- ② $C = \bigcap_{i \in I} Pol(R_i, S_i)$ where $R_i \leq \mathbb{A}^{m_i}, S_i \leq \mathbb{B}^{m_i}$ are subalgebras.

Clones are determined by relations.

Clonoids are determined by pairs of relations.

Definition

For $R \subseteq A^n, S \subseteq B^n$, let

$$Pol(R,S) = \bigcup_{k \in \mathbb{N}} \{ f : A^k \to B \mid f(R,\ldots,R) \subseteq S \}$$

denote the set of **polymorphisms** of the relational pair (R, S).

Theorem (Couceiro, Foldes 2009)

Let \mathbb{A} and \mathbb{B} be algebras with |A| finite. Let $C \subseteq \bigcup_{n \in \mathbb{N}} B^{A^n}$. The following are equivalent.

- **1** C is a clonoid from \mathbb{A} to \mathbb{B} .
- ② $C = \bigcap_{i \in I} Pol(R_i, S_i)$ where $R_i \leq \mathbb{A}^{m_i}, S_i \leq \mathbb{B}^{m_i}$ are subalgebras.

In some cases, we need just one relational pair to determine a clonoid.

In some cases, we need just one relational pair to determine a clonoid.

Theorem (Aichinger, Mayr 2018)

If $\mathbb A$ is a finite algebra and $\mathbb B$ is a finite Mal'cev algebra then clonoids from $\mathbb A$ to $\mathbb B$ are finitely related (i.e. determined by a single relational pair).

In some cases, we need just one relational pair to determine a clonoid.

Theorem (Aichinger, Mayr 2018)

If $\mathbb A$ is a finite algebra and $\mathbb B$ is a finite Mal'cev algebra then clonoids from $\mathbb A$ to $\mathbb B$ are finitely related (i.e. determined by a single relational pair).

Since abelian groups are Mal'cev algebras, we obtain:

Upper Bound

For $\mathbb A$ and $\mathbb B$ finite abelian groups, the number of clonoids from $\mathbb A$ to $\mathbb B$ is finite or countably infinite.

Theorem (Kreinecker 2019)

For prime p, the number of clonoids from \mathbb{Z}_p to \mathbb{Z}_p is countably infinite.

Theorem (Kreinecker 2019)

For prime p, the number of clonoids from \mathbb{Z}_p to \mathbb{Z}_p is countably infinite.

• Complete description of lattice of clonoids from \mathbb{Z}_p to \mathbb{Z}_p .

Theorem (Kreinecker 2019)

For prime p, the number of clonoids from \mathbb{Z}_p to \mathbb{Z}_p is countably infinite.

- Complete description of lattice of clonoids from \mathbb{Z}_p to \mathbb{Z}_p .
- p = 2: Just 2 non-finitely generated clonoids.
- p > 2: Infinitely many non-finitely generated clonoids.

Theorem (Kreinecker 2019)

For prime p, the number of clonoids from \mathbb{Z}_p to \mathbb{Z}_p is countably infinite.

- Complete description of lattice of clonoids from \mathbb{Z}_p to \mathbb{Z}_p .
- p = 2: Just 2 non-finitely generated clonoids.
- p > 2: Infinitely many non-finitely generated clonoids.

Theorem (Mayr, W. 2024)

Let $\mathbb A$ and $\mathbb B$ be finite abelian groups (more generally, finite modules) whose orders are not coprime. Then the number of clonoids from $\mathbb A$ to $\mathbb B$ is countably infinite.

Theorem (Kreinecker 2019)

For prime p, the number of clonoids from \mathbb{Z}_p to \mathbb{Z}_p is countably infinite.

- Complete description of lattice of clonoids from \mathbb{Z}_p to \mathbb{Z}_p .
- p = 2: Just 2 non-finitely generated clonoids.
- p > 2: Infinitely many non-finitely generated clonoids.

Theorem (Mayr, W. 2024)

Let $\mathbb A$ and $\mathbb B$ be finite abelian groups (more generally, finite modules) whose orders are not coprime. Then the number of clonoids from $\mathbb A$ to $\mathbb B$ is countably infinite.

$$\mathbb{A} = (\mathbb{Z}_2; +), \mathbb{B} = (\mathbb{Z}_3; +), \quad f: \mathbb{Z}_2^2 \to \mathbb{Z}_3$$

$$\mathbb{A} = (\mathbb{Z}_2; +), \mathbb{B} = (\mathbb{Z}_3; +), \quad f: \mathbb{Z}_2^2 \to \mathbb{Z}_3$$

• f is generated by its *unary* \mathbb{A} , \mathbb{B} -*minors* (unary functions in $\langle f \rangle_{\mathbb{A},\mathbb{B}}$).

$$\mathbb{A} = (\mathbb{Z}_2; +), \mathbb{B} = (\mathbb{Z}_3; +), \quad f: \mathbb{Z}_2^2 \to \mathbb{Z}_3$$

- f is generated by its $unary \mathbb{A}, \mathbb{B}$ -minors (unary functions in $\langle f \rangle_{\mathbb{A},\mathbb{B}}$).
- Unary minors of f include f(x,x), f(0,x), f(x,0), and f(0,0).

$$\mathbb{A} = (\mathbb{Z}_2; +), \mathbb{B} = (\mathbb{Z}_3; +), \quad f: \mathbb{Z}_2^2 \to \mathbb{Z}_3$$

- f is generated by its *unary* \mathbb{A} , \mathbb{B} -*minors* (unary functions in $\langle f \rangle_{\mathbb{A},\mathbb{B}}$).
- Unary minors of f include f(x,x), f(0,x), f(x,0), and f(0,0).

$$f(x_1, x_2) = f(0,0)$$

$$+ 2^{-1}[f(x_1, 0) + f(x_1 + x_2, 0) - f(0, 0) - f(x_2, 0)$$

$$+ f(0, x_2) + f(0, x_1 + x_2) - f(0, 0) - f(0, x_1)$$

$$+ f(x_1, x_1) + f(x_2, x_2) - f(0, 0) - f(x_1 + x_2, x_1 + x_2)].$$

$$\mathbb{A} = (\mathbb{Z}_2; +), \mathbb{B} = (\mathbb{Z}_3; +), \quad f: \mathbb{Z}_2^2 \to \mathbb{Z}_3$$

- f is generated by its *unary* \mathbb{A} , \mathbb{B} -*minors* (unary functions in $\langle f \rangle_{\mathbb{A},\mathbb{B}}$).
- Unary minors of f include f(x,x), f(0,x), f(x,0), and f(0,0).

$$f(x_1, x_2) = f(0,0)$$

$$+ 2^{-1}[f(x_1, 0) + f(x_1 + x_2, 0) - f(0, 0) - f(x_2, 0)$$

$$+ f(0, x_2) + f(0, x_1 + x_2) - f(0, 0) - f(0, x_1)$$

$$+ f(x_1, x_1) + f(x_2, x_2) - f(0, 0) - f(x_1 + x_2, x_1 + x_2)].$$

Notice that this formula holds independently of the choice of f.

Uniform generation

For \mathbb{A} an R-module and \mathbb{B} an S-module, $f:A^k\to B$ is generated by n-ary minors if

$$\exists s \colon \{r \in R^{k \times k} : \operatorname{rank}(r) \leq n\} \to S \text{ such that}$$

$$f(x) = \sum_{r \in R^{k \times k}, \operatorname{rank}(r) \leq n} s(r) f(rx).$$

Uniform generation

For \mathbb{A} an R-module and \mathbb{B} an S-module, $f:A^k\to B$ is generated by n-ary minors if

$$\exists s \colon \{r \in R^{k \times k} : \operatorname{rank}(r) \leq n\} \to S \text{ such that}$$

$$f(x) = \sum_{r \in R^{k \times k}, rank(r) \le n} s(r) f(rx).$$

For $U \subseteq B^{A^k}$ we say U is uniformly generated by n-ary minors if

$$\exists s \colon \{r \in R^{k \times k} : \operatorname{rank}(r) \leq n\} \to S \text{ such that for all } f \in U,$$

$$f(x) = \sum_{r \in R^{k \times k}, rank(r) \le n} s(r) f(rx).$$

That is, the choice of coefficients is independent of the choice of $f \in U$.

Let $\mathbb{A} = (\mathbb{Z}_p, +)$ and let \mathbb{B} be a finite abelian group of coprime order.

- For $k \in \mathbb{N}$, $\{f : A^k \to B\}$ is uniformly generated by unary functions.
- The number of clonoids from \mathbb{A} to \mathbb{B} is finite.

Let $\mathbb{A} = (\mathbb{Z}_p, +)$ and let \mathbb{B} be a finite abelian group of coprime order.

- For $k \in \mathbb{N}$, $\{f : A^k \to B\}$ is uniformly generated by unary functions.
- ullet The number of clonoids from $\mathbb A$ to $\mathbb B$ is finite.

For $f: A^2 \to B$ with f(0,0) = 0,

$$J(f)(x,y) := p^{-1} \sum_{a \in \mathbb{Z}_p} f(x + ay, 0) - f(ay, 0) = \begin{cases} f(x,y) & \text{if } y = 0, \\ 0 & \text{else.} \end{cases}$$

Let $\mathbb{A} = (\mathbb{Z}_p, +)$ and let \mathbb{B} be a finite abelian group of coprime order.

- For $k \in \mathbb{N}$, $\{f : A^k \to B\}$ is uniformly generated by unary functions.
- ullet The number of clonoids from $\mathbb A$ to $\mathbb B$ is finite.

For $f: A^2 \to B$ with f(0,0) = 0,

$$J(f)(x,y) := p^{-1} \sum_{a \in \mathbb{Z}_p} f(x + ay, 0) - f(ay, 0) = \begin{cases} f(x,y) & \text{if } y = 0, \\ 0 & \text{else.} \end{cases}$$

The operation $f \mapsto J(f)$ is *uniformly representable* by unary minors.

Let $\mathbb{A} = (\mathbb{Z}_p, +)$ and let \mathbb{B} be a finite abelian group of coprime order.

- For $k \in \mathbb{N}$, $\{f : A^k \to B\}$ is uniformly generated by unary functions.
- The number of clonoids from \mathbb{A} to \mathbb{B} is finite.

For $f: A^2 \to B$ with f(0,0) = 0,

$$J(f)(x,y) := p^{-1} \sum_{a \in \mathbb{Z}_p} f(x + ay, 0) - f(ay, 0) = \begin{cases} f(x,y) & \text{if } y = 0, \\ 0 & \text{else.} \end{cases}$$

The operation $f \mapsto J(f)$ is *uniformly representable* by unary minors.

For $v \in A^2$ unary minors of f generate

$$f_{\nu}(x,y) = \begin{cases} f(x,y) & \text{if } (x,y) \in \langle v \rangle, \\ 0 & \text{else.} \end{cases}$$

Let $\mathbb{A} = (\mathbb{Z}_p, +)$ and let \mathbb{B} be a finite abelian group of coprime order.

- For $k \in \mathbb{N}$, $\{f : A^k \to B\}$ is uniformly generated by unary functions.
- ullet The number of clonoids from $\mathbb A$ to $\mathbb B$ is finite.

For $f: A^2 \to B$ with f(0,0) = 0,

$$J(f)(x,y) := p^{-1} \sum_{a \in \mathbb{Z}_p} f(x + ay, 0) - f(ay, 0) = \begin{cases} f(x,y) & \text{if } y = 0, \\ 0 & \text{else.} \end{cases}$$

The operation $f \mapsto J(f)$ is *uniformly representable* by unary minors.

For $v \in A^2$ unary minors of f generate

$$f_v(x,y) = \begin{cases} f(x,y) & \text{if } (x,y) \in \langle v \rangle, \\ 0 & \text{else.} \end{cases}$$

Then $f = \sum f_v$ for v's generating distint lines.

Abelian Groups of Coprime Order

Conjecture

Given $\mathbb A$ and $\mathbb B$ finite abelian groups, the number of clonoids from $\mathbb A$ to $\mathbb B$ is finite if and only if they are of coprime order.

Abelian Groups of Coprime Order

Conjecture

Given $\mathbb A$ and $\mathbb B$ finite abelian groups, the number of clonoids from $\mathbb A$ to $\mathbb B$ is finite if and only if they are of coprime order.

Some more evidence...

Abelian Groups of Coprime Order

Conjecture

Given $\mathbb A$ and $\mathbb B$ finite abelian groups, the number of clonoids from $\mathbb A$ to $\mathbb B$ is finite if and only if they are of coprime order.

Some more evidence...

Theorem (Mayr, W. 2024)

Let $\mathbb{A}=(\mathbb{Z}_m,+)$ and let n be the maximal power of a prime dividing m. Let \mathbb{B} be a finite abelian group with order coprime to m.

- $\{f: A^k \to B\}$ is uniformly generated by *n*-ary minors for each $k \in \mathbb{N}$.
- ullet The number of clonoids from $\mathbb A$ to $\mathbb B$ is finite.

- $\{f: A^k \to B\}$ is uniformly generated by *n*-ary minors for each $k \in \mathbb{N}$.
- The number of clonoids from \mathbb{A} to \mathbb{B} is finite.

Let $\mathbb{A}=(\mathbb{Z}_{p^n},\,+)$ for a prime p and $n\geq 1$. Let \mathbb{B} coprime abelian group.

- $\{f: A^k \to B\}$ is uniformly generated by *n*-ary minors for each $k \in \mathbb{N}$.
- The number of clonoids from \mathbb{A} to \mathbb{B} is finite.

$$\mathbb{Z}_{p^n}$$

• Induction on n. Base case $\mathbb{A} = \mathbb{Z}_p$: unary functions suffice.

$$p\mathbb{Z}_{p'}$$

$$p^{n-1}\mathbb{Z}_{p^n}$$

- $\{f: A^k \to B\}$ is uniformly generated by *n*-ary minors for each $k \in \mathbb{N}$.
- The number of clonoids from A to B is finite.

- Induction on n. Base case $\mathbb{A} = \mathbb{Z}_p$: unary functions suffice.
- Induction on n. Base case $P_{\mathbb{Z}} = \mathbb{Z}_p$. So $f J_1(f)$ is uniformly representable by unary minors, where $J_1(f) = f$ on $p^{n-1}\mathbb{Z}_{p^n} \cong \mathbb{Z}_p$.

$$p^{n-1}\mathbb{Z}_p$$

- $\{f: A^k \to B\}$ is uniformly generated by *n*-ary minors for each $k \in \mathbb{N}$.
- The number of clonoids from A to B is finite.

- Induction on n. Base case $\mathbb{A} = \mathbb{Z}_p$: unary functions suffice.
- Induction on n. Base case $\mathbb{A}=\mathbb{Z}_p$: unary functions suffile So $f-J_1(f)$ is uniformly representable by unary minors, where $J_1(f)=f$ on $p^{n-1}\mathbb{Z}_{p^n}\cong\mathbb{Z}_p$. Reduce to constant f
 - Reduce to case $f(p^{n-1}\mathbb{Z}_{p^n},\ldots,p^{n-1}\mathbb{Z}_{p^n})=0$

$$p^{n-1}\mathbb{Z}_p$$

- $\{f: A^k \to B\}$ is uniformly generated by *n*-ary minors for each $k \in \mathbb{N}$.
- The number of clonoids from A to B is finite.

- Induction on n. Base case $\mathbb{A} = \mathbb{Z}_p$: unary functions suffice.
- Induction on n. Base case $\mathbb{A}=\mathbb{Z}_p$: unary functions suffile So $f-J_1(f)$ is uniformly representable by unary minors, where $J_1(f)=f$ on $p^{n-1}\mathbb{Z}_{p^n}\cong\mathbb{Z}_p$. Reduce to case $f(-n)^{1-1}$

 - By induction, on $\mathbb{Z}_{p^{n-1}}$: (n-1)-ary functions suffice.

$$p^{n-1}\mathbb{Z}_{p^n}$$

- $\{f: A^k \to B\}$ is uniformly generated by *n*-ary minors for each $k \in \mathbb{N}$.
- The number of clonoids from \mathbb{A} to \mathbb{B} is finite.

- Induction on n. Base case $\mathbb{A} = \mathbb{Z}_p$: unary functions suffice.
- - By induction, on $\mathbb{Z}_{p^{n-1}}$: (n-1)-ary functions suffice.
 - $f J_{n-1}(f)$ is uniformly representable by (n-1)-ary minors, $p^{n-1}\mathbb{Z}_{p^n}$ where $J_{n-1}(f)=f$ on $p\mathbb{Z}_{p^n}\cong \mathbb{Z}_{p^{n-1}}.$

- $\{f: A^k \to B\}$ is uniformly generated by *n*-ary minors for each $k \in \mathbb{N}$.
- The number of clonoids from A to B is finite.

- Induction on n. Base case $\mathbb{A} = \mathbb{Z}_p$: unary functions suffice.
- Induction on n. Base case $p_1 \omega_p$,
 So $f J_1(f)$ is uniformly representable by unary minors, where $J_1(f) = f$ on $p^{n-1}\mathbb{Z}_{p^n} \cong \mathbb{Z}_p$.
 Reduce to case $f(p^{n-1}\mathbb{Z}_{p^n}, \ldots, p^{n-1}\mathbb{Z}_{p^n}) = 0$

 - By induction, on $\mathbb{Z}_{p^{n-1}}$: (n-1)-ary functions suffice.
 - $f J_{n-1}(f)$ is uniformly representable by (n-1)-ary minors, $p^{n-1}\mathbb{Z}_{p^n}$ where $J_{n-1}(f)=f$ on $p\mathbb{Z}_{p^n}\cong \mathbb{Z}_{p^{n-1}}.$ • Reduce to case $f(p\mathbb{Z}_{p^n},p\mathbb{Z}_{p^n},\ldots,p\mathbb{Z}_{p^n})=0.$

- $\{f: A^k \to B\}$ is uniformly generated by *n*-ary minors for each $k \in \mathbb{N}$.
- The number of clonoids from A to B is finite.

- Induction on n. Base case $\mathbb{A} = \mathbb{Z}_p$: unary functions suffice.
- Induction on n. Base case $p_1 \omega_p$,
 So $f J_1(f)$ is uniformly representable by unary minors, where $J_1(f) = f$ on $p^{n-1}\mathbb{Z}_{p^n} \cong \mathbb{Z}_p$.
 Reduce to case $f(p^{n-1}\mathbb{Z}_{p^n}, \ldots, p^{n-1}\mathbb{Z}_{p^n}) = 0$

 - By induction, on $\mathbb{Z}_{p^{n-1}}$: (n-1)-ary functions suffice.
 - $f J_{n-1}(f)$ is uniformly representable by (n-1)-ary minors, $p^{n-1}\mathbb{Z}_{p^n}$ where $J_{n-1}(f)=f$ on $p\mathbb{Z}_{p^n}\cong \mathbb{Z}_{p^{n-1}}.$ • Reduce to case $f(p\mathbb{Z}_{p^n},p\mathbb{Z}_{p^n},\ldots,p\mathbb{Z}_{p^n})=0.$

Assume WLOG f(pA, pA, ..., pA) = 0.

Let $N = A \times pA \times \cdots \times pA \leq \mathbb{A}^k$.

Assume WLOG $f(pA, pA, \dots, pA) = 0$.

Let $N = A \times pA \times \cdots \times pA \leq \mathbb{A}^k$.

n-ary minors of f generate $f_N: A^k \to B$,

$$f_N(x) = \begin{cases} f(x) & \text{if } x \in A \times (pA)^{k-1}, \\ 0 & \text{else.} \end{cases}$$

Assume WLOG f(pA, pA, ..., pA) = 0.

Let $N = A \times pA \times \cdots \times pA \leq \mathbb{A}^k$.

n-ary minors of f generate $f_N: A^k \to B$,

$$f_N(x) = \begin{cases} f(x) & \text{if } x \in A \times (pA)^{k-1}, \\ 0 & \text{else.} \end{cases}$$

This generation is uniform on $\{f: A^k \to B : f(pA, ..., pA) = 0\}$.

• Let $V = \{ N \leq \mathbb{A}^k : pA^k \leq N \text{ and } N/pA^k \cong \mathbb{Z}_p \}.$

- Let $V = \{ N \leq \mathbb{A}^k : pA^k \leq N \text{ and } N/pA^k \cong \mathbb{Z}_p \}.$
- $GL_k(\mathbb{Z}_{p^n})$ acts transitively on V.

- Let $V = \{ N \leq \mathbb{A}^k : pA^k \leq N \text{ and } N/pA^k \cong \mathbb{Z}_p \}.$
- $GL_k(\mathbb{Z}_{p^n})$ acts transitively on V.
- So *n*-ary minors of f generate $f_N: A^k \to B$,

$$f_N(x) = \begin{cases} f(x) & \text{if } x \in N, \\ 0 & \text{else.} \end{cases}$$

- Let $V = \{N \leq \mathbb{A}^k : pA^k \leq N \text{ and } N/pA^k \cong \mathbb{Z}_p\}.$
- $GL_k(\mathbb{Z}_{p^n})$ acts transitively on V.
- So *n*-ary minors of f generate $f_N: A^k \to B$,

$$f_N(x) = \begin{cases} f(x) & \text{if } x \in N, \\ 0 & \text{else.} \end{cases}$$

• $\bigcup V = A^k$ so cover A^k by subgroups of this form.

- Let $V = \{ N \leq \mathbb{A}^k : pA^k \leq N \text{ and } N/pA^k \cong \mathbb{Z}_p \}.$
- $GL_k(\mathbb{Z}_{p^n})$ acts transitively on V.
- So *n*-ary minors of f generate $f_N: A^k \to B$,

$$f_N(x) = \begin{cases} f(x) & \text{if } x \in N, \\ 0 & \text{else.} \end{cases}$$

• $\bigcup V = A^k$ so cover A^k by subgroups of this form.

- Let $V = \{ N \leq \mathbb{A}^k : pA^k \leq N \text{ and } N/pA^k \cong \mathbb{Z}_p \}.$
- $GL_k(\mathbb{Z}_{p^n})$ acts transitively on V.
- So *n*-ary minors of f generate $f_N: A^k \to B$,

$$f_N(x) = \begin{cases} f(x) & \text{if } x \in N, \\ 0 & \text{else.} \end{cases}$$

• $\bigcup V = A^k$ so cover A^k by subgroups of this form.

• For $N \neq M \in V, N \cap M \subseteq pA^k$, hence $f = \sum f_N$.

Conjecture for Abelian Groups

Number of clonoids from \mathbb{A} to \mathbb{B} is finite if and only if gcd(|A|, |B|) = 1.

Conjecture for Abelian Groups

Number of clonoids from \mathbb{A} to \mathbb{B} is finite if and only if gcd(|A|, |B|) = 1.

Theorem (Fioravanti, Kompatscher, Rossi 2025)

For $\mathbb{A}=(\mathbb{Z}_p)^n$ and \mathbb{B} an abelian group of coprime order,

- $\{f: A^k \to B\}$ is uniformly generated by *n*-ary minors for each $k \in \mathbb{N}$.
- \bullet There are finitely many clonoids from $\mathbb A$ to $\mathbb B.$

Conjecture for Abelian Groups

Number of clonoids from \mathbb{A} to \mathbb{B} is finite if and only if gcd(|A|,|B|)=1.

Theorem (Fioravanti, Kompatscher, Rossi 2025)

For $\mathbb{A}=(\mathbb{Z}_p)^n$ and \mathbb{B} an abelian group of coprime order,

- $\{f: A^k \to B\}$ is uniformly generated by *n*-ary minors for each $k \in \mathbb{N}$.
- \bullet There are finitely many clonoids from $\mathbb A$ to $\mathbb B.$

Smallest unknown case: $\mathbb{A} = \mathbb{Z}_{p^2} \times \mathbb{Z}_p$ and \mathbb{B} coprime.

Conjecture for Abelian Groups

Number of clonoids from \mathbb{A} to \mathbb{B} is finite if and only if gcd(|A|, |B|) = 1.

Theorem (Fioravanti, Kompatscher, Rossi 2025)

For $\mathbb{A}=(\mathbb{Z}_p)^n$ and \mathbb{B} an abelian group of coprime order,

- $\{f: A^k \to B\}$ is uniformly generated by *n*-ary minors for each $k \in \mathbb{N}$.
- \bullet There are finitely many clonoids from $\mathbb A$ to $\mathbb B.$

Smallest unknown case: $\mathbb{A} = \mathbb{Z}_{p^2} \times \mathbb{Z}_p$ and \mathbb{B} coprime.

Conjecture for Modules

For \mathbb{A} and \mathbb{B} finite modules, the number of clonoids from \mathbb{A} to \mathbb{B} is finite if and only if gcd(|A|,|B|)=1.

Thanks!